NAGAYOSHI IWAHORI

HIDEYA MATSUMOTO

On some Bruhat decomposition and the structure of the
Hecke rings of p-adic Chevalley groups

Publications mathématiques de | 'LH.E.S., tome 25 (1965), p. 5-48
<http://www.numdam.org/item?id=PMIHES_1965__ 25 5 0>

© Publications mathématiques de 1’I.H.E.S., 1965, tous droits réservés.

L’accés aux archives de la revue « Publications mathématiques de I'LH.E.S. » (http://
www.ihes.fr/IHES/Publications/Publications.html) implique I’accord avec les conditions géné-
rales d’utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou im-
pression systématique est constitutive d’une infraction pénale. Toute copie ou impression de
ce fichier doit contenir la présente mention de copyright.

‘NuMDAM

Article numérisé dans le cadre du programme
Numérisation de documents anciens mathématiques
http://www.numdam.org/


http://www.numdam.org/item?id=PMIHES_1965__25__5_0
http://www.ihes.fr/IHES/Publications/Publications.html
http://www.ihes.fr/IHES/Publications/Publications.html
http://www.numdam.org/conditions
http://www.numdam.org/
http://www.numdam.org/

ON SOME BRUHAT DECOMPOSITION
AND THE STRUCTURE OF THE HECKE RINGS
OF p-ADIC CHEVALLEY GROUPS

by N. IWAHORI and H. MATSUMOTO

INTRODUCTION

The purpose of this note is to give a sort of Bruhat decomposition for a Chevalley
group G over a p-adic field K and to give some applications of this decomposition.
To be more precise, we consider the Chevalley group G (see Chevalley [6]) associated
with a pair of a complex semi-simple Lie algebra gy and a field K with non-trivial
discrete valuation. (The residue class field £=90/P of K is not assumed to be finite.)
Let by be a Cartan subalgebra of g; and A the root system of g, with respect to bg.
Then for any oA, there is associated a homomorphism @, :SL(2, K)->G. We

denote as usual the image of ((I) f), (It (1)) under ®, by x,(t), x_,(t) respectively.

Now let P, be the subgroup of b (=the dual of §) generated by A. Then for any
yeHom(P,, K") there is associated an element A(y) of G (see [6]). Now let us define
the subgroups U, B of G which will be our main subject in this note. We denote by U
the subgroup of G generated by the

X, 0={%(t);teO} (xeA) and  $Ho={h(x); xeHom(P,, K'), #(P,) cO’}

where O" is the group of all units in O (=the ring of integers of K). Let B be the
subgroup of U generated by the X_, o (x€A* (=the positive roots)),

X,p={nl);1eB)  (xed®)

and $go. Then it turns out that U coincides with the subgroup of G consisting
of elements which keep invariant the Chevalley lattice QDZD@Qz (in the sense of
Bruhat [4]) (see Cor. 2.17), and that B is the full inverse image of a Borel sub-
group B, of the Chevalley group G of g; over £=0/P under the reduction (mod. PB)
homomorphism U-G, (see Prop. 2.4). When K is locally compact, U is a maximal
compact subgroup and it is shown that the condition (I) of Satake [12] (i.e. a sort of
Iwasawa decomposition) is valid (see Prop. 2.33). Also, in asense Satake’s condition (IT)
is also verified (see Cor. 2.35). In fact, we can show that the Hecke ring (G, U)
(for the definition o Hecke rings, see § 3 or [10, § 1]) is commutative and is isomorphic
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6 N. IWAHORI AND H MATSUMOTO

to the polynomial ring Z[X,, ..., X;] where [ is the rank of g, not assuming the
completeness of K, but assuming that O/ is finite. However this will be treated
in a subsequent paper.

