Skip to main content
Log in

Interactions between vasoconstrictors in isolated human cerebral arteries

  • Experimental Research
  • Published:
Acta Neurochirurgica Aims and scope Submit manuscript

Summary

This study investigates whether different endogeneous vasoconstrictors exert synergistic effects in isolated human cerebral arteries, because potentiation of contractile effects may play a role in the pathogenesis of cerebral vasospasm.

Isolated human pial arteries obtained from macroscopically intact tissue during brain tumour operations were mounted onto a wire myograph. Concentration-response curves of 5-hydroxytryptamine (5-HT) were constructed in the absence and presence of threshold concentrations of the thromboxane A2 (TXA)-analog U46619, and endothelin-1 (ET-1).

Threshold concentrations of U46619 markedly enhanced the maximum contractile effect of 5-HT. The response to 5-HT Threshold concentrations of ET-1 increased the maximum response to 5-HT, and markedly shifted the dose-response curve to the left. Even after washout of ET-1, the dose-response curve of 5-HT remained shifted to the left. The increase of the contractile effect of 5-HT in the presence of U46619 did not correlate with the relaxant action of the endothelium-dependent vasodilator carbachol.

Thus, synergism between contractile substances such as 5-HT, U46619, or ET-1 is seen in human cerebral arteries, and responses to 5-HT are potentiated even after washout of ET-1 and U46619. The potentiation does not depend on the endothelial function. We conclude that synergistic responses between endogeneous vasoconstrictors such as 5-HT, TXA and ET-1 may be involved in the pathogenesis of cerebral vasospasm after subarachnoid haemorrhage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Allen GS, Gold LHA, Chou SN, Frech LA (1974a) Cerebral arterial spasm: Part 3. In vivo intracisternal production of spasm by serotonin and blood and its reversal by phenoxybenzamine. J Neurosurg 40: 451–458

    PubMed  CAS  Google Scholar 

  2. Allen GS, Henderson LM, Chou SN, Frech LA (1974b) Cerebral arterial spasm: Part 2. In vitro contractile activity of serotonin in human serum and CSF on the canine basilar artery, and its blockade by methysegide and phenoxybenzamine. J Neurosurg 40: 442–450

    PubMed  CAS  Google Scholar 

  3. Auer LM, Leber K, Sayama I (1985) Effect of serotonin and its antagonist ketanserin on pial vessels. J Cereb Blood Flow Metab 5: 517–522

    PubMed  CAS  Google Scholar 

  4. Bacic F, Uematsu S, McCarron RM, Spatz M (1992) Secretion of immunoreactive endothelin-1 by capillary and microvascular endothelium of human brain. Neurochem Res 17: 699–702

    Article  PubMed  CAS  Google Scholar 

  5. Brandt L, Andersson K-E, Edvinsson L, Ljunggren B (1981) Effects of extracellular calcium and of calcium antagonists on the contractile responses of isolated human pial and mesenteric arteries. J Cereb Blood Flow Metab 1: 339–347

    PubMed  CAS  Google Scholar 

  6. Chan RC, Durity FA, Thompson GB, Nugent RA, Kendall M (1984) The role of the prostacyclin-thromboxane system in cerebral vasospasm following induced subarachnoid hemorrhage in the rabbit. J Neurosurg 61: 1120–1128

    PubMed  CAS  Google Scholar 

  7. Clozel M, Watanabe H (1993) BQ-123, a peptidic endothelin ETA receptor antagonist, prevents the early cerebral vasospasm following subarachnoid hemorrhage after intracisternal but not intravenous injection. Life Sci 52: 825–834

    Article  PubMed  CAS  Google Scholar 

  8. Cocks TM, Kemp BK, Pruneau D, Angus JA (1993) Comparison of contractile responses to 5-hydroxytryptamine and sumatriptan in human isolated coronary artery: synergy with the thromboxane A2-receptor agonist, U46619. Br J Pharmacol 110: 360–368

    PubMed  CAS  Google Scholar 

  9. Cocks TM, Malta E, King SJ, Woods RL, Angus JA (1991) Oxyhaemoglobin increases the production of endothelin-1 by endothelial cells in culture. Eur J Pharmacol 196: 177–182

