Skip to main content
Log in

Identification of a cortical site for stress-induced cardiovascular dysfunction

  • Symposium
  • Published:
Integrative Physiological and Behavioral Science Aims and scope Submit manuscript

Abstract

The evidence indicating that the insular cortex is a likely candidate to mediate stress-induced cardiovascular responses is reviewed. Both neuroanatomical and electrophysiological investigations demonstrate that the insular cortex receives an organized representation of visceral information. In addition, the insular cortex also receives highly processed association cortex information. The insular cortex is also highly interconnected with many subcortical limbic and autonomic regions. This combination of sensory input and limbic/autonomic connectivity would be necessary to permit the insular cortex to be a critical site for the integration of emotional and autonomic responses. Stimulation of the insular cortex elicits specific cardiovascular and autonomic responses from discrete sites. Phasic stimulation entrained to the cardiac cycle is even capable of causing severe arrhythmias. The efferent pathways and some of the neurotransmitter mechanisms have determined. It appears that the lateral hypothalamic area is the primary site of synapse for autonomic responses originating in the insular cortex and this information is relayed by NMDA glutamatergic receptors and modulated by neuropeptides including neuropeptide Y, neurotensin, leu-enkephalin and dynorphin. Finally, a rat stroke model, which includes the insular cortex in the infarct region indicates that disruption of the insula can produce substantial cardiac and autonomic abnormalities, which might be similar to those produced by stress. Some of the chronic neurochemical changes, including increases in opioids, neuropeptide Y and neurotensin in the central nucleus of the amygdala, which might be mediating these cardiovascular disturbances, have been determined.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Allen, G.V. and D.F. Cechetto. (1992). Functional and anatomical organization of cardiovascular pressor and depressor sites in the lateral hypothalamic area: I. Descending projections.J. Comp. Neurol., 315:313–332.

    Article  PubMed  Google Scholar 

  • Allen, G.V. and D.F. Cechetto. (1993). Functional and anatomical organization of cardiovascular pressor and depressor sites in the lateral hypothalamic area: II. Ascending projections.J. Comp. Neurol., 330:421–438.

    Article  PubMed  Google Scholar 

  • Allen, G.V. and D.F. Cechetto. (1994). Neurotensin in the lateral hypothalamic area: origin and function.Neurosci., (in revision).

  • Allen, G.V., C.B. Saper, K.M. Hurley and D.F. Cechetto. (1991). Organization of visceral and limbic connections in the insular cortex in the rat.J. Comp. Neurol., 311:1–16.

    Article  PubMed  Google Scholar 

  • Amaral, D.G., R.B. Veazey and W.M. Cowan. (1982). Some observation on hypothalamo-amygdaloid connections in the monkey.Brain Res., 252:13–27.

    Article  PubMed  Google Scholar 

  • Bard, P. (1928). A Diencephalic mechanism for the expression of rage with special reference to the sympathetic nervous system.Am. J. Physiol., 84:490–515.

    Google Scholar 

  • Barone, F.C., M.J. Wayner, S.L. Scharoun, R. Guevara-Aguilar and H.U. Aguilar-Baturoni. (1981). Afferent connections to the lateral hypothalamus: a horseradish peroxidase study in the rat.Brain Res. Bull, 7:75–88.

    Article  PubMed  Google Scholar 

  • Bartorelli, C., E. Bizzi, A. Libretti and A. Zanchetti. (1960). Inhibitory control of sinocarotid pressoceptive afferents on hypothalamic autonomic activity and sham rage behavior.Arch. Ital. Beiol., 98:308–326.

    Google Scholar 

  • Beckstead, R.M. (1979). An autoradiographic examination of corticocortical and subcortical projections of the mediodorsal-projection (prefrontal) cortex in the rat.J. Comp. Neurol., 184:43–62.

    Article  PubMed  Google Scholar 

  • Benjamin, R.M. and K. Akert. (1959). Cortical and thalamic areas involved in taste discrimination in the albino rat.J. Comp. Neurol., 111:231–259.

