Skip to main content
Log in

Regeneration of the frog optic nerve

Comparisons with development

  • Published:
Neurochemical Pathology

Abstract

Developing and regenerating frog optic axons grow within optic pathways and form connections only with optic targets. However, unlike normal development, many regenerating optic axons in the adult frog are misrouted within optic pathways, including axons that grow into the opposite retina. Many of the axons misrouted during regeneration appear to be collaterals of axons that grow in normal directions. Ganglion cell loss of up to 60% occurs after optic nerve damage, beginning prior to reinnervation of optic targets. Massive axonal collateralization also takes place near the point of nerve damage, causing the normal order found within the nerve to be lost. Collaterals are eliminated as selective reinnervation is completed, and the smaller complement of optic cell axons remaining after regeneration form an expanded projection within optic targets. Evidence is reviewed that suggests that factors involved in axonal guidance and target recognition during development remain intact in the adult frog brain. Additional conditions resulting from nerve injury causes axonal guidance to be less successful during regeneration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Beach D. H. and Jacobson M. (1979) Patterns of proliferation in the retina of the clawed frog during development.J. Comp. Neurol. 183, 615–624.

    PubMed  Google Scholar 

  • Beazley L. D. (1975) Factors determining decussation at the optic chiasm by developing retinotectal fibers inXenopus.Exp. Brain Res. 23, 491–504.

    PubMed  CAS  Google Scholar 

  • Beazley L. D. (1981) Retinal ganglion cell death and regeneration of abnormal retinotectal projections after removal of a segment of optic nerve inXenopus tadpoles.Dev. Biol. 85, 164–170.

    PubMed  CAS  Google Scholar 

  • Bernstein J. J. and Gelderd J. B. (1970) Regeneration of the long spinal tracts in the goldfish.Brain Res. 20, 33–38.

    PubMed  CAS  Google Scholar 

  • Bernstein D. R. and Stelzner D. J. (1983) Plasticity of the corticospinal tract following midthoracic spinal injury in the postnatal rat.J. Comp. Neurol. 221, 382–400.

    PubMed  CAS  Google Scholar 

  • Bohn R. C. and Reier P. J. (1982) Anomalous axonal outgrowth at the retina caused by injury to the optic nerve or tectal ablation in adultXenopus.J. Neurocytol. 11, 211–234.

    PubMed  CAS  Google Scholar 

  • Bohn R. C. and Reier P. J. (1985) Retrograde degeneration of myelinated axons and re-organization in the optic nerves of adult frogs (Xenopus laevis) following nerve injury or tectal ablation.J. Neurocytol. 14, 221–244.

    PubMed  CAS  Google Scholar 

  • Bohn R. C. and Stelzner D. J. (1980) Denervation of non-optic brain areas along the course of the optic tract does not affect the success of optic nerve regeneration in frogs.J. Comp. Neurol. 190, 763–779.

    PubMed  CAS  Google Scholar 

  • Bohn R. C. and Stelzner D. J. (1981a) The aberrant retino-retinal projection during optic nerve regeneration in the frog. I. Time course of formation and cells of origin.J. Comp. Neurol. 196, 605–620.

    PubMed  CAS  Google Scholar 

  • Bohn R. C. and Stelzner D. J. (1981b) The aberrant retino-retinal projection during optic nerve regeneration in the frog. II. Anterograde labeling with horseradish peroxidase.J. Comp. Neurol. 196, 621–632.

    PubMed  CAS  Google Scholar 

  • Bohn R. C. and Stelzner D. J. (1981c) The aberrant retino-retinal projection during optic nerve regeneration in the frog. III. Effects of crushing both nerves.J. Comp. Neurol. 196, 633–643.

    PubMed  CAS  Google Scholar 

  • Bohn R. C., Reier P. J., and Sourbeer E. B. (1982) Axonal interactions with connective tissue and glial substrata during optic nerve regeneration inXenopus larvae and adults.Am. J. Anat. 165, 397–419.