    Article  PubMed  CAS  Google Scholar 

  10. Conde MV, Marco EJ, Fraile ML, Benito JM, Moreno MJ, Sanz ML, Lopez de Pablo A (1991) Different influence of the endothelium in the mechanical responses of human and cat isolated cerebral arteries to several agents. J Pharm Pharmacol 43: 255–261

    PubMed  CAS  Google Scholar 

  11. Consigny PM (1990) Endothelin-1 increases arterial sensitivity to 5-hydroxytryptamine. Eur J Pharmacol 186: 239–245

    Article  PubMed  CAS  Google Scholar 

  12. Cook DA (1995) Mechanisms of cerebral vasospasm in subarachnoid haemorrhage. Pharmac Ther 66: 259–284

    Article  CAS  Google Scholar 

  13. Dupont JR, van Wart CA, Kraintz L (1961) The clearance of major components of whole blood from cerebrospinal fluid following simulated subarachnoid hemorrhage. J Neuropath Exp Neurol 20: 450–455

    Article  PubMed  CAS  Google Scholar 

  14. Faraci FM (1992) Regulation of the cerebral circulation by endothelium. Pharmac Ther 56: 1–22

    Article  CAS  Google Scholar 

  15. Findlay JM, Weir BKA, Kanamaru K, Espinosa F (1989) Arterial wall changes in cerebral vasospasm. Neurosurgery 25: 736–745

    Article  PubMed  CAS  Google Scholar 

  16. Findlay JM, Macdonald RL, Weir BK (1991) Current concepts of pathophysiology and management of cerebral vasospasm following aneurysmal subarachnoid hemorrhage. Cerebrovasc Brain Metab Rev 3: 336–361

    PubMed  CAS  Google Scholar 

  17. Foley PL, Caner HH, Kassell NF, Lee KS (1994) Reversal of subarachnoid hemorrhage-induced vasoconstriction with an endothelin receptor antagonist. Neurosurgery 34: 108–112

    Article  PubMed  CAS  Google Scholar 

  18. Fujimori A, Yanagisawa M, Saito A, Goto K, Masaki T, Mima T, Takakura K, Shigeno T (1990) Endothelin in plasma and cerebrospinal fluid of patients with subarachnoid haemorrhage. Lancet 336: 633 (letter)

    Article  PubMed  CAS  Google Scholar 

  19. Gaetani P, Rodriguez y Baena R, Grignani G, Spanu G, Pacchiarini L, Paoletti P (1994) Endothelin and aneurysmal subarachnoid haemorrhage: a study of subarachnoid cisternal cerebrospinal fluid. J Neurol Neurosurg Psychiatry 57: 66–72

    PubMed  CAS  Google Scholar 

  20. Hamel E, Bouchard D (1991) Contractile 5-HT1 receptors in human isolated pial arteries: correlation with 5-HT1D binding sites. Br J Pharmacol 102: 227–233

    PubMed  CAS  Google Scholar 

  21. Hatake K, Wakabayashi I, Kakishita E, Hishida S (1992) Impairment of endothelium-dependent relaxation in human basilar artery after subarachnoid hemorrhage. Stroke 23: 1111–1117

    PubMed  CAS  Google Scholar 

  22. Hempelmann RG, Ziegler A (1993) Endothelium-dependent noradrenaline-induced relaxation of rat isolated cerebral arteries: pharmacological characterization of receptor subtypes involved. Br J Pharmacol 110: 1321–1328

    PubMed  CAS  Google Scholar 

  23. Hempelmann RG, Barth HL, Mehdorn HM, Pradel RHE, Ziegler A (1995) Effects of potassium channel openers in isolated human cerebral arteries. Neurosurgery 37: 1146–1153

    Article  PubMed  CAS  Google Scholar 

  24. Hempelmann RG, Pradel RHE, Barth HL, Ziegler A, Mehdorn HM (1996) Enhancement of 5-hydroxytryptamine-induced contractions in isolated human cerebral arteries by endothelin-1 and U46619 (a thromboxane A2 receptor agonist). J Neurol 234: S 21 (abstract)