Now let G’ be the commutator subgroup of G; also let I be the subgroup of G

generated by $={h(x); zeHom(P,, K')} and the w,—®, (( 0

. (I)))(oceA). Then

we shall show that the triple (G’, B’, ') where B'=BnG’, W'=WnG’, satisfies all the
hypotheses of Tits [16] (see Th. 2.44). In this case B'nW' =H5=9HnG' is a
distinguished subgroup of 23’ and the quotient group VNV’—_—QB'/Sjo, is isomorphic to
the infinite group generated by the reflections with respect to the hyperplanes
P, . ={xeby; (@ x)=Fk} (x€A, keZ), where by IYEARY’ and (o, x) means the Killing

form; i.e. W' is the semi-direct product of the Weyl group W and the group D’ consisting
of translations T(d) : T(d)x=x+d (dePL, where P is the subgroup of b generated
by all weights of g and Plz{xeb}; (x,A)eZ for all reP}). Thus after Tits [16],
all subgroups H of G’ such that G'DHDB’ are in one-to-one correspondence with the
subsets L of the set J of some generators of W J is given explicitly in Prop. 2.23 and
we can determine in particular the conjugacy classes of maximal subgroups of G’
containing a conjugate of B’ (see Prop. 2.30). When K is locally compact, we
can determine the conjugacy classes of maximal compact subgroups of G’ containing
a conjugate of B’ (see Prop. 2.32). Also we can prove that some analogous phenomenon
as in Tits [16] is true for the triple (G, B, W) (see Prop. 2.8, Cor. 2.7, Th. 2.22).

Here BnW=9Hy and V~V=QB/S5,3 is the semi-direct product of the translation group
D={T(f); feP}} and W, where P}={xeby; (x, x)eZ for all xeA}. W is a semi-
direct product of W’ and a finite abelian group Q which is isomorphic to P/P, (= the

fundamental group of the adjoint group) (see § 1.7). Namely G is decomposed into
a disjoint union of double cosets: G= U Bw(s)B (w(s) is an element of W contained
oW

in 6) (Prop. 2.16) and some basic conditions of Tits [16] are verified; for example,
o (w;)Bw(c) CBw(c)BuBw(w;6)B (w; is an involutive element in the system of standard
generators; see § 2.3) and o(w;)Bw(w,)"'+B. Then again we can determine the
subgroups H of G containing B using a similar discussion as in [16] (see Prop. 2.88).
In particular when K is locally compact, we shall determine the conjugacy classes
of maximal compact subgroups of G containing a conjugate of B (see Prop. 2.31).
On the other hand, when G is of classical type, H. Hijikata has determined recently [g]
all the conjugacy classes of maximal compact subgroups of G, which shows that our
conjugacy classes given above exhaust all the conjugacy classes. Thus it seems to us
that the number given in Prop. 2.31 for exceptional groups will also give the number
of all conjugacy classes of maximal compact subgroups. However this is still an open
question to us.

In § 3, we assume that £=O/%P is finite, and using the above structure of G,
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ON SOME BRUHAT DECOMPOSITION 7

we shall determine the structure of the Hecke rings 5 (G, B) and #(G’, B'). If g, is
simple, #(G’,B’) is generated by /41 double cosets (/ being the rank of g)
S;=Bow(w;)B (=0, 1, ...,]) corresponding to the bounding hyperplanes P, P, ..., P,
of the simplex ®,, the fundamental domain of the discontinuous group W':D’W,
together with the defining relations which are analogous to those givenin [10, Th. 4. 1] for
the case where K is finite (see Th. 3.5). Now Q acts on #(G’,B’) as a group
of automorphisms and (G, B) is isomorphic to the ¢ twisted” tensor product
Z[Q] (?% (G', B") with respect to this action (see Prop. §.8).. Also for xeG, we shall
prove that the index [B:Bnx"'Bx] (which is equal to the number of cosets of the
form BE in the double coset BxB) is always equal to a power of ¢=[O : B] and
we shall give an explicit formula for the exponent (see Prop. 3.2). We denote by A(x)
the exponent: ¢*? = [B : Bnx~'Bx]. These theorems in § 3 are also given in Goldman-
Iwahori [8], by a different method, for the case where G=GL(n, K) and B is the
corresponding subgroup. The ¢ Poincaré series ” %t”’”) where the summation is taken

over the representatives of the double coset space B\ G/B turns out to have some relation
with the Poincaré series of the loop space of the compact Lie group associated to g
(see Bott [2]) and is given explicitly in Prop. 1.30. Also using this, a formula for the
order of W is given (see Prop. 1.32).