    PubMed  CAS  Google Scholar 

  • Braekevelt C. R. and Hollenberg M. J. (1970) The development of the retina of the albino rat.Am. J. Anat. 127, 281–302.

    PubMed  CAS  Google Scholar 

  • Bray D. (1973) Branching patterns of individual sympathetic neurons in culture.J. Cell Biol. 56, 702–712.

    PubMed  CAS  Google Scholar 

  • Bunt S. M. and Lund R. D. (1981) Development of a transient retino-retinal pathway in hooded and albino rats.Brain Res. 211, 399–404.

    PubMed  CAS  Google Scholar 

  • Chung S. H., Keating M. J., and Bliss T. V. P. (1974) Functional synaptic relations during the development of the retinotectal projection in amphibians.Proc. R. Soc. (Lond) 187, 449–459.

    CAS  Google Scholar 

  • Constantine-Paton M. and Capranica R. R. (1976a) Axonal guidance of developing optic nerves in the frog. I. Anatomy of the projection from transplanted eye primordia.J. Comp. Neurol. 170, 17–32.

    PubMed  CAS  Google Scholar 

  • Constantine-Paton M. and Capranica R. R. (1976b) Axonal guidance of developing optic nerves in the frog. II. Electrophysiological studies of the projection from transplanted eye primordia.J. Comp. Neurol. 170, 33–52.

    PubMed  CAS  Google Scholar 

  • Constantine-Paton M., Pitts E. C., and Reh T. A. (1983) The relationship between retinal axon ingrowth, terminal morphology, and terminal patterning in the optic tectum of the frog.J. Comp. Neurol. 218, 297–313.

    PubMed  CAS  Google Scholar 

  • Cullen M. J. and Webster H. deF. (1979) Remodeling of optic nerve sheaths and axons during metamorphosis inXenopus laevis.J. Comp. Neurol. 184, 353–362.

    PubMed  CAS  Google Scholar 

  • Currie J. and Cowan W. M. (1974) Evidence for the late development of the uncrossed retinothalamic projection in the frog,Rana pipiens.Brain Res. 71 133–139.

    PubMed  CAS  Google Scholar 

  • Currie J. and Cowan W. M. (1975) The development of the retino-tectal projection inRana pipiens.Dev. Biol. 46, 103–119.

    PubMed  CAS  Google Scholar 

  • Easter S. S., Jr. and Stuermer C. A. O. (1984) An evaluation of the hypothesis of shifting terminals in goldfish optic tectum.J. Neurosci. 4 1052–1063.

    PubMed  Google Scholar 

  • Easter S. S., Jr., Bratton B., and Scherer S. S. (1984) Growth-related order of the retinal fiber layer in goldfish.J. Neurosci. 4, 2173–2190.

    PubMed  Google Scholar 

  • Fawcett J. W. and Gaze R. M. (1981) The organization of the regenerating axons in theXenopus optic nerve.Brain Res. 229, 487–490.

    PubMed  CAS  Google Scholar 

  • Fraser S. (1978) Late LEO: A new system for the study of neuroplasticity inXenopus, inDevelopmental Neurobiology of Vision (Freeman R. D., ed.), pp. 319–330. Plenum, New York, NY.

    Google Scholar 

  • Frost D. (1981) Orderly anomalous retinal projections to the medial geniculate, ventrobasal, and lateral posterior nuclei of the hamster.J. Comp. Neurol. 203, 227–256.

    PubMed  CAS  Google Scholar 

  • Fujisawa H. (1981) Retinotopic analysis of fiber pathways in the regenerating retinotectal system of the adult newt,Cynops pyrrhogaster.Brain Res. 206, 27–37.

    PubMed  CAS  Google Scholar 

  • Fujisawa H., Tani N., Watanabe K. and Ibata Y. (1982) Branching of regenerating retinal axons and preferential selection of appropriate branches for specific neuronal connections in the newt.Dev. Biol. 90, 43–57.

    PubMed  CAS  Google Scholar 

  • Gaze R. M. (1970)The Formation of Nerve Connections. Academic, New York, NY.

