Skip to main content
Log in

Selenium metabolism and bioavailability

  • Review
  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

Selenium (Se) is at once an essential and toxic nutrient that occurs in both inorganic and organic forms. The biological functions of Se are mediated through at least 13 selenoproteins that contain Se as selenocysteine (Se-cyst). The endogenous synthesis of this amino acid from inorganic Se (selenide Se−2) and serine is encoded by a stop codon UGA in mRNA and involves a unique tRNA. Selenium can also substitute for sulfur in methionine to form an analog, selenomethionine (Se-meth), which is the main form of Se found in food. Animals cannot synthesize Se-meth or distinguish it from methionine and as a result it is nonspecifically incorporated into a wide range of Se-containing proteins. The metabolic fate of Se varies according to the form ingested and the overall Se status of an individual. This paper reviews the bioavailability, including absorption, transport, metabolism, storage, and excretion, of the different forms of exogenous and endogenous Se.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. F. van Vleet and V. J. Ferrans, Etiologic factors and pathologic alterations in selenium-vitamin E deficiency and excess in animals and humans.Biol. Trace Elem. Res. 33, 1–21 (1992).

    PubMed  Google Scholar 

  2. K. Schwarz, and C. M. Foltz, Selenium as an integral part of factor 3 against dietary necrotic liver degeneration.J. Am. Chem. Soc. 70, 3292–3293 (1957).

    Article  Google Scholar 

  3. A. Chen, F. Yang, J. Chen, X. Chen, Z. Wen, and K. Ge, Studies on the relation of selenium and Keshan disease,Biol. Trace Elem. Res. 2, 91–107 (1980).

    CAS  Google Scholar 

  4. H. B. von Stockhausen, Selenium in total parenteral nutrition.Biol. Trace Elem. Res. 15, 147–155 (1988).

    Google Scholar 

  5. O. A. Levander, The importance of selenium in total parenteral nutrition,Bull. N. Y. Acad. Med. 60, 144–155 (1984).

    PubMed  CAS  Google Scholar 

  6. L. A. Daniels, R. A. Gibson, and K., Simmer, A randomized clinical trial of parenteral selenium supplementation in preterm infants (Abstract).Proc. Nutr. Soc. 53:(3) 205A (1994).

    Google Scholar 

  7. L. A. Daniels, R. A. Gibson, K., Simmer, Selenium status in term and preterm infants (Abstract),Proc. Nutr. Soc. 53:(3) 263A (1994).

    Google Scholar 

  8. G. Lockitch, Selenium: clinical significance and analytical concepts,Crit. Rev. Clin. Lab. Sci. 27, 483–541 (1989).

    Article  PubMed  CAS  Google Scholar 

  9. O. A. Levander, Considerations in the design of selenium bioavailability studies,Fed. Proc. 42, 1721–1725 (1983).

    PubMed  CAS  Google Scholar 

  10. A. Böck, K. Forchhammer, J. Heider, W. Leinfelder, G. Sawers, B. Veprek, and F. Zinoni, Selenocysteine: the 21st amino acid,Mol. Microbiol. 5, 515–520 (1991).

    Article  PubMed  Google Scholar 

  11. G. F. Combs, Jr. S. B. Combs, The nutritional biochemistry of selenium,Annu. Rev. Nutr. 4, 257–280 (1984).

    Article  PubMed  CAS  Google Scholar 

  12. D. Behne, C. Weiss-Nowak, M. Kalcklösch, C. Westphal, H. Gessner, and A. Kyriakopoulos, Studies on the distribution and characteristics of new mammalian selenium-containing proteins,Analyst,120, 823–825 (1995).

    Article  CAS  Google Scholar 

  13. R. F. Burk, and K. E. Hill, Regulation of selenoproteins,Annu. Rev. Nutr. 13, 65–81 (1993).

    Article  PubMed  CAS  Google Scholar 

  14. J. R. Arthur, F. Nicol, and G. J. Beckett, The role of selenium in thyroid hormone metabolism and effects of selenium deficiency on thyroid hormone and iodine metabolism.Biol. Trace Elem. Res. 34, 321–325 (1992).