    Article  PubMed  Google Scholar 

  • Benjamin, R.M. and C. Pfaffmann. (1955). Cortical localization of taste in albino rat.J. Neurophysiol., 18:56–64.

    PubMed  Google Scholar 

  • Berk, M.L. and J.A. Finkelstein. (1982). Efferent connections of the lateral hypothalamic area of the rat: An autoradiographic investigation.Brain Res. Bull, 8:511–526.

    Article  PubMed  Google Scholar 

  • Blumhardt, L.D., P.E.M. Smith and L. Owen. (1986). Electrocardiographic accompaniments of temporal lobe epileptic seizures.Lancet, 1:1051–1056.

    Article  PubMed  Google Scholar 

  • Butcher, K.S., V.C. Hachinski, J.X. Wilson, C. Guiraudon, and D.F Cechetto. (1993). Cardiac and sympathetic effects of middle cerebral artery occlusion in the spontaneously hypertensive rat.Brain Res., 621:79–86.

    Article  PubMed  Google Scholar 

  • Cannon, W.B. and S.W. Britton. (1925). Studies of the conditions of activity in endocrine glands. XV. Pseudaffectie medulliadrenal secretion.Am. J. Physiol., 72:283–294, 295–313.

    Google Scholar 

  • Cechetto, D.F. (1987). Central representation of visceral function.Federation Proc., 46:17–23.

    Google Scholar 

  • Cechetto, D.F. (1990). Central system pathways and mechanisms integrating taste and the autonomic nervous system. In: M.I. Friedman (Ed.),Proceedings of the International Conference on Appetite. NY: Marcel Dekker Inc., 427–445.

    Google Scholar 

  • Cechetto, D.F. (1993). Experimental cerebral ischemic lesions and cardiac effects.Stroke, 24:16–19.

    Google Scholar 

  • Cechetto, D.F. and S.J. Chen. (1990). Subcortical sites mediating sympathetic responses from the insular cortex in the rat.Am. J. Physiol. (Regulatory Integrative Comp. Physiol.), 258:R245-R255.

    Google Scholar 

  • Cechetto, D.F. and S.J. Chen. (1992). Hypothalamic and cortical sympathetic responses relay in the medulla in the rat.Am. J. Physiol.,, 263;(Regulatory, Integrative and Comparative Physiology 32),: R544-R552.

    PubMed  Google Scholar 

  • Cechetto, D.F. and C.B. Saper. (1987). Evidence for a viscerotopic sensory representation in the cortex and thalamus in the rat.J. Comp. Neurol., 262:27–45.

    Article  PubMed  Google Scholar 

  • Cechetto, D.F. and C.B. Saper. (1990). Role of the cerebral cortex in autonomic function. In: A.D. Loewy and K.M. Spyer (Eds.),Central Regulation of Autonomic Function. New York: Oxford University Press, 208–223.

    Google Scholar 

  • Cechetto, D.F., J.X. Wilson, K.E. Smith, M.D. Silver, V.C. Hachinski. (1989). Autonomic and myocardial changes in middle cerebral artery stroke models in the rat.Brain Res., 502:296–305.

    Article  PubMed  Google Scholar 

  • Cheung, R.T.F., T. Diab and D.F. Cechetto. (1993). Time-course of neurochemical changes following focal ischemia.Soc. for Neurosci., 19:1663.

    Google Scholar 

  • Cheung, R.T.F. and D.F. Cechetto. (1994). Neurochemical changes following excitotoxic lesion of the insular cortex.Soc. for Neurosci., 20:

  • Delgado, J.M.R. (1960). Circulatory effects of cortical stimulation.Physiol. Rev., 40(Suppl.4), 146–171.

    Google Scholar 

  • Dell, P. and R. Olson. (1951). Projections thalamiques, corticales et cerebelleuses des afferences viscerales vagales.C.R. Soc. Biol., (Paris) 145:1084–1088.