    Google Scholar 

  • Gaze R. M. and Grant P. (1978) The diencephalic course of regenerating retinotectal fibers inXenopus tadpoles.J. Embryol. exp. Morphol. 44, 201–216.

    PubMed  CAS  Google Scholar 

  • Gaze R. M., Keating M. J., and Chung S. H. (1974) The evolution of the retinotectal map during development inXenopus.Proc. R. Soc. Lond. (Biol).185, 301–330.

    CAS  Google Scholar 

  • Giorgi P. P. and Van der Loos H. (1978) Axons from eyes grafted inXenopus can grow into the spinal cord and reach the optic tectum.Nature 275, 746–748.

    PubMed  CAS  Google Scholar 

  • Glastonbury J. and Straznicky K. (1978) Aberrant ipsilateral retino-tectal projection following optic nerve section inXenopus.Neurosci. Lett. 7, 67–72.

    Google Scholar 

  • Goldberg S. and Frank B. (1979) The guidance of optic axons in the developing and adult mouse retina.Anat. Rec. 193, 763–774.

    PubMed  CAS  Google Scholar 

  • Goldschmidt R. B. and Steward O. (1980) Time course of increases in retrograde labeling and increases in cell size of entorhinal cortex neurons sprouting in response to, unilateral entorhinal lesions.J. Comp. Neurol. 189, 359–379.

    PubMed  CAS  Google Scholar 

  • Grant P. and Ma P. M. (1983) Development of visual pathways inXenopus laevis: An autoradiographic analysis.Neurosci. Abstr. 9, 761.

    Google Scholar 

  • Grant P. and Rubin E. (1980) Ontogeny of the retina, and optic nerve inXenopus laevis. II. Ontogeny of the optic fiber pattern in the retina.J. Comp. Neurol. 189, 671–698.

    PubMed  CAS  Google Scholar 

  • Gruberg E. R. and Stirling R. V. (1974) An autoradiographic study of changes in the frog tectum after cutting the optic nerve.Brain Res. 76, 359–362.

    PubMed  CAS  Google Scholar 

  • Horder T. J. (1974) Changes of fibre pathways in the goldfish optic tract following regeneration.Brain Res. 72, 41–52.

    PubMed  CAS  Google Scholar 

  • Hoskins S. G. and Grobstein P. (1985a) Development of the ipsilateral retinothalamic projection in the frogxenopus laevis. I. Retinal distribution of ipsilaterally projecting cells in normal and experimentally manipulated frogs.J. Neurosci. 5, 911–919.

    PubMed  CAS  Google Scholar 

  • Hoskins S. G. and Grobstein P. (1985b) Development of the ipsilateral retinothalamic projection in the frogXenopus laevis. II. Ingrowth of optic nerve fibers and production of ipsilaterally projecting retinal ganglion cells.J. Neurosci. 5, 920–929.

    PubMed  CAS  Google Scholar 

  • Hoskins, S. G. and Grobstein, P. (1985c) Development of the ipsilateral retinothalamic projection in the frogXenopus laevis. III. The role of thyroxine.J. Neurosci. 5, 930–940.

    PubMed  CAS  Google Scholar 

  • Hsiao K. (1984) Bilateral branching contributes minimally to the enhanced ipsilateral projection in monocular Syrian golden hamsters.J. Neurosci. 4, 368–373.

    PubMed  CAS  Google Scholar 

  • Hsiao K. Sachs G. and Schneider G. E. (1984) A minute fraction of Syrian golden hamster retinal ganglion cells project bilaterally.J. Neurosci. 4, 359–367.

    PubMed  CAS  Google Scholar 

  • Humphrey M. R. and Beazley L. D. (1985) Retinal ganglion cell death during optic nerve regeneration in the frogHyla moorei.J. Comp. Neurol 236, 382–402.

    PubMed  CAS  Google Scholar 

  • Jacobson M. (1962) The representation of the retina on the optic tectum of the frog. Correlation between retino-tectal magnification factor and retinal ganglion cell count.J. Exp. Physiol. 47, 170–178.