    PubMed  CAS  Google Scholar 

  15. R. A. Sunde, Molecular biology of selenoproteins,Annu. Rev. Nutr. 10, 451–474 (1990).

    Article  PubMed  CAS  Google Scholar 

  16. A. Böck, K. Forchhammer, J. Heider, and C. Baron, Selenoprotein synthesis: an expansion of the genetic code,Trends Biochem. Sci. 16, 463–467 (1991).

    Article  PubMed  Google Scholar 

  17. J. R. Arthur, Selenium metabolism and function,proc., Nutr. Soc. Aust. 17, 91–98 (1992).

    CAS  Google Scholar 

  18. H. J. Cohen, and N. Avissar, Molecular and biochemical aspects of selenium metabolism and deficiency, inEssential and Toxic Trace Elements in Human Health and Disease: An Update, A. S. Prasad, ed., Wiley-Liss Inc, New York, pp. 191–202 (1993).

    Google Scholar 

  19. R. F. Burk, Molecular biology of selenium with implications for its metabolism,FASEB J. 5, 2274–2279 (1991).

    PubMed  CAS  Google Scholar 

  20. M. Yoshida, K. Iwami, and K. Yasumoto, Purification and immunochemical analysis of rat liver, glutathione peroxidase,Agric. Biol. Chem. 46, 41–46 (1982).

    CAS  Google Scholar 

  21. M. Gross, M. Oertel, and J. Köhrle, Differential selenium-dependent expression of type I 5′-deiodinase and glutathione peroxidase in the porcine epithelial kidney cell line LLC-PK1,Biochem. J. 306, 851–856 (1995).

    PubMed  CAS  Google Scholar 

  22. K. E. Hill, P. R. Lyons, and R. F. Burk, Differential regulation of rat liver selenoprotein mRNAs in selenium deficiency.Biochem. Biophys. Res. Commun. 185, 260–263 (1992).

    Article  PubMed  CAS  Google Scholar 

  23. L. Jornot, and A. F. Junod, Differential regulation of glutathione peroxidase by selenomethionine and hyperoxia in endothelial cells,Biochem. J. 306, 581–587 (1995).

    PubMed  CAS  Google Scholar 

  24. J. T. Rotruck, A. L. Pope, H. E. Ganther, A. B. Swanson, D. G. Hafeman, and W. G. Hoekstra, Selenium: biochemical role as a component of glutathione peroxidase,Science 179, 588–590 (1973).

    Article  PubMed  CAS  Google Scholar 

  25. G. C. Mills, Hemoglobin catabolism: I. glutathione peroxidase, an erythrocyte enzyme which protects hemoglobin from oxidative breakdown,J. Biol. Chem. 229, 189–197 (1957).

    PubMed  CAS  Google Scholar 

  26. H. J. Cohen, M. Brown, J. Lyons, et al., Clinical physiological and biochemical consequences of human selenium deficiency, inEssential and Toxic Trace Elements in Human Health and, Disease, A. S. Prasad, ed., Liss Inc., New York., pp. 201–210 (1988).

    Google Scholar 

  27. F. Ursini, M. Maiorino, M. Valente, L. Ferri, and C. Gregolin, Purification from pig liver of a protein which protects liposomes and biomembranes from peroxidative degradation and exhibits glutathione peroxidase activity on phosphatidylcholine hydroperoxides,Biochim. Biophys. Acta 710, 197–211 (1982).

    PubMed  CAS  Google Scholar 

  28. K. R. Maddipati, C. Gasparski, and L. J. Marnett, Characterization of the hydroperoxide-reducing activity of human plasma,Arch. Biochem. Biophys. 254, 9–17 (1987).

