Skip to main content
Log in

Drug targeting by drug entrapment into ultrafine compartments as carriers

  • Drug Delivery Systems
  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

The incorporation of drugs into vesicles is one of several technological methods for the optimization of targeted drug delivery and controlled drug targeting. The main problems will always remain

  • • To design inert auxiliary accompanying materials in order to overcome side reactions

  • • To use body-friendly and biodegradable macromolecular carrier materials for the therapeutic system

  • • To miniaturize the dosage form dramatically in the submicroscopic size range in order to eliminate foreign body irritations

  • • To develop ultrafine solid and amorphous vesicular compartments (nanocapsules, nanopellets, nanoparticles) to get stable systems with good tissue transfer and organ targeting properties

The actual stand of the incorporation of drugs and biologic active material into ultrafine colloidal solid capsules is reviewed here as for instance:

  • • Immunoactive material

  • • Fluorescent indicators in body fluids

  • • Controlled and sustained release systems

  • • Nonspecific drug targeting of the first-order (passage through endothelial tissues)

  • • Second-order targeting (a specific transparenchymal migration), and a highly specific targeting of the third-order (transcellular passage, especially lysosomal transports)

Examples for some of these applications are given.

It can be shown that such ultrafine vesiculated capsules offer some advantages when applied parenterally, but also partly for oral application. In the future, still more studies are necessary finally to clarify the importance and practical use of such ultrafine targeting carriers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Speiser, P. (1979), inLysosomes in Applied Biology and Therapeutics,6, Dingle, J. T., Jacques, P. J., and Shaw, I. H., eds., North Holland, Amsterdam.

    Google Scholar 

  2. Kreuter, J., Täuber, U., and Volker, I. (1979),J. Pharm. Sci. 68, 1443.

    Article  CAS  Google Scholar 

  3. Nowinsky, W. W. (1958),Fundamental Aspects of Normal and malignant Growth, Elsevier, Amsterdam.

    Google Scholar 

  4. Nicholson, D. E. (1968),Metabilic Pathways, Koch-Light Lab., Colnbrook, Bucks, England.

    Google Scholar 

  5. Pantucek, M. (1969),FEBS Lett. 2, 206.

    Article  CAS  Google Scholar 

  6. Kante, B., Couvreur, P., Dubois-Krack, G., DeMeester, C., Guiot, P., Roland, M., Mercier, M., and Speiser, P. (1982),J. Pharm. Sci.,71, 786.

    Article  CAS  Google Scholar 

  7. Lübbers, D. W., Opitz, N., Speiser, P., and Bisson, H. (1979),Z. Naturforsch,32c, 133.

    Google Scholar 

  8. Speiser, P. (1979),Lysosomes in Applied Biology and Therapeutics 6, Dingle, J. T., Jacques, P. J., and Shaw, I. H., North Holland, Amsterdam.

    Google Scholar 

  9. Kreuter, J., and Speiser, P. (1976),Infect. Immun. 13, 204.

    CAS  Google Scholar 

  10. Kreuter, J., and Speiser, P. (1976),J. Pharm. Sci.,65, 1624.

    Article  CAS  Google Scholar 

  11. Volkheimer, G., (1977),Adv. Pharmacol. Chemotherapy 14, 163.

    Article  CAS  Google Scholar 

  12. Nefzger-Biessels, M., personal communication.

  13. Brasseur, F., Couvreur, P., Kante, B., Roland, M., Deckers, C., Speiser, P., and Deckers-Passau, L. (1982).J. Pharm. Sci.,71, 790.

    Article  Google Scholar 

  14. DeDuve, C., deBarsy, Th., Trouet, A., Tulkens, P., and vanHoof, F. (1972).Biochem. Pharmacol. 23, 2495.

    Article  Google Scholar 

  15. Trouet, A., Jadin, J. M., and vanHoof, F. (1976), inBiochemistry and Host Parasites Relationship, Elsevier, Amsterdam.

    Google Scholar 

  16. Trouet, A., Deprez de Campeneere, D., and deDuve, C. (1972),Nature New Biol.,239, 110.

    Article  CAS  Google Scholar 

  17. Trouet, A., and Deprez de Campeneere, D. (1972),Nature New Biol.,239, 110.

    Article  CAS  Google Scholar 

  18. Levy, R., Hurwitz, E., Maron, R., Aron, R., and Sela, M. (1975),Cancer Res. 35, 1182.

    CAS  Google Scholar 

  19. Segal, A. W., and Willis, E. J. (1974),Exp. Pathol. 55, 320.

    CAS  Google Scholar 

  20. Gregoriadis, G., and Neerung, D. Jr. (1974);Eur. J. Biochem. 47, 179.

    Article  CAS  Google Scholar 

  21. Rhaman, Y. E., Kisielsky, W. E., Brass, E. M. and Cerny, E. A. (1975),Eur. J. Cancer 11, 883.

    Google Scholar 

  22. DeBarsy, Th., Devos, P., and vanHoof, F. (1976),Lab. Invest. 34, 273.

    CAS  Google Scholar 

  23. Couvreur, P., Tulkens, M., Roland, M., Trouet, A., and Speiser, P. (1977).FEBS Lett. 84, 323.

    Article  CAS  Google Scholar 

  24. Tulkens, M., Beaufay, H., and Trouet, A. (1974),J. Cell. Biol. 63, 383.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Speiser, P. Drug targeting by drug entrapment into ultrafine compartments as carriers. Appl Biochem Biotechnol 10, 221–235 (1984). https://doi.org/10.1007/BF02783754

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02783754

Index Entries

Navigation