Skip to main content
Log in

Soil management zones delineated by electrical conductivity to characterize spatial and temporal variations in potato yield and in soil properties

  • Published:
American Journal of Potato Research Aims and scope Submit manuscript

Abstract

Within-field management zones (MZ) delineated using soil electrical conductivity (EC) may provide the basis for site-specific crop management (SSCM). The objective of this study was to evaluate the efficiency of EC for delineating homogenous soil MZ related to soil properties. Soil EC was measured on a 15-m×15-m grid using a Geonics EM38 on a 13.8-ha commercial field under potato (Solanum tuberosum L.) production. A subset of this grid (30 m×30 m) was used to collect soil samples (0–0.2 m) and to perform soil profile descriptions (1.2 m). Soil samples were analyzed for physico-chemical properties (texture, organic matter, pH, Mehlich-3 extractable elements). Potato tuber yields were measured using a yield monitor in 1998, 1999, and 2000. The K-means clustering algorithm was performed for delineating MZ using the soil EC kriged data matrix. Two MZ were found to be optimal for implementing SSCM management for potato in this field. These two MZ showed significant differences in soil water regime (thickness of sandy deposit over the clayey substratum, water table depth, water-holding capacity) and in some soil physico-chemical properties (soil organic matter, soil P, soil pH). Significant differences in potato yields (5.9 t ha−1) between the two MZ were attributed to differing water supply. Soil EC has the potential to be used efficiently for delineating within-field MZ for soils in which soil deposits and soil physical properties control soil moisture availability.

Resumen

El manejo de campo dentro de zonas (ZM) delineados por la conductividad eléctrica (CE), puede proporcionar las bases para el manejo del cultivo dentro de un lugar específico (MCLE). El objetivo de este estudio fue evaluar la eficiencia de la CE para delinear las ZM en suelos homogéneos con relación a sus propiedades. La CE del suelo fue medida sobre una rejilla 15×15 m, utilizando Geonics EM38 en un campo comercial de 13.8 ha de papa (Solanum tuberosum L.) en producción. Un subconjunto de esta rejilla (30×30 m) fue utilizado para colectar muestras (0–0.2 m) y realizar la descripción del perfil del suelo (1.2 m). Las muestras de suelo fueron analizadas para determinar sus propiedades físico químicas (textura, materia orgánica, pH, elementos extraíbles Mehlich 3). Los rendimientos de tubérculos fueron medidos en 1998, 1999 y 2000, utilizando un monitor de rendimiento. Los promedios K del agrupamiento algoritmo se realizaron para delinear las ZM, utilizando los datos kriged matrix de CE. Se encontraron dos ZM óptimas para implementar el MCLE para papa en este campo. Estas dos ZM mostraron diferencias significativas en el régimen de agua del suelo (grosor del depósito de arena sobre substrato arcilloso, profundidad de la capa de agua, capacidad de retención de agua) y algunas propiedades físico químicas (materia orgánica, P, pH). Las diferencias significativas de los rendimientos (5.9t/ha−1) entre dos ZM fueron atribuidas a un mejor abastecimiento de agua. La CE tiene el potencial de ser utilizada eficientemente para delinear dentro del campo las ZM para suelos en los cuales los depósitos y las propiedades físicas controlan la disponibilidad de humedad del suelo.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literature cited

  • Banton O, M-K Seguin and M-A Cimon. 1997. Mapping field-scale physical properties of soil with electrical resistivity. Soil Sci Soc Amer J 61:1010–1017.

    CAS  Google Scholar 

  • Bremner JM. 1965. Total nitrogen, inorganic forms of nitrogen.In: CA Black et al. (eds), Methods of Soil Analysis. Part 2 Chemical and Microbiological Properties. ASA, SSSA, Madison, WI. pp 1149–1225.

    Google Scholar 

  • Bolinder MA, RR Simard, S Beauchemin and KB MacDonald. 2000. Indicator of risk of water contamination by P for soil landscape of Canada polygons. Can J Soil Sci 80:153–163.

    Google Scholar 

  • Cambouris AN, MC Nolin and RR Simard. 2000. Effects of located application of papermill residues on crop yields and soil quality.In: PC Robert et al. (eds), Proc 5th Intern Conf Prec Ag. St. Paul, MN. [CD-ROM computer file]

  • Clay DE, J Chang, DD Malo, CG Carlson, C Reese, SA Clay, M Ellsbury and B Berg. 2001. Factors influencing spatial variability of soil apparent electrical conductivity. Commun. Soil Sci Plant Anal 32:2993–3008.

    Article  CAS  Google Scholar 

  • Corwin DL and SM Lesch. 2005. Apparent soil electrical conductivity measurements in agriculture. Comp Electron Agric 46:11–43.

    Article  Google Scholar 

  • Corwin DL and SM Lesch. 2003. Application of soil electrical conductivity to precision agriculture: Theory, principles and guidelines. Agron J 95:455–471.

    Google Scholar 

  • Corwin DL, SM Lesch, PJ Shouse, R Soppe and JE Ayars. 2003. Identifying soil properties that influence cotton yield using soil sampling directed by apparent soil electrical conductivity. Agron J 95:352–364.