The contents of § 1 are rather classical facts about the structure of the groups W,
W' as transformation groups on the euclidean space hg, which are given in E. Cartan [5],
Stiefel [14], Borel-de Siebenthal [1]. But we gave them together with proofs to make
the reading easier. We hope that some proofs are new. The main proposition in § 1
is Prop. 1. 15 which is the main tool for reaching the defining relations for the generators

of the Hecke ring 2#(G’, B’). (This proposition 1.15 is the analogue for the group w
of the proposition given in [10, Th. 2.6] for the Weyl group W.) As a corollary of
Prop. 1.15, we shall give a system of defining relations for the generators w; (0<i</)
of \NN’, where w; is the reflection map with respect to a bounding hyperplane P, of the
fundamental simplex (see Cor. 1.16).

Finally we should like to express our deep thanks to Professor F. Bruhat for the
suggesting and helpful conversations during his stay in Tokyo in 1963.

§ 1. On the Weyl group extended by translations.

1.1. Let g; be a semi-simple Lie algebra over the complex number field G
and by a Cartan subalgebra of g;. Denote by A the set of all non-zero roots of g, with
respect to hg. Let by be the dual vector space of b and hy the real subspace of b’
spanned by A. The restriction of the Killing form of g¢ on by will be denoted by (x, »)
for x, yebg. This restriction (x, ) is a symmetric, positive definite bilinear form

on by and thus by is a Euclidean space. The length of xeby will be denoted by
1

7)) = llxll = (& 2%
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8 N. IWAHORI AND H MATSUMOTO

Now let II be a fundamental root system of A and fix a lexicographical linear
ordering of by such that II becomes the set of all simple roots in A with respect to this
ordering. Denote by A* (resp. by A7) the set of all positive (resp. negative) roots in A.

We denote by P, , (x€A, keZ; Z means the ring of rational integers) the hyperplane
of by defined by

P ={xehp; (a x) =4k}

Also we denote be the set of all P, (x€A, keZ). Now let us denote by w, , the
reflection mapping of by onto itself with respect to P,,. Thus

W, (%) = x— (%, a)o’ + kot (x€bg)

where o means the element 2a/(x, «) of by for aeA. We denote by T(d) for each
deby the translation mapping of by onto itself defined by

T(d)x=x+d.

Then we have

Also we denote w, , by w,.

w, =T (ka')ow,.

Let W be the Weyl group of g¢ with respect to b, i.e. W is the group generated by
the w, (acA). It is known that W is generated by the w, (xaelIl) (cf. [13, Exposé 16]).
We denote by P the set of all weights of gy with respect to b for all linear
representations of g, i.e. P={\eby; (A, «’)€Z for any acA}. Then P is a Z-submodule
of hz. We denote by P, the Z-submodule of P generated by A. It is known that
both P and P, are stable under the action of W. P and P, are both free abelian
groups with / generators where [ is the rank of g :/=dimgh,. More precisely, let
1 !
M={o, ..., q}; then P,:i‘_Z.IZoc,. (cf. [13, Exp. 10]). Also we have P:@§1ZAi where
{A;, Ay, ..., A} is the fundamental weight system associated with IT={a,, a,, ..., o},
i.e. Ay, ..., A; are defined by
(A, ) =3,

13 17

(1=7,5<1).

The quotient group P/P, is isomorphic to the center 3 of the simply connected Lie
group G, which has gq as its Lie algebra (cf. [6, § 1]).

1.2. Now let us denote by PL, P} the Z-submodules of by defined by
Pl —{xeby; (x, n)eZ for any reP},
Pl ={xebg; (v, «)eZ for any a€P,}.