    Google Scholar 

  • DeLuca, B., M. Monda, M.P. Pellicano and A. Zenga. (1987). Cortical control of thermogenesis induced by lateral hypothalamic lesion and overeating.Am. J. Physiol., 253:R626-R633.

    Google Scholar 

  • DiMicco, J.A. and V.M. Abshire. (1987). Evidence for gabaergic inhibition of a hypothalamic sympatho-excitatory mechanism in anesthetized rats.Brain Res., 402:1.

    Article  PubMed  Google Scholar 

  • Eliot, R.S. and J.C. Buell. (1983). Role of the central nervous system in sudden cardiac death. In T.M. Dembroski, T.H. Schmidt, G. Blumchen (Eds.),Biobehavioral Basis of Coronary Heart Disease. Karger Biobehavioral Medicine Series (Vol. 2, pp. 257–270). Basel: Karger.

    Google Scholar 

  • Emmers, R. (1966). Separate cortical receiving areas for gustatory and tongue tactile afferents in the rat.Anat. Rec., 154:460.

    Google Scholar 

  • Engel, G.L. (1978). Psychologic stress, vasodepressor (vasovagal) syncope, and sudden death.Ann. Int. Med., 89:403–412.

    PubMed  Google Scholar 

  • Erickson, T.C. (1939). Cardiac activity during epileptic seizures.Arcsh Neurol. Psychiatry, 41:511–518.

    Google Scholar 

  • Feurstein, G. and A.-L. Siren. (1987). The opioid peptides, a role in hypertension?Hypertension, 9:561–565.

    Google Scholar 

  • Finley, J.C.W., J.L. Maderdrut and P. Petrusz. (1981). The immunocytochemical localization of enkephalin in the central nervous system of the rat.J. Comp. Neurol., 198:541–565.

    Article  PubMed  Google Scholar 

  • Ganchrow, D. and R.P. Erickson. (1972). Thalamocortical relations in gustation.Brain Re., 36:289–305.

    Article  Google Scholar 

  • Gilchrist, J.M. (1985). Arrhythmogenic seizures diagnosis by simultaneous EEG/ECG recording.Neurology, 35:1503–1506.

    PubMed  Google Scholar 

  • Hachinski, V.C., S.M. Oppenheimer, J.X. Wilson, C. Guiraudon and D.F. Cechetto. (1992a). Asymmetry of sympathetic consequences of experimental stroke.Archiv. Neurol., 49:697–702.

    Google Scholar 

  • Hachinski, V.C., J.X. Wilson, K.E. Smith and D.F. Cechetto. (1992b). Effects of age on autonomic and cardiac responses in a rat stroke model.Archiv. Neurol., 49:690–696.

    Google Scholar 

  • Hall, R.E., R.B. Livingston and C.M. Bloor. (1977). Orbital cortical influences on cardiovascular dynamics and myocardia structure in conscious monkeys.J. Neurosurg., 46:638–647.

    Google Scholar 

  • Herbert, H. and C.B. Saper. (1992). Organization of medullary adrenergic and noradrenergic projections to the periaqueductal gray matter in the rat.J. Comp. Neurol., 315:34.

    Article  PubMed  Google Scholar 

  • Hoff, E.C., J.F. Kell, Jr. and M.N. Carroll Jr. (1963). Effects of cortical stimulation and lesions on cardiovascular function.Physiol. Re. 43:68–114.

    Google Scholar 

  • Hoffman, B.L. and T. Rasmussen. (1953). Stimulation studies of insular cortex of Macaca Mulatta.J. Neurophysiol., 16:343.

    PubMed  Google Scholar 

  • Ibata, Y., F. Kawakami, K. Fukui, H. Okamura, H.L. Obata-Tsuto, T. Tsuto and H. Terubayashi. (1984). Morphological survey of neurotensin-like immunoreactive neurons in the hypothamus.Peptides, 5:109–120.