    Google Scholar 

  • Corwin DL and RE Plant. 2005. Applications of apparent soil electrical conductivity in precision agriculture. Comp Electron Agric 46:1–10.

    Article  Google Scholar 

  • Cully JBL. 1993. Density and compressibility.In: MR Carter (ed), Soil Sampling and Methods of Analysis. Lewis Publishers, Boca Raton, FL. pp 529–540.

    Google Scholar 

  • Doolittle JA, KA Sudduth, NR Kitchen and SJ Indorante. 1994. Estimating depths to claypans using electrical induction methods. J Soil Water Conserv 49:572–575.

    Google Scholar 

  • Environment Canada. 2004. Canadian Climate Normals or Averages 1971–2000. Available online at: http://www.climat.meteo.ec.gc.ca/climate_normals/index_e.html [Accessed 27 November 2005].

  • Expert Committee on Soil Survey. 1982. The Canada Soil Information System (CanSIS) Manual for Describing Soils in the Field. Land Resource Research Institute, Research Branch, Agriculture Canada, Ottawa.

    Google Scholar 

  • Flatman GT and AA Yfantis. 1984. Geostatistical strategy for soil sampling—the survey and the census. Environ Monit Assess 4:335–349.

    Article  CAS  Google Scholar 

  • Fraisse D, KA Sudduth and NR Kitchen. 2001. Delineation of site-specific management zones by unsupervised classification of topographic attributes and soil electrical conductivity. Trans ASAE 44:155–166.

    Google Scholar 

  • Fridgen JJ, NR Kitchen and KA Sudduth. 2000. Variability of soil and landscape attributes within sub-field management zones.In: PC Robert et al. (eds), Proc 5th Intern Conf Prec Ag. St. Paul, MN. [CD-ROM computer file].

  • Giroux M. 1987. La fertilisation azotée de la pomme de terre et l’espacement entre les plants de pomme de terre en relation avec les propriétés du sol.In: Colloque sur la pomme de terre: «la culture intensive de la pomme de terre, une approche raisonnée». Conseil des productions végétales du Québec. pp 7–17.

  • Giroux M, D Carrier and P Baudet. 1996. Problématique et méthode de gestion des charges de phosphore appliquées aux sols agricoles en provenance des engrais de ferme. Agrosol 9:36–45.

    Google Scholar 

  • Gerwig BK, EJ Sadler and DE Evans. 2000. Evaluating techniques for defining management zones in the coastal plain.In: PC Robert et al. (eds), Proc 5th Intern Conf Prec Ag. St. Paul, MN. [CD-ROM computer file]

  • Golden Sofware Inc. 1999. Surfer. Contouring and 3D Surface Mapping User’s Guide. Golden, CO.

  • Hanna AY, PW Harlan and DT Lewis. 1982. Soil available water as influenced by landscape position and aspect. Agron J 74:999–1004.

    Google Scholar 

  • Hendershot WH, H Lalande and M Duquette. 1993. Soil reaction and exchangeable acidity.In: MR Carter (ed), Soil Sampling and Methods of Analysis. Lewis Publishers, Boca Raton, FL. pp 141–146.

    Google Scholar 

  • Kitchen NR, KA Sudduth, DB Myers, ST Drummond and SY Hong. 2005. Delineating productivity zones on claypan soil fields using apparent soil electrical conductivity. Comp Electron Agric 46:285–308.

    Article  Google Scholar 

  • Kitchen NR, KA Sudduth and ST Drummond. 1999. Soil electrical conductivity as a crop productivity measure for claypan soils. J Prod Agric 12:607–617.

    Google Scholar 

  • Lamontagne L and MC Nolin. 1990. Étude pédologique du comté de Verchères (Québec). Vol. 1 Description et interprétation des unités cartographiques. Vol. 2 Description et classification des séries de sols. CRT Contrib. No 87-92. Direction générale de la recherche, Agriculture and Agri-Food Canada.

  • Lesch SM, DJ Strauss and JD Rhoades. 1995. Spatial prediction of soil salinity using electromagnetic induction techniques: I. Statistical predictions models: a comparison of multiple linear regression and cokriging. Water Resour Res 31:373–386.

    Article  Google Scholar 

  • Lynch DR, N Foroud, GC Kozod and BC Farries. 1995. The effect of moisture stress at three growth stages on the yield, components of yield and processing quality of eight potato varieties. Am Potato J 72:375–385.

    Article  Google Scholar 

  • Mahdian MH and J Gallichand. 1997. Regional estimation of water deficit and potato yield in Québec. Can Agric Engin 39:165–175.

    Google Scholar 

  • Malo DD, BK Worcester, DK Cassel and KD Matzdorf. 1974. Soil landscape relationships in a closed drainage system. Soil Sci Soc Am Proc 38:813–818.

    Google Scholar 

  • Maynard DG and YP Kalra. 1993. Nitrate and exchangeable ammonium nitrogen.In: MR Carter (ed), Soil Sampling and Methods of Analysis. Lewis Publishers, Boca Raton, FL. pp 25–38.