    CAS  Google Scholar 

  • Jacobson M. (1978)Developmental Neurobiology. Holt, Rinehart and Winston, New York, NY.

    Google Scholar 

  • Jeffery G. and Perry H. (1981) Evidence for ganglion cell death during development of the ipsilateral retinal projection in the rat.Dev. Brain Res. 2, 176–180.

    Google Scholar 

  • Kalil R. and Schneider G. (1975) Abnormal synaptic connections of the optic tract in the thalamus after midbrain lesions in newborn hamsters.Brain Res. 100, 690–698.

    PubMed  CAS  Google Scholar 

  • Katz M. J. and Lasek R. J. (1979) Substrate pathways which guide growing axons inXenopus embryos.J. Comp. Neurol. 183, 817–832.

    PubMed  CAS  Google Scholar 

  • Kennard C. (1981) Factors involved in the development of ipsilateral retinothalamic projections inXenopus laevis.J. Embryol. Exp. Morphol. 65, 199–217.

    PubMed  CAS  Google Scholar 

  • Kicliter E., Misantone, L. J., and Stelzner D. J. (1974) Neuronal specificity and plasticity in frog visual sytem: Anatomical correlates.Brain Res. 82, 293–297.

    PubMed  CAS  Google Scholar 

  • Lanners H. N. and Grafstein B. (1980) Early stages of axonal regeneration in the goldfish optic tract: An electron microscopic study.J. Neurocytol. 9, 733–751.

    PubMed  CAS  Google Scholar 

  • Lazar G. (1980) Long-term persistence after eye-removal of unmyelinated fibers in the frog visual pathway.Brain Res. 199, 219–224.

    PubMed  CAS  Google Scholar 

  • Letourneau P. C. (1975a) Possible roles for cell-to-substratum adhesion in neuronal morphogenesis.Dev. Biol. 44, 77–91.

    PubMed  CAS  Google Scholar 

  • Letourneau P. C. (1975b) Cell-to-substratum adhesion and guidance of axonal elongation.Dev. Biol. 44, 92–101.

    PubMed  CAS  Google Scholar 

  • Levine R. L. (1982) Pathway choice by regenerating optic fibers following tectal lobectomy in the goldfish: Inferences from the study of gliosis in tectal efferent bundles.Brain Res. 233, 17–28.

    PubMed  CAS  Google Scholar 

  • Lo R. Y. S. and Levine R. L. (1980) Time course and pattern of optic fiber regeneration following tectal lobe removal in the goldfish.J. Comp. Neurol. 191, 295–314.

    PubMed  CAS  Google Scholar 

  • Lund R. D. (1978)Development and Plasticity of the Brain. Oxford University, London.

    Google Scholar 

  • Lyon M. J. and Stelzner D. J. (1985) Tectal efferent axons in the frogRana pipiens, normal projections and tests of regenerative potential, Ph.D. dissertation, SUNY Health Science Center at Syracuse, Syracuse, NY.

    Google Scholar 

  • Lyon M. J. and Stelzner D. J. (1986) Tests of the regenerative ability of tectal efferent axons in the frog.Rana pipiens. J. Comp. Neurol., In press.

  • Matsumoto D. E. and Scalia F. (1981) Long-term survival of centrally projecting axons in the optic nerve of the frog following destruction of the retina.J. Comp. Neurol. 202, 135–155.

    PubMed  CAS  Google Scholar 

  • Maturana H. R., Lettvin J. Y., McCulloch W. S., and Pitts W. H. (1959) Evidence that cut optic nerve fibers in a frog regenerate to their proper places in the tectum.Science 130, 1709–1710.

    PubMed  Google Scholar 

  • Meyer R. L. (1980) Mapping the normal and regenerating retinotectal projection of goldfish with autoradiographic methods.J. Comp. Neurol. 189, 273–289.

    PubMed  CAS  Google Scholar 

  • Misantone L. J. and Stelzner D. J. (1974) Behavioral manifestations of competition of retinal endings for sites in doubly innervated frog optic tectum.Exp. Neurol. 45, 364–376.