    Google Scholar 

  25. Hino A, Weir BKA, Macdonald RL, Thisted RA, Kim C-J, Johns LM (1995) Prospective, randomized, double-blind trial of BQ-123 and bosentan for prevention of vasospasm following subarachnoid hemorrhage in monkeys. J Neurosurg 83: 503–509

    Article  PubMed  CAS  Google Scholar 

  26. von Holst H, Granstrom E, Hammarstrom S, Samuelsson E, Steiner L (1982) Effect of leucotrienes C4, D4, prostacyclin and thromboxane A2 on isolated human cerebral arteries. Acta Neurochir (Wien) 2: 177–185

    Article  Google Scholar 

  27. Ito S, Sasaki T, Ide K, Ishikawa K, Nishikibe M, Yano M (1993) A novel endothelin ETA receptor antagonist, BQ-485, and its preventive effect on experimental cerebral vasospasm in dogs. Biochem Biophys Res Commun 195: 969–975

    Article  Google Scholar 

  28. Jansen I, Blackburn T, Eriksen K, Edvinsson L (1991) 5-Hydroxytryptamine antagonistic effects of ICI 169,369, ICI 170,809 and methysergide in human temporal and cerebral arteries. Pharmacol Toxicol 68: 8–13

    PubMed  CAS  Google Scholar 

  29. Kasuya H, Weir BKA, Nakane M, Pollock JS, Johns L, Marton LS, Stefansson K (1995) Nitric oxide synthase and guanylate cyclase levels in canine basilar artery after subarachnoid hemorrhage. J Neurosurg 82: 250–255

    PubMed  CAS  Google Scholar 

  30. Kim P, Sundt TM, Vanhoutte PM (1988) Alterations in endothelium-dependent responsiveness of the canine basilar artery after subarachnoid hemorrhage. J Neurosurg 69: 239–246

    PubMed  CAS  Google Scholar 

  31. Knuckey NW, Stokes BAR (1982) Medical management of patients following a ruptured cerebral aneurysm, with ε-aminocaproic acid, kanamycin, and reserpine. Surg Neurol 17: 181–185

    Article  PubMed  CAS  Google Scholar 

  32. Macdonald RL, Weir BKA (1991) A review of hemoglobin and the pathogenesis of cerebral vasospasm. Stroke 22: 971–982

    PubMed  CAS  Google Scholar 

  33. Macdonald RL, Weir BKA, Runzer TD, Grace MGA, Findlay JM, Saito K, Cook DA, Mielke BW, Kanamaru K (1991) Etiology of cerebral vasospasm in primates. J Neurosurg 75: 415–424

    PubMed  CAS  Google Scholar 

  34. Marín J, Lobato RD, Rico ML, Salaices M, Benitez J (1981) Effect of pentobarbital on the reactivity of isolated human cerebral arteries. J Neurosurg 54: 521–524

    Article  PubMed  Google Scholar 

  35. McPherson GA (1992) Assessing vascular reactivity of arteries in the small vessel myograph. Clin Exp Pharmacol Physiol 19: 815–825

    Article  PubMed  CAS  Google Scholar 

  36. Mulvany MJ, Halpern W (1977) Contractile properties of small arterial resistance vessels in spontaneously hypertensive and normotensive rats. Circ Res 41: 19–26

    PubMed  CAS  Google Scholar 

  37. Nirei H, Hamada K, Shoubo M, Sogabe K, Notsu Y, Ono T (1993) An endothelin ETA receptor antagonist, FR139317, ameliorates cerebral vasospasm in dogs. Life Sci 52: 1869–1874

    Article  PubMed  CAS  Google Scholar 

  38. Noseworthy TW, Weir B, Boisvert D, Espinosa F, Overton T, Marshal ML (1984) Effect of reserpine-kanamycin treatment on chronic vasospasm after platelet-enriched subarachnoid hemorrhage in primates. Neurosurgery 14: 193–197

    Article  PubMed  CAS  Google Scholar 

  39. Ohlstein EH, Storer BL (1992) Oxyhemoglobin stimulation of endothelin production in cultured endothelial cells. J Neurosurg 77: 274–278