    Article  PubMed  Google Scholar 

  • Jennes, L., W.E. Stumpf and P.W. Kalias. (1982). Neurotensin: Topographical distribution in rat brain by immunohistochemistry.J. Comp. Neurol., 210:211–224.

    Article  PubMed  Google Scholar 

  • Johansson, G., L. Jonsson, L. Lannek, L. Blomgren, P. Lindberg and O. Poupa. (1974). Severe stress-cardiopathy in pigs.Am. Heart J., 87:451–457.

    Article  PubMed  Google Scholar 

  • Kaada, B.R. (1951). Somato-motor, autonomic and electrocorticographic responses to electrical stimulation of “rhinencephalic” and other structures in primates cat and dog.Acta Physiol. Scand., 24:1–285.

    Google Scholar 

  • Kahn, D., A. Hou-Yu and E.A. Zimmerman. (1982). Localization of neurotension in the hypothalamus.Annals NY Acad Sci., 400:116–131.

    Article  Google Scholar 

  • Kennard, M.A, (1945). Focal autonomic representation in the cortex and its relation to sham rage.J. Neuropath. Exp. Neurol., 4:295–304.

    Google Scholar 

  • Kiok, M.C., C.F. Terrence, G.H. Fromm and S. Lavine. (1986). Sinus arrest in epilepsy.Neurology, 36:115–116.

    PubMed  Google Scholar 

  • Kita, H. and Y. Oomura. (1981). Reciprocal connections between the lateral hypothalamus and the frontal cortex in the rat. Electrophysiological and anatomical observations.Brain Res., 213:1–16.

    Article  PubMed  Google Scholar 

  • Koivusalo, F. and J. Leppaluoto. (1979).Neuroendocrinol., 29:231–236.

    Google Scholar 

  • Kubek, M.J. and A. Sattin. (1984).Life Sci., 34:1149–1152.

    Article  PubMed  Google Scholar 

  • Kubek, J.J., J.C. Meyerhoff, T.G. Hill, J.A. Norton and A. Sattin. (1984).Life Sci., 36:315–320.

    Article  Google Scholar 

  • LeDoux, J.E., J. Iwata, P. Cicchetti and D.J. Reis. (1988). Different projections of the central amygdaloid nucleus mediate autonomic and behavioral correlates of conditioned fear.J. Neurosci., 8:2517–2529.

    PubMed  Google Scholar 

  • Leger, L., Y. Charnay, J.M. Danger, H. Vaudry, G. Pelletier, P.M. Dubois and M. Jouvet. (1987). Mapping of neuropeptide Y-like immunoreactivity in the feline hypothalamus and hypophysis.J. Comp. Neurol., 255:283.

    Article  PubMed  Google Scholar 

  • Levy, M.N. and P. Martin. (1984). Parasympathetic control of the heart. In W.C. Randall, (Ed.),Neural Control of Cardiovascular Function (pp. 68–94). NY: Oxford University Press.

    Google Scholar 

  • Lown, B. (1982). Mental stress, arrhythmias and sudden death.Am. J. Med., 72:177–180.

    Article  PubMed  Google Scholar 

  • Lown, B. and R.L. Verrier. (1976). Neural activity and ventricular fibrillation.New Engl. J. Med., 294:1165–1170.

    Article  PubMed  Google Scholar 

  • Lown, B., R.L. Verrier and S.H. Rabinowitz. (1977). Neural and psychological mechanisms and the problem of sudden cardiac death.Am. J. Cardiol., 39:890–902.

    Article  PubMed  Google Scholar 

  • Mansour, A., H. Khachaturian, M.E. Lewis, H. Akil and S.J. Watson. (1987). Autoradiographic differentiation of mu, delta, and kapa opioid receptors in the rat forebrain and midbrain.J. Neurosci., 7:2445.

    PubMed  Google Scholar 

  • Martin, S.M., T.J. Malkinson, L.G. Bauce, W.L. Veale and Q.J. Pittman. (1988). Plasma catescholamines in conscious rabbits after central administration of vasopressin.Brain Re., 457:192.