Then P! and P} are both free abelian groups of rank / and we have PLcP! and
PL/PL~P/P,~3. We have in fact

1
Pl=3X Zc,,
=1

(]

l
Pl= X Zy,

i=1
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ON SOME BRUHAT DECOMPOSITION 9

where ¢, ..., g are the elements in by defined by

(55 o) = (1=<4,j<10).
In other words (s, ..., ) are given by
g =2A/(%;, o) (1<:i<)).

Since P, P, are stable under W, PL, P! are also stable under W.

We denote by D the group consisting of the translations of the form T(d), deP+.
Clearly the map d—>T(d) is an isomorphism from P! onto D and we may identify P+
and D by the map d—T(d). We also denote by D’ the subgroup of D consisting of
the translations of the form T(d), deP. D’ may be identified with PL by the above
isomorphism and we have D/D’'~P/P, ’:‘3. Note that

o= 2 a;\; (1<:i<})

]
“;:iglaijsi (1<j<)

where a;= (a;, o) (1<7,j<!l) are the Cartan integers.

Now using the obvious relation wT(d)w™!=T(w(d)) (weW, deby), we see that
DW(=WD) is a subgroup of the group of all motions of the Euclidean space b and
that D is a distinguished subgroup of DW. Obviously we have DnW={1}.
Similarly D'W(=WD’) is a subgroup of DW containing D’ as a distinguished subgroup.

Now the group D'W is generated by the reflections w, , (x€A, k€Z). In fact the
equality w, ,=T(ka")w, shows that every w, , is in D'W and also that D’ and W are
contained in the subgroup generated by the w, ,(x€A, k€Z). Thus D'W is the group
generated by the w, , (x€A, keZ).

The set A of the hyperplanes P, , (x€A, keZ) is stable under the group DW.
In fact we have

T(d)w(Pq, 1) = Puay k4 i, )

for any deP,, weW, keZ, «cA. Also we see that the subgroup D'W is a distin-
guished subgroup of DW. In fact, o(P, ;,)=P;,, (ce6DW;a, BeA; k, meZ) implies that
6w, 6 '=wy,,. Then it is easily seen that DW/D'W=D/D’'~P/P,=~3.

1.3. Now the union },JkP“’k is obviously a closed subset of by and is stable
under DW (},JkPa,k is called the diagram of G¢). Hence the complement f);—H‘PG, %
is an open subset of hy. Any connected component D of b;—H‘Pa,k is called a cell.
Since I);——HP%,‘ is stable under DW, the group DW acts in an obvious manner on
the set § of all cells. It is easy to see that the open set

Do ={x€hg; 0<(a, x)<1 for any aecAt}
is a connected component of I);——O‘L,Jk P, i.e.Dyisacell. D,iscalled the fundamental cell.
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10 N. IWAHORI AND HH- MATSUMOTO

We note that if P, , and Py ,, are not parallel, then the angle 6 betwen « and 8
is equal to one of the following 4 values, (1 -——%)TC (v=2,3,4,6), and the order of w, ,w,,,

is equal to v in the respective cases. (We may assume 1'c>0_>_§ since P,,=P_, _,.)
Proposition 1.1 (cf. [5], [14]). — Let

A=AVy, .  UA®

the orthogonal decomposition of A associated with the decomposition gg=g@ + ...+ g of g
into simple ideals o, ..., o). Let T be the subgroup of D'W generated by w, (xcIl) and
w, .., W, where w=uw,p ,, ol being the highest root of AV i=1, ...,r. . Then T
is transitive on the set & of all cells.