    PubMed  CAS  Google Scholar 

  40. Okwuasaba FK, Weir BKA, Cook DA, Krueger CA (1981) Effects of various intracranial fluids on smooth muscle. Neurosurgery 9: 402–406

    Article  PubMed  CAS  Google Scholar 

  41. Papadopoulos SM, Gilbert LL, Webb RC, D’Amato CJ (1990) Characterization of contractile responses to endothelin in human cerebral arteries: implications for cerebral vasospasm. Neurosurgery 26: 810–815

    Article  PubMed  CAS  Google Scholar 

  42. Parsons AA, Whalley ET (1989) Effects of prostanoids on human and rabbit basilar arteries precontracted in vitro. Cephalalgia 9: 165–171

    Article  PubMed  CAS  Google Scholar 

  43. Parsons AA, Whalley ET, Feniuk W, Connor HE, Humphrey PPA (1989) 5-HT1-like receptors mediate 5-hydroxytryptamine-induced contraction of human isolated basilar artery. Br J Pharmacol 96: 434–449

    PubMed  CAS  Google Scholar 

  44. Paul KS, Whalley ET, Forster C, Lye R, Dutton J (1982) Prostacyclin and cerebral vessel relaxation. J Neurosurg 57: 334–340

    PubMed  CAS  Google Scholar 

  45. Pöch G, Reiffenstein RJ, Köck P, Pancheva SN (1995) Uniform characterization of potentiation in simple and complex situations when agents bind to different molecular sites. Can J Physiol Pharmacol 73: 1574–1581

    PubMed  Google Scholar 

  46. Pradel RHE, Ziegler A, Barth HL, Mehdorn HM, Hempelmann RG (1996) Interactions between different vasoconstrictors in human and rat isolated cerebral arteries. Naunyn Schmiedebergs Arch Pharmacol 353: R66 (abstract)

    Google Scholar 

  47. Sasaki T, Wakai S, Asano T, Takakura K, Sano K (1982) Prevention of cerebral vasospasm after SAH with a thromboxane synthetase inhibitor, OKY-1581. J Neurosurg 57: 74–82

    PubMed  CAS  Google Scholar 

  48. Satoh S, Suzuki Y, Harada T, Ikegaki I, Asano T, Shibuya M, Sugita K, Saito A (1991) The role of platelets in the development of cerebral vasospasm. Brain Res Bull 27: 663–668

    Article  PubMed  CAS  Google Scholar 

  49. Schini VB, Hendrickson H, Heublein DM, Burnett FJC Jr, Vanhoutte PM (1989) Thrombin enhances the release of endothelin-1 from cultured porcine aortic endothelial cells. Eur J Pharmacol 165: 333–334

    Article  PubMed  CAS  Google Scholar 

  50. Seifert V, Stolke D, Kaever V, Dietz H (1987) Arachidonic acid metabolism following aneurysm rupture-evaluation of cerebrospinal fluid and serum concentration of 6-keto-prostaglandin F and thromboxane B2 in patients with subarachnoid hemorrhage. Surg Neurol 27: 243–252

    Article  PubMed  CAS  Google Scholar 

  51. Seifert V, Löffler B-M, Zimmermann M, Roux S, Stolke D (1995) Endothelin concentrations in patients with aneurysmal subarachnoid hemorrhage. J Neurosurg 82: 55–62

    PubMed  CAS  Google Scholar 

  52. Suzuki R, Masaoka H, Hirata Y, Marumo F, Isotani E, Hirakawa K (1992) The role of endothelin-1 in the origin of cerebral vasospasm in patients with aneurysmal subarachnoid hemorrhage. J Neurosurg 77: 96–100

    PubMed  CAS  Google Scholar 

  53. Suzuki S, Sobata E, Iwabuchi T (1981) Prevention of cerebral ischemic symptoms in cerebral vasospasm with trapidil, an antagonist and selective synthesis inhibitor of thromboxane A2. Neurosurgery 9: 679–685