    Article  PubMed  CAS  Google Scholar 

  29. K. R. Maddipati, and L. J. Marnett, Characterization of the major hydroperoxidereducing activity of human plasma: purification and properties of a seleniumdependent glutathione peroxidase,J. Biol. Chem. 262, 17,398–17,403 (1987)

    CAS  Google Scholar 

  30. R. F. Burk, Protection against free radical injury by selenoenzymes,Pharmacol. Ther. 45, 383–385 (1990).

    Article  PubMed  CAS  Google Scholar 

  31. N. Avissar, C. Eisenmann, J. G. Breen, S. Horowitz, R. K. Miller, and H. J. Cohen, Human placenta makes extracellular glutathione, peroxidase and secretes it into maternal circulation,Am. J. Physiol. 267, E68-E76 (1994).

    PubMed  CAS  Google Scholar 

  32. N. Avissar, J. R. Slemmon, I. S. Palmer, and H. J. Cohen, Partial sequence of human plasma glutathione peroxidase and immunologic identification of milk glutathione peroxidase as the plasma. enzyme,J. Nutr. 121, 1243–1249 (1991).

    PubMed  CAS  Google Scholar 

  33. C. Michiels, M. Raes, O. Toussaint, and J., Remacle, Importance of Se-glutathione peroxidase, catalase, and Cu/Zn-SOD for cell survival against oxidative stress,Free Radic. Biol. Med. 17, 235–248 (1994).

    Article  PubMed  CAS  Google Scholar 

  34. A. T. Diplock, F. A. Chaudry, The relationship of selenium biochemistry to selenium responsive disease in man, inEssential and Toxic Trace Elements in Human Health and Disease, A. S. Prasad, ed., Liss Inc., New York, pp. 211–226 (1988).

    Google Scholar 

  35. M. Maiorino, C. Gregolin, and F. Ursini, Phospholipid hydroperoxide glutathione peroxidase,Methods Enzymol. 186, 448–457 (1990).

    PubMed  CAS  Google Scholar 

  36. H. M. Rea, C. D. Thomson, D. R. Campbell, and M. F. Robinson, Relation between erythrocyte selenium concentrations and glutathione peroxidase (EC 1.11.1.9) activities of New Zealand residents and visitors to New Zealand,Br. J. Nutr. 42, 201–208 (1979).

    Article  PubMed  CAS  Google Scholar 

  37. K. Takahashi, P. E. Newburger, and H. J. Cohen, Glutathione peroxidase protein: absence in selenium deficiency states and correlation with enzymatic activity.J. Clin. Invest. 77, 1402–1404 (1986).

    Article  PubMed  CAS  Google Scholar 

  38. K. Takahashi and H. J. Cohen, Selenium-dependent glutathione peroxidase protein and activity: immunological investigations on cellular and plasma enzymes,Blood 68, 640–645 (1986).

    PubMed  CAS  Google Scholar 

  39. N. Avissar, J. C. Whitin, P. Z. Allen, I. S. Palmer, and H. J. Cohen, Antihuman plasma gluta-thione peroxidase antibodies: immunologic investigations to determine plasma glutathione peroxidase protein and selenium content in plasma,Blood 73, 318–323 (1989).

    PubMed  CAS  Google Scholar 

  40. R. F. Burk and P. E. Gregory, Some characteristics of75Se-P, a selenoprotein found in rat liver and plasma, and comparison of it with selenoglutathione peroxidase,Arch. Biochem. Biophys. 213, 73–80 (1982).

    Article  PubMed  CAS  Google Scholar 

  41. R. F. Burk and K. E. Hill, Selenoprotein P. A. selenium-rich extracellular glycoprotein,J. Nutr. 124, 1891–1897 (1994).

    PubMed  CAS  Google Scholar 

  42. R. F. Burk, K. E. Hill, R. Read, and T. Bellew, Response of rat selenoprotein P to selenium administration and fate of its selenium,Am. J. Physiol. 261, E26-E30 (1991).