    Article  Google Scholar 

  • Mesulam, M.-M. and E.J. Mufson. (1982). Insula of the old world monkey. I:Architectonics in the insuloorbitotemporal component of the paralimbic brain.J. Comp. Neurol., 212:1–22.

    Article  PubMed  Google Scholar 

  • Myers, M.G., J.W. Norris, V.C. Hachinski and M.J. Sole. (1981). Plasma norepinephrine in stroke.Stroke, 12:200.

    PubMed  Google Scholar 

  • Myers, M.G., J.W. Norris, V.C. Hachinski, M.E. Weingert and M.J. Sole. (1982). Cardiac sequelae of acute stroke.Stroke, 13:838–842.

    PubMed  Google Scholar 

  • Nakagawa, Y., S. Shiosaka, P.C. Emson and M. Tohyama. (1985). Distribution of neuropeptide Y in the forebrain and diencephal on: An immunohistochemical analysis.Brain Res., 361:52–60.

    Article  PubMed  Google Scholar 

  • Ng, L.K.Y. and H. Nimmannitya. (1970). Massive cerebral infarction with severe brain swelling: A clinicopathological study.Stroke, 1:158–163.

    PubMed  Google Scholar 

  • Norris, J.W., G.M. Froggatt and V.C. Hachinski. (1978). Cardiac arrhythmias in acute stroke.Stroke, 9:392–396.

    PubMed  Google Scholar 

  • Norris, J.W., A. Kolin and V.C. Hachinski. (1980). Focal myocardial lesions in stroke.Stroke, 11:130.

    Google Scholar 

  • Oppenheimer, S.M. and D.F. Cechetto. (1990). Cardiac chronotropic organization of the rat insular cortex.Brain Res., 533:66–72.

    Article  PubMed  Google Scholar 

  • Oppenheimer, S.M., D.F. Cechetto and V.C. Hachinski. (1990). Cerebrogenic cardiac arrhythmias: Cerebral ECG influences and their role in sudden death.Archiv. Neurol., 47:513–519.

    Google Scholar 

  • Oppenheimer, S.M., T. Saleh and D.F. Cechetto. (1992a). Lateral hypothalamic area neurotransmission and neuromodulation of the specific cardiac effects of insular cortex stimulation.Brain Res., 581:133–142.

    Article  PubMed  Google Scholar 

  • Oppenheimer, S.M., T. Saleh, J.X. Wilson and D.F. Cechetto. (1992b). Plasma and organ catecholamine levels following stimulation of the rat insular cortex.Brain Res., 569:221–228.

    Article  PubMed  Google Scholar 

  • Oppenheimer, S.M., J.X. Wilson, C. Guiraudon and D.F. Cechetto. (1991). Insular cortex stimulation produces lethal cardiac arrhythmias: A mechanism of sudden death?Brain Res., 550:115–121.

    Article  PubMed  Google Scholar 

  • Ottersen, O.P. and J. Storm-Mathisen. (1984a). Glutamate-and GABA-containing neurons in the mouse and rat brain, as demonstrated with a new immunocytochemical technique.J. Comp. Neurol., 229:374–392.

    Article  PubMed  Google Scholar 

  • Ottersen, O.P. and J. Storm-Mathisen. (1984b). Immunocytochemical visualization of GABA fixed by gulataraldehyde in brain tissue.Neuropharmacol, 23:855–857.

    Article  Google Scholar 

  • Penfield, W. and M.E. Faulk Jr. (1955). The insula: Further observations on its function.Brain, 78:445–470.

    Article  PubMed  Google Scholar 

  • Powell, D.A. and D. Levine-Bryce. (1989). Conditioned bradycardia in the rabbit-effects of knife cuts and ibotenic acid lesions in the lateral hypothalamus.Exp. Brain Res., 76:103.

    Article  PubMed  Google Scholar 

  • Pritchett, E.L.C., J.O. McNamara and J.J. Gallagher. (1980). Arrhythmogenic epilepsy: An hypothesis.Am. Heart J., 100:683–688.