    Article  PubMed  CAS  Google Scholar 

  54. Suzuki S, Sano K, Handa H, Asano T, Tamura A, Yonekawa Y, Ono H, Tachibana N, Hanaoka K (1989) Clinical study of OKY-046, a thromboxane synthetase inhibitor, in prevention of cerebral vasospasm and delayed cerebral ischemic symptoms after subarachnoid hemorrhage due to aneurysmal rupture: a randomized double-blind study. Neurol Res 11: 79–88

    PubMed  CAS  Google Scholar 

  55. Szabò C, Emilsson K, Hardebo JE, Nystedt S, Owman C (1992) Uptake and release of serotonin in rat cerebrovascular nerves after subarachnoid hemorrhage. Stroke 23: 54–61

    PubMed  Google Scholar 

  56. Toda N (1990) Mechanisms underlying responses to histamine of isolated monkey and human cerebral arteries. Am J Physiol 258: H311-H317

    PubMed  CAS  Google Scholar 

  57. Tokiyoshi K, Ohnishi T, Nii Y (1991) Efficacy and toxicity of thromboxane synthetase inhibitor for cerebral vasospasm after subarachnoid hemorrhage. Surg Neurol 36: 112–118

    Article  PubMed  CAS  Google Scholar 

  58. Uski TK, Andersson KE, Brandt L, Ljunggren B (1984) Characterization of the prostanoid receptors and of the contractile effects of prostaglandin F in human pial arteries. Acta Physiol Scand 121: 369–378

    PubMed  CAS  Google Scholar 

  59. Van Nueten JM, Janssen PAJ, De Ridder W, Vanhoutte PM (1982) Interaction between 5-hydroxytryptamine and other vasoconstrictor substances in the isolated femoral artery of the rabbit: effect of ketanserin (R41468). Eur J Pharmacol 77: 281–287

    Article  PubMed  Google Scholar 

  60. Van Riper DA, Bevan JA (1991) Selective variation of agonist and neurally mediated vasoconstriction with rabbit middle cerebral artery branch order. J Pharmacol Exp Ther 257: 879–886

    PubMed  Google Scholar 

  61. Voldby B, Engbaek I, Enevoldsen EM (1982) CSF serotonin concentrations and cerebral arterial spasm in patients with ruptured intracranial aneurysm. Stroke 13: 184–189

    PubMed  CAS  Google Scholar 

  62. Wilkins RH (1986) Attempts at prevention or treatment of intracranial arterial spasm: an update. Neurosurgery 18: 808–825

    Article  PubMed  CAS  Google Scholar 

  63. Willette RN, Zhang H, Mitchell MP, Sauermelch CF, Ohlstein EH, Sulpizio AC (1994) Nonpeptide endothelin antagonist. Cerebrovascular characterization and effects on delayed cerebral vasospasm. Stroke 25: 2450–2455

    PubMed  CAS  Google Scholar 

  64. Yang Z, Richard V, von Segesser L, Bauer E, Stulz P, Turina M, Lüscher TF (1990) Threshold concentrations of endothelin-1 potentiate contractions to norepinephrine and serotonin in human arteriesf-a new mechanism of vasospasm? Circulation 82: 188–195

    PubMed  CAS  Google Scholar 

  65. Young MS, Iwanow V, Moulds RFW (1986) Interaction between platelet-released serotonin and thromboxane A2 on human digital arteries. Clin Exp Pharmacol Physiol 13: 143–152

    Article  PubMed  CAS  Google Scholar 

  66. Zimmermann M, Seifert V, Löffler B-M, Stolke D, Stenzel W (1996) Prevention of cerebral vasospasm after experimental subarachnoid hemorrhage by RO 47-0203, a newly developed orally active endothelin receptor antagonist. Neurosurgery 38: 115–120

    Article  PubMed  CAS  Google Scholar 

  67. Zuccharello M, Soattin GB, Lewis AI, Breu V, Hallak H, Rapoport RM (1996) Prevention of subarachnoid hemorrhage-induced cerebral vasospasm by oral administration of endothelin receptor antagonists. J Neurosurg 84: 503–507

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hempelmann, R.G., Pradel, R.H.E., Barth, H.L. et al. Interactions between vasoconstrictors in isolated human cerebral arteries. Acta Neurochir 139, 574–582 (1997). https://doi.org/10.1007/BF02751003

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02751003

Keywords

Navigation