    Google Scholar 

  • Mulla DJ. 1989. Soil spatial variability and methods of analysis.In: Soil, Crop, and Water Management Systems for Rainfed Agriculture in the Sudano-Sahelian Zone: Proc Internat Workshop. 7–11 Jan 1987. pp 241–252.

  • Mulla DJ and AB McBratney. 2000. Soil spatial variability.In: ME Sumner (ed), Handbook of Soil Science. CRC Press, Boca Raton, FL. pp A321-A352.

    Google Scholar 

  • Murphy J and JP Riley. 1962. A modified single solution method for the determination of phosphates in natural waters. Anal Chem Acta 27:31–36.

    Article  CAS  Google Scholar 

  • Nkonge C and GM Balance. 1982. A sensitive colorimetric procedure for nitrogen in micro Kjeldahl digest. J Agric Food Chem 30:416–420.

    Article  CAS  Google Scholar 

  • Nolin MC and MJ Caillier. 1992. La variabilité des sols. II—Quantification et amplitude. Agrosol 5:21–32.

    Google Scholar 

  • Nolin MC, B Gagnon, M-L Leclerc, AN Cambouris, G Bélanger and RR Simard. 2002. Influence of pedodiversity and past land uses on the within-field spatial variability of selected soil and forage quality indicators.In: PC Robert et al. (eds), Proc 5th Intern Conf Prec Ag. St. Paul, MN. pp 181–197. [CD-ROM computer file]

  • Redulla CA, JR Davenport, RG Evans, MJ Hattendorf, AK Alva and RA Boydston. 2002. Relating potato yield and quality to field scale variability in soil characteristics. Amer J Potato Res 79:317–323.

    Article  Google Scholar 

  • Rehm GW, A Mallarino, K Reid, D Franzen and J Lamb. 2002. Soil sampling for variable rate fertilizer and lime application. University of Minnesota, Extension Service. Available online at: http://www.extension.umn.edu/distribution/cropsystems/DC7647.html [Accessed 14 March 2006]

  • Reynolds WD. 1993. Saturated hydraulic conductivity: laboratory measurement.In: MR Carter (ed), Soil Sampling and Methods of Analysis. Lewis Publishers, Boca Raton, FL. pp 589–598.

    Google Scholar 

  • Robertson GP. 2000. GS+. GeoStatistics for the Environmental Sciences, Vers 5.0. Gamma Design Software. Plainwell, MI.

    Google Scholar 

  • SAS Institute Inc. 1989. SAS/STAT User’s Guide, Vers 8.0. SAS, Cary, NC.

    Google Scholar 

  • Sheldrick BH and C Wang. 1993. Particle size distribution.In: MR Carter (ed), Soil Sampling and Methods of Analysis. Lewis Publishers, Boca Raton, FL. pp 499–512.

    Google Scholar 

  • Simard RR, N Ziadi, MC Nolin and AN Cambouris. 2001. Prediction of N fertilizer needs for corn by N mineralization indicators.In: Optimizing Nitrogen Management in Food and Energy Production and Environmental Protection: Proc 2nd Intern Nitrogen Conf on Science and Policy. The Scientific World 1. pp 135–141.

  • Soil Classification Working Group. 1998. The Canadian System of Soil Classification. Third Edition. Agric. and Agri-Food Can. Publ. 1646 (Revised).

  • Sudduth KA, NR Kitchen, GA Bollero, DG Bullock and WJ Weibold. 2003. Comparison of electromagnetic induction and direct sensing of soil electrical conductivity. Agron J 95:472–482.

    Google Scholar 

  • SYSTAT Inc. 1997. Systat for Windows, Vers 7.0.1, Statistics. SYSTAT, Evanston, IL.

    Google Scholar 

  • Tiessen H and JO Moir. 1993. Total and organic carbon.In: MR Carter (ed), Soil Sampling and Methods of Analysis. Lewis Publishers, Boca Raton, FL. pp 187–200.

    Google Scholar 

  • Topp GC, YT Galganov, BC Ball, MR Carter. 1993. Soil water desorption curves.In: MR Carter (ed), Soil sampling and methods of analysis. Lewis Publishers, Boca Raton, FL, pp. 569–580.

    Google Scholar 

  • Tran TS and RR Simard. 1993. Mehlich III-extractable elements.In: MR Carter (ed), Soil Sampling and Methods of Analysis. Lewis Publishers, Boca Raton, FL. pp 43–50.

    Google Scholar 

  • Whelan BM and AB McBratney. 2000. The “null hypothesis” of precision agriculture management. Prec Ag 2:265–279.

    Article  Google Scholar 

  • Williams BG and D Hoey. 1987. The use of electromagnetic induction to detect the spatial variability of the salts and clay contents of soils. Aust J Soil Res 25:21–27.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. N. Cambouris.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cambouris, A.N., Nolin, M.C., Zebarth, B.J. et al. Soil management zones delineated by electrical conductivity to characterize spatial and temporal variations in potato yield and in soil properties. Am. J. Pot Res 83, 381–395 (2006). https://doi.org/10.1007/BF02872015

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02872015

Additional key words

Navigation