    Article  PubMed  Google Scholar 

  • Radna, R.J. and P.D. MacLean. (1981). Vagal elicitation of respiratory-type and other unit responses in basal limbic structures of squirrel monkeys.Brain Res., 21:45–61.

    Article  Google Scholar 

  • Ruggiero, D.A., S. Mraovitch, A.R. Granata, M. Anwar and D.J. Reis. (1987). A role of insular cortex in cardiovascular function.J. Comp. Neurol., 257:189.

    Article  PubMed  Google Scholar 

  • Saper, C.B. (1982a). Convergence of autonomic and limbic connections in the insular cortex of the rat.J. Comp. Neurol. 210:163–173.

    Article  PubMed  Google Scholar 

  • Saper, C.B. (1982b). Reciprocal parabrachial-cortical connections in the rat.Brain Res., 242:33–40.

    Article  PubMed  Google Scholar 

  • Saper, C.B. (1985). Organization of cerebral cortical afferent systems in the rat. III. Hypothalamocortical projections.J. Comp. Neurol., 237:1–46.

    Article  Google Scholar 

  • Saper, C.B., L.W. Swanson and W.M. Cowan. (1979). An autoradiographic study of the efferent connections of the lateral hypothalamic area in the rat.J. Comp. Neurol., 183: 689–706.

    Article  PubMed  Google Scholar 

  • Schwartz, P.J., H.L. Stone and A.M. Brown. (1976). Effects of unilateral stellate ganglion blockage on the arrhythmias associated with coronary occlusion. Am. Heart J., 92:589–599.

    Article  PubMed  Google Scholar 

  • Shekhar, A., J.N. Hingtgen and J.A. Dimicco. (1987). Selective enhancement of shock avoidance responding elicited by GABA blockade in the posterior hypothalamus of rat.Brain Res., 420:118–128.

    Article  PubMed  Google Scholar 

  • Shipley, M.T. and M.S. Sanders. (1982). Special senses are really special: Evidence for a reciprocal bilateral pathway between insular cortex and nucleus parabrachialis.Brain Res. Bull., 8:493–501.

    Article  PubMed  Google Scholar 

  • Smith, D.A. and J.P. Flynn. (1980). Afferent projections to quiet attack sites in cat hypothalamus.Brain Res., 194:29–40.

    Article  PubMed  Google Scholar 

  • Smith, K.E., V.C. Hachinski, C.J. Gibson and J. Ciriello. (1986). Changes in plasma catecholamine levels after insula damage in experimental stroke.Brain Res., 375:182–185.

    Article  PubMed  Google Scholar 

  • Stephenson, J.B.P. (1986). Electrocardiographic accompaniments of temporal lobe epileptic seizures.Lancet, 2:1450.

    Article  Google Scholar 

  • Storm-Mathisen, J. and O.P. Ottersen. (1988). Anatomy of putative glutamatergic neurons, neurotransmitters and cortical function. In Avoli, M., R.W. Dykes, T.A. Reader, P. Gloor (Eds.),Neurotransmitters and Cortical Function (p. 39). NY: Plenum Publishing Corp.

    Google Scholar 

  • Uhl, G., R.R. Goodman, M.J. Kuhar, S.R. Childers and S.H. Snyder. (1979). Immunohistochemical mapping of enkephalin containing cell bodies, fibers and nerve terminals in the brain stem of the rat.Brain Res., 166:75–94.

    Article  PubMed  Google Scholar 

  • Uhl, G.R. (1982). Distribution of neurotensin and its receptor in the central nervous system.Ann NY Acad Sci., 400:132–149.

    Article  PubMed  Google Scholar 

  • Van Buren, J.M. (1958). Some autonomic concomitants of ictal automatism. S study of temporal lobe attacks.Brain Res., 81:505–528.