    PubMed  CAS  Google Scholar 

  • Muchnick N. and Hibbard E. (1978) Avian retinal ganglion cells resistant to degeneration after optic nerve lesion.Exp. Neurol. 68, 205–216.

    Google Scholar 

  • Murray M. (1977) Delayed regeneration of the retino-diencephalic projections in the goldfish,Carassius auratus.Brain Res. 125, 149–153.

    PubMed  CAS  Google Scholar 

  • Murray M. (1982) A quantitative study of regenerative sprouting by optic axons in goldfish.J. Comp. Neurol. 209, 352–362.

    PubMed  CAS  Google Scholar 

  • Murray M. and Edwards M. A. (1982) A quantitative study of the reinnervation of the goldfish optic tectum following optic nerve crush.J. Comp Neurol. 209, 363–373.

    PubMed  CAS  Google Scholar 

  • Murray M., Sharma S. C., and Edwards M. A. (1982) Target regulation of synaptic number in the compressed retinotectal-projection of goldfish.J. Comp. Neurol. 209, 374–385.

    PubMed  CAS  Google Scholar 

  • Nakai J. and Kawasaki Y. (1959) Studies on the mechanism determining the course of nerve fibers in tissue culture. I. The reaction of the growth cone to various obstructions.Z. Zellforsch. Mikrosk. Anat. 51, 108–122.

    PubMed  CAS  Google Scholar 

  • Potter H. D. (1969) Structural characteristics of cell and fiber populations in the optic tectum of the frog (Rana catesbeiana).J. Comp. Neurol. 136, 203–232.

    PubMed  CAS  Google Scholar 

  • Potts R. A., Dreher B., and Bennett M. R. (1982) The loss of ganglion cells in the developing retina of the rat.Dev. Brain Res. 3, 481–486.

    Google Scholar 

  • Prendergast J. and Stelzner D. J. (1976a) Increase in collateral axonal growth rostral to a thoracic hemisection in neonatal and weanling rat.J. Comp. Neurol. 166, 145–162.

    PubMed  CAS  Google Scholar 

  • Prendergast J. and Stelzner D. J. (1976b) Changes in the magnocellular portion of the red nucleus following thoracic hemisection in the neonatal and adult rat.J. Comp. Neurol.,166, 163–172.

    PubMed  CAS  Google Scholar 

  • Rager G. (1980)Development of the Retinotectal Projection in the Chicken. Springer-Verlag, Berlin.

    Google Scholar 

  • Rager G. and Rager U. (1978) Systems matching by degeneration: I. A quantitative electronmicroscopic study of the generation and degeneration of retinal ganglion cells in the chicken.Exp. Brain Res. 33, 65–78.

    PubMed  CAS  Google Scholar 

  • Ramon y Cajal S. (1928)Degeneration and Regeneration of the Nervous System. Oxford University, London.

    Google Scholar 

  • Rapaport D. H. and Stone J. (1982) The site of commencement of maturation in mammalian retina: Observations in the cat.Dev. Brain Res. 5, 273–279.

    Google Scholar 

  • Reh T. A. and Constantine-Paton M. (1983) Qualitative and quantitative measures of plasticity during the normal development of theRana pipiens retinotectal projection.Dev. Brain Res. 10, 187–200.

    Google Scholar 

  • Reh T. A. and Constantine-Paton M. (1984) Retinal ganglion cell terminals change their projection sites during larval development ofRana pipiens.J. Neurosci. 4, 442–457.

    PubMed  CAS  Google Scholar 

  • Reh T. A. and Constantine-Paton M. (1985) Eye-specific segregation requires neural activity in three-eyedRana pipiens.J. Neurosci. 5, 1132–1144.

    PubMed  CAS  Google Scholar 

  • Reh T. A., Pitts E., and Constantine-Paton M. (1983) The organization of the fibers in the optic nerve in normal and tectum-lessRana pipiens.J. Comp. Neurol. 218, 282–296.