    PubMed  CAS  Google Scholar 

  43. M. Persson-Moschos, W. Huang, T. S. Srikumar, B. Åkesson, and S. Lindeberg, Seleno-protein P in serum as a biochemical marker of selenium status,Analyst 120, 833–836 (1995).

    Article  PubMed  CAS  Google Scholar 

  44. J-G Yang, K. E. Hill, and R. F. Burk, Dietary selenium intake controls rat plasma selenoprotein P concentration,J. Nutr. 119, 1010–1012 (1989).

    PubMed  CAS  Google Scholar 

  45. E. Marchaluk, M. Persson-Moschos, E. B. Thorling, and B. Åkesson, Variation in selenoprotein P concentration in serum from different European regions,Eur. J. Clin. Nutr. 49, 42–48 (1995).

    PubMed  CAS  Google Scholar 

  46. M. A. Motsenbocker, and A. L. Tappel, A selenocysteine-containing selenium-transport protein in rat plasma,Biochim. Biophys. Acta 719, 147–153 (1982).

    PubMed  CAS  Google Scholar 

  47. J. G. Yang, J. Morrison Plummer, and R. F. Burk, Purification and quantitation of a rat plasma selenoprotein distinct from glutathione peroxidase using monoclonal antibodies,J. Biol. Chem. 262, 13,372–13,375 (1987).

    CAS  Google Scholar 

  48. M. J. Berry, J. D. Kieffer, J. W. Harney, and P. R. Larsen, Selenocysteine confers the biochemical properties characteristic of the type I iodothyronine deiodinase,J. Biol. Chem. 266, 14,155–14,158 (1991).

    CAS  Google Scholar 

  49. J. R. Arthur, F. Nicol, and G. J. Beckett, The role of selenium in thyroid hormone metabolism and effects of selenium deficiency on thyroid hormone and iodine metabolism,Biol. Trace Elem. Res. 33, 37–42 (1992).

    PubMed  CAS  Google Scholar 

  50. J. R. Arthur, F. Nicol, and G. J. Beckett, Hepatic iodothyronine 5′-deiodinase. The role of selenium,Biochem. J. 272, 537–540 (1990).

    PubMed  CAS  Google Scholar 

  51. J. R. Arthur, F. Nicol, A. R. Hutchinson, and G. J. Beckett, The effects of selenium depletion and repletion on the metabolism of thyroid hormones in the rat,J. Inorg. Biochem. 39, 101–108 (1990).

    Article  PubMed  CAS  Google Scholar 

  52. M. F. Robinson, and C. D. Thomson, The role of selenium in the diet,Nutr. Abst. Rev. Clin. Nutr. 53, 3–26 (1983).

    Google Scholar 

  53. M. Mutanen, Bioavailability of selenium,Ann. Clin. Res. 18, 48–54 (1986).

    PubMed  CAS  Google Scholar 

  54. M. F. Robinson, H. M. Rea, G. M. Friend, R. D. H. Stewart, P. C. Snow, and C. D. Thomson, On supplementing the selenium intake of New Zealanders. 2. Prolonged metabolic experiments with daily supplements of selenomethionine, selenite and fish,Br. J. Nutr. 39, 589–600 (1978).

    Article  PubMed  CAS  Google Scholar 

  55. N. M. Griffiths, R. D. H. Stewart, and M. F. Robinson, The metabolism of [75Se]selenomethionine in four women,Br. J. Nutr. 35, 373–382 (1976).

    Article  PubMed  CAS  Google Scholar 

  56. O. A. Levander, G. Alfthan, H. Arvilommi, C. G. Gref, J. K. Huttunen, M. Kataja, P. Koivistoinen, and J. Pikkarainen, Bioavailability of selenium to Finnish men as assessed by platelet glutathione peroxidase activity and other blood parameters,Am. J. Clin. Nutr. 37, 887–897 (1983).