Proof. — Obviously we may assume g¢ to be simple. Then the fundamental

cell D, is an open simplex given by
Do ={x€bg; 0< (o, %), 1> (g, %), =1, ..., I}

where IT={«, ..., %} and a, is the highest root of A. Let D be any cell in .
We have to show the existence of an element oel’ such that ¢(D)=D,. Let ac®,,
be®D be fixed elements. Since the D-orbit of & is obviously discrete, the D'W-orbit
and hence the I'-orbit I'(6) of 4 is also a discrete subset of b. Thus inf||a—=x|| (xeI'(b))
is attained by some x=o0(d), cel'. It is enough to show that xe®,. (Then we get
6(D)nDy+ o which implies that ¢(D) =D,.) Assume that x¢D,. Then, with respect
to some bounding hyperplane P of D,, ¥ and a belong to different half-spaces.
Let w be the reflection map with respect to P.  Since P is equal tooneof P, 4, ..., P
P w is in I Moreover we have easily

|lw(x)—al|<||x—a]|.

This contradicts the choice of », Q.E.D.

Proposition x.2. — We use the same notations as in Prop. 1.1.  The group D'W s generated
by the reflections w, (xeIl) and w®, ..., w" (i.e. by the reflections with respect to the bounding
hyperplanes of the fundamental cell Dy); D'W s transitive on §.

Proof. — Let a€A, keZ, then the hyperplane P, ;, bounds some cell . Take
an element o€l such that ¢(®) =D, (Prop. 1.1). Then o(P,,) coincides with some
bounding hyperplane P of D,. Then ow,;c™" coincides with the reflection w with
respectto P : ow, ,c”'=wel. Thus w, e, whichimpliesimmediately that I' =D'W
and completes the proof.

al,o’

ay,12

1.4. — Now before proceeding to the proof that D'W is simply transitive on &,
let us introduce a few notions. Also in order to avoid the inessential troubles about
the description, we assume, in the following part of § 1, that g; is simple. We
denote by «;, ..., « the fundamental roots and by «, the highest root. Also we
put P,—=P%0 (t=1,...,0),P,=P, 4, w; =w,, (i=1,...,10), w0=wa0,1=T(oc:,)wa‘. Thus
P,, P, ..., P; are the bounding hyperplanes of the simplex D, and w,, w,, ..., w, generate
the group D'W.
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ON SOME BRUHAT DECOMPOSITION 11

Now let D, D’eF and Pa,kez'. We shall write D~D'(P, ;) (resp. D+D'(P,,))
if D and D’ belong to the same (resp. different) half-spaces with respect to P, ,. Since
DnP, =9, D'nP,, =0, we get easily the following criterion: Let a€®, be®’. Then
D+D'(P,,) if and only if the segment ab intersects with P,,. Also, D+~D'(P,,) is
equivalent to

(o, @) —k) ((«, &) —k)<o.

Now let us denote by Z(D, D’) the subset of A defined by

A(®D, D) ={P,,e8; D+D'(P, )}
K(CD, D’) is always a finite set. In fact, fixing €D and beD’, it is easy to see that only

a finite number of P_, intersect with the segment ab. The following equalities are
easy consequences of the definition:

A®,D)=AD, D)
5. AD, D) =A(cD, 6D’)

for any D, D'eF, s DW.
Now let seDW. Then we denote by A(s) the set A(cDy,D,). We denote

~

by A(c) the cardinality of the finite set A(s). A(o) is nothing but the function considered
by Bott [2]. By the definition of K(a), we get easily

o~ 1. A(c)=A(c"Y),

INCEREINC)
for any ceDW.

1.5. Now let us define a function /(c) on D'W. With respect to the invo-
lutive generators w,, w;, ..., w;, any element ceD'W (c+1) can be written as
c=w; ... w; (051, ...,4<!). The Min(r) for all these expressions of ¢ will be called
the length of ¢ (with respect to the generators w,, w;, ..., w;) and we denote by (o)
the length of 5. We also put [(1)=o. We shall call a word wj; ...w; in D'W
reduced if l(w; ...w;)=r. Also an expression oc=uw; ...w; of ceD'W will be
called reduced if [(¢)=r. Clearly, if w; ...w; is a reduced word, then u;,...uw;
and w; ...w;_, are both reduced. Also for oeD'W,l(c)=1 means that
o€{w,, Wy, ..., w;}. The purpose of this section is to show that A(c)=1[(sc) for seD'W.
We begin with the