    PubMed  CAS  Google Scholar 

  • Reier P. J. and Webster H. deF. (1974) Regeneration and remyelination ofXenopus tadpole optic nerve fibres following transection or crush.J. Neurocytol. 3, 591–618.

    PubMed  CAS  Google Scholar 

  • Sakaguchi D. S., Murphy R. K., Hunt R. K., and Tompkins R. (1984) The development of retinal ganglion cells in a tetraploid strain ofXenopus laevis: A morphological study using intracellular dye injection.J. Comp. Neurol. 224, 231–251.

    Google Scholar 

  • Scalia F. (1976) The optic pathway of the frog: Nuclear organization and connections, inFrog Neurobiology (Llinas R. and Precht W., eds.), pp. 386–404, Springer-Verlag, New York, NY.

    Google Scholar 

  • Scalia F. and Arango V. (1983) The anti-retinotopic organization of the frog’s optic nerve.Brain Res. 266, 121–126.

    PubMed  CAS  Google Scholar 

  • Scalia F. and Fite K. (1974) A retinotopic analysis of the central connections of the optic nerve in the frog.J. Comp. Neurol. 158, 455–478.

    PubMed  CAS  Google Scholar 

  • Scalia F., Arango V., and Singman E. L. (1985) Loss and displacement of ganglion cells after optic nerve regeneration in adultRana pipiens.Brain Res. 344, 267–281.

    PubMed  CAS  Google Scholar 

  • Schmidt J. T. and Edwards D. L. (1983) Activity sharpens the map during the regeneration of the retinotectal projection in goldfish.Brain Res. 269, 29–39.

    PubMed  CAS  Google Scholar 

  • Schneider G. E., Jhaveri S., Edwards M. A., and So K. (1985) Regeneration, rerouting, and redistribution of axons after early lesions: Changes with age and functional impact, inRecent Achievements in Restorative Neurology 1: Upper Motor Neuron Functions and Dysfunctions (Eccles J. C. and Dimitrijevic M. R., eds.), pp. 291–310, Karger, Basel.

    Google Scholar 

  • Scott T. M. and Foote J. (1981) A study of degeneration, scar formation and regeneration after section of the optic nerve in the frog,Rana pipiens, J. Anat. 133, 213–225.

    PubMed  CAS  Google Scholar 

  • Sengelaub D. R. and Finlay B. L. (1981) Early removal of one eye reduces normally occurring cell death in the remaining eye.Science 213, 573–574.

    PubMed  CAS  Google Scholar 

  • Sengelaub D. R. and Finlay B. L. (1982) Cell death in the mammalian visual system during normal development. I. Retinal ganglion cells.J. Comp. Neurol. 204, 311–317.

    PubMed  CAS  Google Scholar 

  • Sharma S. C. (1981) Retinal projection in a non-visual area after bilateral tectal ablation in goldfish.Nature 291, 66–67.

    PubMed  CAS  Google Scholar 

  • Shumway W. (1940) Stages in the normal development ofRana pipiens. I. External forms.Anat. Rec. 83, 309–315.

    Google Scholar 

  • Silver J. and Sapiro J. (1981) Axonal guidance during development of the optic nerve: The role of pigmented epithelia and other extrinsic factors.J. Comp. Neurol. 202, 521–538.

    PubMed  CAS  Google Scholar 

  • Silver J., Lorenz S. E., Wahlsten D., and Coughlin J. (1982) Axonal guidance during the development of the great cerebral commissures: Descriptive and experimental studies,in vivo, on the role of preformed glial pathways.J. Comp. Neurol. 210, 10–29.

    PubMed  CAS  Google Scholar 

  • Sperry R. W. (1944) Optic nerve regeneration with recovery of vision in anurans.J. Neurophysiol. 7, 57–69.

    Google Scholar 

  • Stelzner D. J. (1979) Evidence of collateral sprouting in the frog visual system.Brain Res. 168, 382–387.

    PubMed  CAS  Google Scholar 

  • Stelzner D. J. (1982) Regenerating frog optic and mammalian PNS axons: Are they really so different?TINS 5, 167–169.