    PubMed  CAS  Google Scholar 

  57. J. R. Robinson, M. F. Robinson, O. A. Levander, and C. D. Thomson, Urinary excretion of selenium by New Zealand and North American human subjects on differing intakes,Am. J. Clin. Nutr. 41, 1023–1031 (1985).

    PubMed  CAS  Google Scholar 

  58. B. A. Bopp, R. C. Sonders, and J. W. Kesterson, Metabolic fate of selected selenium compounds in laboratory animals and man,Drug Metab. Rev. 13, 271–318 (1982).

    Article  PubMed  CAS  Google Scholar 

  59. C. A. Swanson, B. H. Patterson, O. A. Levander, C. Veillon, P. R. Taylor, K. Helzlsouer, P. A. McAdam, and L. A. Zech, Human [74Se]selenomethionine metabolism: a kinetic model,Am. J. Clin. Nutr. 54, 917–926 (1991).

    PubMed  CAS  Google Scholar 

  60. S. Wolffram, B. Berger, E. Scharrer, Transport of selenomethionine and methionine across the intestinal brush border membrane, inSelenium in Biology and Medicine, A. Wendel, ed., Springer-Verlag, Berlin, pp. 109–113 (1989).

    Google Scholar 

  61. G. O. Barbezat, C. E. Casey, P. G. Reasbeck, et al., Selenium, inAbsorption and Malabsorption of Mineral Nutrients, N. W. Solomons and I. H. Rosenberg, eds. Liss Inc. New York, pp. 231–258 (1984).

    Google Scholar 

  62. B. H. Patterson, O. A. Levander, K. Helzlsouer, P. A. McAdam, S. A. Lewis, P. R. Taylor, C. Veillon, and L. A. Zech, Human selenite metabolism: a kinetic model,Am. J. Physiol. 257, R556–67 (1989).

    PubMed  CAS  Google Scholar 

  63. D. B. Shennan, Selenium (selenate) transport by human placental brush border membrane vesicles,Br. J. Nutr. 59, 13–19 (1988).

    Article  PubMed  CAS  Google Scholar 

  64. C. D. Thomson and M. F. Robinson, Urinary and fecal excretions and absorption of a large supplement of selenium: superiority of selenate over selenite,Am. J. Clin. Nutr. 44, 659–663 (1986).

    PubMed  CAS  Google Scholar 

  65. I. Dreosti, Selenium,J. Food Nutr. 43, 60–78 (1986).

    Google Scholar 

  66. A. Keys, J. T. Anderson and F. Grande, Prediction of serum-cholesterol responses of man to changes in fats in the diet,Lancet 2, 959–966 (1957).

    Article  Google Scholar 

  67. A. T. Diplock, Trace elements in human health with special reference to selenium,Am. J. Clin. Nutr. 45, 1313–1322 (1987).

    PubMed  CAS  Google Scholar 

  68. J. L. Greger and R. E. Marcus, Effect of dietary protein, phosphorus, and sulphur amino acids on selenium metabolism of adult males,Ann. Nutr. Metab. 25, 97–108 (1981).

    CAS  Google Scholar 

  69. M. Sandholm, Selenium carrier proteins in mouse plasma,Acta Pharmacol. Toxicol. 35, 424–428 (1974).

    Article  CAS  Google Scholar 

  70. M. Sandholm, Function of erythrocytes in attaching selenite-Se onto specific plasma proteins,Acta Pharmacol. Toxicol. 36, 321–327 (1975).

    Article  CAS  Google Scholar 

  71. E. K. Porter, J. A. Karle, and A. Shrift, Uptake of selenium-75 by human lymphocytes in vitro,J. Nutr. 109, 1901–1908 (1979).

    PubMed  CAS  Google Scholar 

  72. R. F. Burk, In vivo75Se binding to human plasma proteins after administration of75SeO3 2,Biochim. Biophys. Acta 372, 255–265 (1974).