Lemma 1.3. — For any ceDW and for any i, 0<i<I, we have
w,(A(6™Y)—{P}) =K(wis~H)—{P.}.
Proof. — Let P,,eA(c)—{P]}. Then o(P,,)eA(c), P, ,+P;. We have to
show that w‘(Pa’k)eK(w,.o-‘l)—{P‘}. Firstly, since w;(P;)=P;, we have w;(P,,)+P;.
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12 N. IWAHORI AND H- MATSUMOTO

Now assume wi(Pa,k)qéX(wic"lDo,Do). Then we have Pa,k¢}§(o—1®0, w;D,), Il.e.
c(Pa’k)¢K(bo, ow;Dy), i.e. 0610,Dy~Dy(c(P,;)). On the other hand we have, by
6(Py) eX(a),cDowi)o(o(Pa,k)). Hence we get ow; Do+ 6Dy(a(P, ;)), i.e. ;Do Dy(P, 1),

ie. P, keK(w,.). Now for any a€®,, the only hyperplane in A which intersects with

the segment a, w;(a) 1is obviously P,, i.e. K(w,.) ={P;}. Hence we get P, =P,
which is a contradiction. Thus we have shown that w,(A(s™Y) —{P:} CA(w;,0~ 1) —{P:}.

Now replacing ¢ by ow;, we get wi(z(wic“ H—{P;}) CX(O'—I)——{P,-}, which completes
the proof since w}=1.

Corollary 1.4. — For any s DW and for any i, 0<i<l, we have
w;(A(o) —{P;}) =A(w;0) —{P;}.

Proof. — Replace 57! by ¢ in Lemma 1.3.
. Lemma x.5. — For any ceDW and for any i, 0<i<l, P;is exactly in one of X(c“‘),
A(w;c™ ). We have

Mow)=Ao)—1 of P EK(O'_ D)
Mow)=A(c)+1 if P¢A(cY

Proof. — Assume that P,.e?f(c_ b, P,.ez(w,-o" ). Then we have &D,+D,(c(P;)),
ow; Dy +Dy(a(P;)). Hence oDy~ow;Dy(c(P;)), ie. Dy~w;Dy(P;) which is a contra-
diction. Similarly we get a contradiction if we assume P,-¢X(c‘ h, P, ¢'K(w,~c” Y. Thus P,
is exactly in one of Z(o-”l), K(wic“l). The second half of the lemma is an obvious
consequence of Lemma 1.3.

Corollary 1.6. — For any c€D'W, we have I(c)>A(c).

Proof. — Let oc=uw; ... w; be any reduced expression of . Then since
Arw;))<A(t)+1 for any teDW, 0<i</ (Lemma1.5), we have A(c)<r=I[(s), Q.E.D.
Lemma x.%9. — Let 6eD'W, o+1. Then X(o-) s not empty.
Proqf. — Let o=w; ...w; be any reduced expression of . Put
C=0;=Wj ...W, Cp=Wj, ...W, .oy or=1w;j_.

Assume that A(c) is an empty set. Then by Lemma 1.5 (replacing ¢~ ' there by o)

P, eA(w, 5). Hence we get by Cor. 1.4, A(s,)={P,}. Let us assume now that we
have proved the following assertion (A,) for some £, 2<k<r:

(Ayp) :K(Gk) ={wik_1 oo, (P wiy oo (P, o wi (P ), Pik_1}'

We shall show that 2<i<r and (A,) imply (A,,;). In fact, it is enough to

~

show that P;¢A(sr). (Then, because of Lemma 1.5 and Cor. 1.4, we have
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ON SOME BRUHAT DECOMPOSITION 13

K(O‘k_’_ ") =Z(w,~kck) = wikz(ok) u{P,; } whichisnothingbut (A,,;).) Assume P, eN(o-k).
Then by (A,) there exists some m with 2<m<k—1 such that