    Google Scholar 

  • van der Kooy, D., J.F. McGinty, L.Y. Koda, C.R. Gerfen and F.E. Bloom. (1982). Visceral cortex: A direct connection from prefrontal cortex to the solitary nucleus in the rat.Neurosci. Letters, 33:123–127.

    Article  Google Scholar 

  • Veening, J.G., S. Telie, P. Posthuma, L.M.G. Geeraedts and R. Nieuwenhuys. (1987). A topographical analysis of the origin of some efferent projections from the lateral hypothalamic area in the rat.Neurosci., 22:537.

    Article  Google Scholar 

  • Verrier, R.L., A. Caletti and B. Lown. (1975). Effect of posterior hypothalamic stimulation of ventricular fibrillation threshold.Am. J. Physiol., 228:923–927.

    PubMed  Google Scholar 

  • Verrier, R.L. and B. Lown. (1984). Behavioral stress and cardiac arrhythmias.Ann. Re. Physiol., 46:155–176.

    Article  Google Scholar 

  • von Euler, U.S. and B. Folkow. (1958). The effect of stimulation of autonomic areas in the cerebral cortex upon the adrenaline and nonadrenaline secretion from the adrenal gland in the cat.Acta Physiol. Scand., 42:313–320.

    Article  Google Scholar 

  • Waldrop, T.G., R.M. Bauer and G.A. Iwamoto. (1988). Microinjection of GABA antagonists into the posterior hypothalamus elictis locomotor activity and cardiorespiratory activation.Brain Res., 444:84.

    Article  PubMed  Google Scholar 

  • Wall, P.D. and G.D. Davis. (1951). Three cerebral cortical systems affecting autonomic function.J. Neurophysiol., 14:507–517.

    PubMed  Google Scholar 

  • Walsh, G.O., W. Masland and E.S. Goldensohn. (1972). Relationship between paroxysmal atrial tachycardia and paroxysmal cerebral discharges.Bull LA Neurol Soc., 37:28–35.

    Google Scholar 

  • Walter, A., J.K. Mai and W. Jimenez-Hartel. (1990). Mapping of neuropeptide Y-like immunoreactivity in the human forebrain.Brain Res. Bull., 24:297–311.

    Article  PubMed  Google Scholar 

  • White, P.T., P. Grant, J. Mosier and A. Craig. (1961). Changes in cerebral dynamics associated with seizures.Neurology, 11:354–361.

    Article  PubMed  Google Scholar 

  • Wible, J.H., Jr., F.C. Luft and J.A. DiMicco. (1988). Hypothalamic GABA suppresses sympathetic outflow to the cardiovascular system.Am. J. Physiol., 254:R680-R687.

    PubMed  Google Scholar 

  • Yamamoto, T. and Y. Kawamura. (1975). Cortical responses to electrical and gustatory stimuli in the rabbit.Brain Res. 94:447–463.

    Article  PubMed  Google Scholar 

  • Yamamoto, T., R. Matsuo and Y. Kawamura. (1980). Localization of cortical gustatory area in rats and its role in taste discrimination.J. Neurophysiol., 44:440–455.

    PubMed  Google Scholar 

  • Yamamoto, T., T. Takahashi and Y. Kawamura. (1981a). Access to the cerebral cortex of extra-lingual taste inputs in the rat.Neurosci. Letters, 24:129–132.

    Article  Google Scholar 

  • Yamamoto, T., N. Yuyama and Y. Kawamura. (1981b). Cortical neurons responding to tactile, thermal and/taste stimulations of the rat’s tongue.Brain Res., 221:202–206.

    Article  PubMed  Google Scholar 

  • Yasui, Y., C.D. Breder, C.B. Saper and D.F. Cechetto. (1991). Autonomic responses and efferent pathways from the insular cortex in the rat.J. Comp. Neurol., 303:355–374.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cechetto, D.F. Identification of a cortical site for stress-induced cardiovascular dysfunction. Integrative Physiological and Behavioral Science 29, 362–373 (1994). https://doi.org/10.1007/BF02691356

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02691356

Keywords

Navigation