    CAS  Google Scholar 

  73. V. Ducros, M. J. Richard, and A. Favier, The distribution of selenium in human plasma proteins for 24 hours after ingestion of74Se (in sodium selenite form),J. Inorg. Biochem. 55, 157–163 (1994).

    Article  PubMed  CAS  Google Scholar 

  74. J. A. Butler, C. D. Thomson, P. D. Whanger, and M. F. Robinson, Selenium distribution in blood fractions of New Zealand women taking organic or inorganic selenium,Am. J. Clin. Nutr. 53, 748–754 (1991).

    PubMed  CAS  Google Scholar 

  75. G. Alfthan, A. Aro, H. Arvilommi, and J. K. Huttunen, Selenium metabolism and platelet glutathione peroxidase activity in healthy Finnish men: effects of selenium yeast, selenite, and selenate,Am. J. Clin. Nutr. 53, 120–125 (1991).

    PubMed  CAS  Google Scholar 

  76. C. D. Thomson, M. F. Robinson, D. R. Campbell, and H. M. Rea, Effect of prolonged supplementation with daily supplements of selenomethionine and sodium selenite on glutathione peroxidase activity in blood of New Zealand residents,Am. J. Clin. Nutr. 36, 24–31 (1982).

    PubMed  CAS  Google Scholar 

  77. K. Jaakkola, J. Tummavuori, A. Pirinen, P. Kurkela, M. Tolonen, and A. U. Arstila Selenium levels in whole blood of Finnish volunteers before and during organic and inorganic selenium supplementation,Scand. J. Clin. Lab. Invest. 43, 473–476 (1983).

    Article  PubMed  CAS  Google Scholar 

  78. J. Neve, F. Vertongen, N. Thonnart, Y. A. Carpentier, Y. Gregoire, and L. Molle, Selenium supplementation during parenteral and enteral nutrition, short- and long-term effects of two derivatives,Acta Pharmacol. Toxicol. Copenh. 59 (Suppl 7), 166–169 (1986).

    PubMed  CAS  Google Scholar 

  79. C. D. Thomson, M. F. Robinson, J. A. Butler, and P. D. Whanger, Long-term supplementation with selenate and selenomethionine: selenium and glutathione peroxidase (EC 1.11.1.9) in blood components of New Zealand women,Br. J. Nutr. 69; 577–588 (1993).

    Article  PubMed  CAS  Google Scholar 

  80. O. Oster, G. Schmiedel, and W. Prellwitz, The organ distribution of selenium in German adults,Biol. Trace Elem. Res. 15, 23–45 (1988).

    PubMed  CAS  Google Scholar 

  81. D. Behne, A. Kyriakopoulos, S. Scheid, and H. Gessner, Effects of chemical form and dosage on the incorporation of selenium into tissue proteins in rats,J. Nutr. 121, 806–814 (1991).

    PubMed  CAS  Google Scholar 

  82. N. Esaki, T. Nakamura, H. Tanaka, and K. Soda, Selenocysteine lyase, a novel enzyme that specifically acts on selenocysteine. Mammalian distribution and purification and properties of pig liver enzyme,J. Biol. Chem. 257, 4386–4391 (1982).

    PubMed  CAS  Google Scholar 

  83. R. H. Patterson and L. A. Zech, Development of a model for selenite metabolism in humans,J. Nutr. 122, 709–714 (1992).

    PubMed  CAS  Google Scholar 

  84. M. Janghorbani, R. F. Martin, L. J. Kasper, X. F. Sun, and V. R. Young, The selenite-exchangeable metabolic pool in humans: a new concept for the assessment of selenium status,Am. J. Clin. Nutr. 51, 670–677 (1990).