Pik= wik_l e wim(Pim—l)’

ie. (wik_l . wim)wim_l(wik_l e wim)_l =Wj,,

1.€. wi, Wi, .. Wi, =W

me Wiy Wiy

im
Hence we get

Wi ... wir=(wl~l e wim_l) (wim e wik)(wiku e wir)

(m>2),

. VWi oo Wi, (Wi Wy W W
( Wi e Wi Wiy vo Wj (m=2)

r

This contradicts [(w;,...w;)=r. Thus (A,),...,(A;) are all valid. In parti-
cular (A,) means that

A(o,)zA(wir)z{w,-r_l [N wi’(Pi‘), ey wir-l(Pir_z)’ Pir_l}'

On the other hand K(wi,)={Pi,}- Thus P; must coincide with an element in
{wi,_,...wi(Pi), ..., w;_,(P;_,), P;_,}. Then we get a contradiction as above, Q .E.D.
Corollary x.8 (¢f. [5], [14]). — The group D'W is simply transitive on .
Proof. — We have only to show that ¢eD'W and ¢D,=, imply c=1 (see
Prop. 1.2). If 6Dy,=7,, then K(a) is empty. Hence ¢=1 by Lemma 1.7.

Corollaryx.9. — Let 6eD’'W,a+1. Then there is some i with 0 <t <[ such that P‘ex(c).

~

Proof. — Assume P,¢A(s) for all ¢=o,1,...,l. Then for any a€®D, the
segment a, o(a) does not intersect with any P;,, 0<i</. Hence the point o(a) belongs
to Dy. Thus we have ¢Dy=D, and o=1, which is a contradiction.

Proposition x.10. — For any c€D'W, we have \(o)=1(c).

Proof. — Let us prove the proposition by induction oni(s). If A(c) =0, then K(o’) is
empty and c=1. Hence we have A(s) =[(s) =0. Now assume that A(¢) =k>o0 and
that we have proved A(t)=I(r) for any teD'W with A(r)<k. By Cor. 1.9, there

exists some ¢ with 0<¢</ such that P; eX(c‘l). Then we have A(t)=k—1 for t=o0uw,
by Lemma 1.5. Hence we get A(t)=I{(tr)=k—1 by our induction assumption. Thus
there exist j, ..., jr—_y with o<j, ..., jr_y<! such that v=w; ... w;_,. Hence
o =1w;=wj,...wj, w;. Thus we have I(6) <(k—1)41=4k=2A(c), which completes
the proof by Cor. 1.6.

Corollary x .xx.— Let € D'W and i be an integer with 0 <t <I.  Then there exists a reduced

expression of o starting with w; (resp. ending at w;) if and only if P; GK(O‘) (resp. P; EK(G‘_ H).
Proof. — Assume P; eX(c). Then, putting r=uw;o, we have P; ¢’Z(1-) and
[(r)=A(t)=A(6)—1=I(c)—1 by Lemma 1.5 and Cor. 1.4. Thus for any reduced

expression t=uwj,...w; of t, we get a reduced expression oc=uw;wj, ...w;, of o.
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14 N. IWAHORI AND H- MATSUMOTO

Conversely let c=uwjwj, ... w; be a reduced expression of ¢ with j,=i. Then
T=uwj ... wj s also a reduced expression. Hence we have [(t)=I[(c)—1, i..

Ar)=A(c)—1. Then we get PieZ(c) by Lemma 1.5 and Cor. 1.4, Q.E.D.

1.6.

Proposition 1.12. — Let ceD'W and o=uw; ... w; be any reduced expression of o.
Then we have

Ao)={P;,, w;,(Py), wi,w;,(Py), - ., wi,...w;,_(P)}.

Proof. — We prove the proposition by inductiononA(s). If r=»xA(c)=1, then s =uw);
and we obviously have K(c):{Pi}. Now assume that r>1 and that our assertion is
valid for teD'W with A(t)<r. Put t=w;0e. Then A(r)=I[(t) =r—1. Thus we get
by our induction assumption that K(r) ={P;, w; (P;), ..., w;,...w;_(P;)}. Now

we have Pi‘GK(G) by Cor. 1.11. Hence Pil¢K(T) and we have
A(e)—{P;}=w,(A(r)—{P,}) = w,A(x).

