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Abstract

By simple arguments, we have shown that Károlyházy’s model overestimates

the quantum uncertainty of the space-time geometry and leads to absurd physi-

cal consequences. The given model can thus not account for gradual violation of

quantum coherence and can not predict tiny experimental effects either.
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In a pioneering paper [1], it was suggested that the quantum mechanics of

macroscopic objects ought to be modified due to a certain eventual unsharpness of

space-time geometry. Later on, the possibility of experimental verification of the

model, too, has been developed [2,3]. The idea went as follows.

By combining Heisenberg’s uncertainty principle with gravitation, the following

relation has been obtained for the minimum uncertainty ∆s of a single (timelike)

geodesic:

∆s2 = α4/3s2/3, (1)

where s is the length of the geodesic and α is the Planck length [c.f. Eq.(3.1) of

Ref.1]. Then this uncertainty is believed to be a universal lower bound, and so

must appear in the space time in an objective way. This was done via random

”gravitational waves”.

The present authors [4] reanalysed the concept leading to Eq.(1). A result

is that in Refs.1 and 2 the value M of mass realizing the least uncertainty along

the given geodesic takes irrealistically high values ∼
h̄
cα

−4/3s1/3. For example,

a geodesic of length s = 1 lightsecond would require a mass M ∼ 1010g to be

”realized”. By other words, the optimum mass of a clock to measure a period of 1s

would weigh ten thousand metric tons.

This result does not directly invalidate the concept of Refs.1 and 2. Namely,

the argumentation needs only the existence of a certain lower absolute bound for

the uncertainty; it does not involve real clocks directly. However, the high mass

problem is intimately connected with another problem as will immediately be seen.

The original paper [1] as well as the further ones [2,3] propose that the space-

time uncertainties be represented by random gravitational waves. These gravita-

tional waves γ satisfy the linearized vacuum Einstein equations:

⊔̄γ = 0 (2)

see Eq.(3.2) of Ref.1. Adopting all the time the conservative notations of Ref.1, the

gravitational wave γ(x, y, z, t) is expanded as a superposition of plane waves:

γ =
∑

k

ckcos(kxx) cos(kyy) cos(kzz) cos(kct) + · · · (3)
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The random coefficients ck are uncorrelated. Their average is zero while the spreads

are given by

L3c̄2
k
= α4/3k−5/3 (4)

where L is the normalization volume [c.f. Eqs.(3.4) and (3.5) of Ref.1]. The above

equation is the only one which is conform to the uncertainty relation (1).

According to the intentions implicit in Refs.1 and 2, the space-time geometries

defined by Eqs.(2) and (3) must be approximate solutions of the Einstein equations.

However, it turns out that they will not. Though they satisfy, by construction, the

linearized vacuum Einstein equations (2), the conditions for the linear approxima-

tion will seriously fail. We are going to test two rather trivial conditions. The first

will hold but the second will not.

Let us calculate the mean squared deviation of the metric tensor from its

Minkowski value. Squaring both sides of the Eq.(3) and taking stochastic aver-

ages of the coefficients ck, one obtains:

γ̄2 ∼

∑

k

c̄2
k
∼ α4/3L−3

∑

k

k−5/3
∼ (αkmax)

4/3. (5)

One needs a finite cutoff on k otherwise the amplitude of the random waves would

diverge. Károlyházy suggests kmax = 1013cm−1 and this assures that γ is much

smaller than the unity. This was the first condition for applying the linear form (2)

of the Einstein equations.

As for the second condition, let us first invoke the expansion of the scalar

curvature R up to the second order in γ [c.f.Ref.5]:

R =
1

2
⊔̄γii −

1

2
γij⊔̄γij +

1

4
γij,kγij,k +

1

4
(γij,k − γik,j)(γij,k − γik,j) + · · · . (6)

Now, by substituting the waves (3) into this equation, the first order term indeed

vanishes. The magnitude of the average of the remaining terms can be estimated

by invoking Eq.(4); one obtains:

R̄ ∼ α4/3k10/3max . (7)
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This curvature is extremely high. Using the previous cutoff we are led to R̄ ∼

1cm−2. So the corresponding fluctuating metric is not at all the ”extremely small

smearing” [1] of the flat space-time, thought before.

According to the exact Einstein equation R = 8πα2

h̄c T . Hence the curvature (7)

would assume an average energy-density in the order of

T̄ ∼ h̄cα−2/3k10/3max . (8)

Observe the dramatic change: in the energy-density the Planck length appears with

inverse (two-thirds) power. Therefore the interplay of two small length scales may

result in anything. The original cutoff kmax = 1013cm−1 would yield

T̄

c2
∼ 1026g/cm3, (9)

i.e. 11 orders of magnitude above neutron star density.

In Ref.1 the details of the cutoff were thought of no importance. We have,

however, pointed out that the original cutoff would imply absurd results for cosmo-

logical mass density. Since the cutoff kmax is the only free parameter in the model

one may hope to save the theory by choosing a lower value for it. Unfortunately,

the choice kmax = 105cm−1, familiar from e.g. the model of Ghirardi et al. [6],

yields still water density. Further decrease of kmax is needed. Then, however, there

would be only macroscopic wavelengths 1/k and the gravitational fluctuations (3)

would not play a rôle in the quantum-classical transition anymore. The trace (9)

in itself could be removed by means of an incredibly high cosmologic constant Λ,

but in the Robertson-Walker Universe geometries two nontrivial components of the

Einstein equations survive, and one cannot remove the problem from both.

Obviously, the Károlyházy model [1] has shown to overestimate something in

the assumed quantum smearing of the space time. The spectrum (4) of gravitational

fluctuations is certainly wrong whatever cutoff is chosen. The proposals outlined

in Refs.[2,3] derive extremely fine effects to observe experimentally. In the light of

the cosmological absurdity of the model we wonder if such tiny effects would have

to be taken serious.
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supported by the Hungarian Scientific Research Fund under Grant No 1822/1991.

References
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