    PubMed  CAS  Google Scholar 

  85. M. S. Alaejos and C. D. Romero, Urinary selenium concentrations,Clin. Chem. 39, 2040–2052 (1993).

    Google Scholar 

  86. O. Oster and W. Prellwitz, The renal excretion of selenium,Biol. Trace Elem. Res. 24, 119–146 (1990).

    PubMed  CAS  Google Scholar 

  87. H. J. Robberecht and H. A. Deelstra, Selenium in human urine: concentration levels and medical implications,Clin. Chim. Acta 136, 107–120 (1984).

    Article  PubMed  CAS  Google Scholar 

  88. R. Hasunuma, M. Tsuda, T. Ogawa, and Y. Kawanishi, Selenium metabolite levels in human urine after dosing selenium in different chemical forms,Bull. Environ. Contam. Toxicol. 51, 756–763 (1993).

    Article  PubMed  CAS  Google Scholar 

  89. X. F. Sun, B. T. G. Ting, and M. Janghorbani, Excretion of trimethylselenonium ion in human urine,Anal. Biochem. 167, 304–311 (1987).

    Article  PubMed  CAS  Google Scholar 

  90. M. F. Robinson, C. P. Jenkinson, G. Luzhen, et al., Urinary excretion of selenium (Se) and trimethylselenonium (TMSe) by NZ women during long-term supplementation with selenate or selenomethionine (SeMet), inSelenium in Biology and Medicine, A. Wendel, ed., Springer-Verlag, Berlin, pp. 250–253 (1989).

    Google Scholar 

  91. C. D. Thomson, C. E. Burton, and M. F. Robinson, On supplementing the selenium intake of New Zealanders. 1. Short experiments with large doses of selenite or selenomethionine,Br. J. Nutr. 39, 579–587 (1978).

    Article  PubMed  CAS  Google Scholar 

  92. T. Westermarck, Selenium content of tissues in Finnish infants and adults with various diseases, and studies on the effects of selenium supplementation in neuronal ceroid lipofjscinosis patients,Acta Pharmacol. Toxicol. 41, 121–128 (1977).

    Article  CAS  Google Scholar 

  93. C. E. Casey, B. E. Guthrie, G. M. Friend, and M. F. Robinson, Selenium in human tissues from New Zealand,Arch. Environ. Health 37, 133–135 (1982).

    PubMed  CAS  Google Scholar 

  94. O. A. Levander, Considerations on the assessment of selenium status,Fed. Proc. 44, 2579–2583 (1985).

    PubMed  CAS  Google Scholar 

  95. D. Behne, H. Hilmert, S. Scheid, et al., Studies on new selenoproteins and specific selenium target tissues, inSelenium in Biology and Medicine, A. Wendel, ed., Springer-Verlag, Berlin, pp. 14–20 (1989).

    Google Scholar 

  96. D. Behne, H. Hilmert, S. Scheid, H. Gessner, and W. Elger, Evidence for specific selenium target tissues and new biologically important selenoproteins,Biochim. Biophys. Acta 966, 12–21 (1988).

    PubMed  CAS  Google Scholar 

  97. P. J. Smith, A. L. Tappel, and C. K. Chow, Glutathione peroxidase activity as a function of dietary selenomethionine,Nature 247, 392–393 (1974).

    Article  PubMed  CAS  Google Scholar 

  98. O. A. Levander, D. P. DeLoach, V. C. Morris, and P. B. Moser. Platelet glutathione peroxidase activity as an index of selenium status in rats,J. Nutr. 113, 55–63 (1983).

    PubMed  CAS  Google Scholar 

  99. C. D. Thomson, S. M. Steven, A. M. van Rij, C. R. Wade, and M. F. Robinson, Selenium and vitamin E supplementation: activities of glutathione peroxidase in human tissues,Am. J. Clin. Nutr. 48, 316–323 (1988).

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Daniels, L.A. Selenium metabolism and bioavailability. Biol Trace Elem Res 54, 185–199 (1996). https://doi.org/10.1007/BF02784430

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02784430

Index Entries

Navigation