    Google Scholar 

  • Stelzner D. J. and Bohn R. C. (1982) Effect of axons from the other eye during optic nerve regeneration.Invest. Opthalmol. Vis. Sci. 22, Suppl., 45.

    Google Scholar 

  • Stelzner D. J. and Strauss J. A. (1983) Attempts to maintain aberrant retinoretinal axons after optic nerve regeneration in the frog.Neurosci. Abstr. 9, 697.

    Google Scholar 

  • Stelzner D. J. and Strauss J. A. (1985) Ganglion cell death during optic nerve regeneration inRana pipiens.Invest. Opthalmol. Vis. Sci. 26, 288.

    Google Scholar 

  • Stelzner D. J. and Strauss J. A. (1986) A quantitative analysis of frog optic nerve regeneration: Is retrograde ganglion cell death or collateral axonal loss related to selective reinnervation?J. Comp. Neurol.,245, 83–106.

    PubMed  CAS  Google Scholar 

  • Stelzner D. J., Bohn R. C., and Strauss J. A. (1981) Expansion of the ipsilateral retinal projection in the frog brain during optic nerve regeneration: Sequence of reinnervation and retinotopic organization.J. Comp. Neurol. 201, 299–317.

    PubMed  CAS  Google Scholar 

  • Stensaas L. J. and Feringa E. R. (1977) Axon regeneration across the site of injury in the optic nerve of the newt,Triturus pyrrhogaster.Cell Tiss. Res. 179, 501–516.

    CAS  Google Scholar 

  • Straznicky C. and Gaze R. M. (1972) The development of the tectum inXenopus laevis: An autoradiographic study.J. Embryol. Exp. Morphol. 28, 87–115.

    PubMed  CAS  Google Scholar 

  • Straznicky C., Gaze R. M., and Horder T. J. (1979) Selection of appropriate medial branch of the optic tract by fibres of ventral retinal origin during development and in regeneration. An autoradiographic study inXenopus.J. Embryol. Exp. Morphol. 50, 253–267.

    PubMed  CAS  Google Scholar 

  • Straznicky C., Tay D., and Glastonbury J. (1980) Regeneration of an abnormal ipsilateral visuotectal projection inXenopus is delayed by the presence of optic fibres from the other eye.J. Embryol. Exp. Morphol. 57, 129–141.

    PubMed  CAS  Google Scholar 

  • Stuermer C. A. O. (1984) Rules for retinotectal terminal arborizations in the goldfish optic tectum: A whole mount study.J. Comp. Neurol. 229, 214–232.

    PubMed  CAS  Google Scholar 

  • Stuermer C. A. O. and Easter S. S., Jr. (1984a) A comparison of the normal and regenerated retino-tectal pathways of goldfish.J. Comp. Neurol. 223, 57–76.

    PubMed  CAS  Google Scholar 

  • Stuermer C. A. O. and Easter S. S., Jr. (1984b) Rules of order in the retinotectal fascicles of goldfish.J. Neurosci. 4, 1045–1051.

    PubMed  CAS  Google Scholar 

  • Taylor A. C. and Kollros J. J. (1946) Stages in the development ofRana pipiens larvae.Anat. Rec. 94, 7–23.

    Google Scholar 

  • Turner J. T. and Singer M. (1974) The ultrastructure of regeneration in the severed newt optic nerve.J. Exp. Zool.,190, 249–288.

    PubMed  CAS  Google Scholar 

  • Udin S. (1978) Permanent disorganization of the regenerating optic tract in the frog.Exp. Neurol. 58, 455–470.

    PubMed  CAS  Google Scholar 

  • Wessells N. K. and Nuttall R. P. (1978) Normal branching, induced branching and steering of cultured parasympathetic motor neurons.Exp. Cell Res. 115, 111–122.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stelzner, D.J., Bohn, R.C. & Strauss, J.A. Regeneration of the frog optic nerve. Neurochemical Pathology 5, 255–288 (1986). https://doi.org/10.1007/BF02842939

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02842939

Index Entries

Navigation