Hence K(o') ={P‘-l}uw‘-llf§('r) which is what was to be proved.

Corollary 1.13. — Let o,7,0€D'W and c=rp. Then we have A(c)=2A(t)+A(p)
if and only if A(o) is a disjoint union of A(z) and <A(p).

Proof. — If X(o) is a disjoint union of X(T) and ‘C’Z(p), then we obviously get
Ae)=n(r)+A(p). Conversely let A(c)=A(r)+A(p). Then for any reduced expressions
T=Wj, ... W, P=Wj...W, c=w;...w;wj...wj is a reduced expression of c.
Then by Prop. 1.12, we get K(o-) =X('r) UTX(p). This is a disjoint union since
A(5)=A(x)+1(p), Q.E.D.

Lemma 1.14. — Let w;...w;=wj...w; be a reduced word in D'W. If

Pj ¢A(w;, . .. w;), then there exists an integer m such that

s+1<m<r  and w; ..

1

C Wi, =Wj Wi .. Wi

Proof. — Put t=w; ... w;, p=w; ... w;. Then c=7p and I(o)=1I(7)+(p).

Hence A(o) ZK(T)U‘CX(Q) (disjoint) by Cor. 1.13. Now leez’(c) by Cor. 1.11.
Also P,.‘e;éX(r) by the assumption. Hence

leeTA(p) =T{Pis+1’ wis+l(Pis+2)’ ct wis+1 tet wir—l(Pir) }

Thus there exists some integer m with s+ 1 <m<r such that P; =tw;  ...w; (P;),
ie. Pj=w; ...w; _(P;). Henceweget wj = (w;,...w;, Jw; (w;...wi, ) —1 which
completes the proof.

Now let 6,,=60,; be the angle between the fundamental roots «; and «

1<i#;<Il It is known (cf. [13, Exp. 10]) that =/2<6;<n for i+j. Also let
0=0;, (=1, ...,]) be the angle between —uy, «;. Since «,+«;¢A, we have
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ON SOME BRUHAT DECOMPOSITION 15

2(0, %)/ (%, @) > 0. Hence we have also n/2<60,<w (i=1,...,[). It is also well

known that, for 0<i+;<l, 0, is of the form (1——%)1:, v=2,3, 4,6 and we have

\ w,-wj =w7'w" lf e‘]=7t/2,

w’-wj w; = w] wi w’ lf e” = 27:/3,

(%) \ :
) (wiwj)2= (wiwi)2 if ei;'=377/4-,
| (ww)?= (ww,)® if  0,;=5n/6.

Proposition x.15. — Let go be a complex simple Lie algebra; we use the notations as
above for wy, ..., w,0;(0<1,<I), W,D'W. Let G be any associative semi-group and
Doy Ay, ooy Ay be 141 elements in S satisfying the following relations:

AN =AN, if  b=m/2,
ANA = AANA, if  0,=2xn/3,
(AiAi)2 = (Ain)2 if 0;;=3m/4,
B0 =(A0)°  if  6,;=57/6.
Then for any reduced words wj ...w; =wj ... w; in D'W, we have
Aj LA =4 A

Proof. — Using Lemma 1.14, the proof is given exactly in the same manner as

in Iwahori [10, Th. 2.6].

Corollary x1.16. — The defining relations for the generators wqy, wy, ..., w; of D'W are

given by (*) above and
wi=1 (0<:i<]).

Proof. — Using Prop. 1.15, the proof is given exactly in the same manner as
in [10, Cor. 2.7].
1.7. Let us define a subgroup Q of DW by
Q={ceDW; 6Dy ="D,}.
Clearly Q is defined also by
Q={ceDW; r(c) =0}.
Now since D'W is simply transitive on §, we have easily the following decomposition
of DW into a semi-direct product of Q and D'W:
DW=Q.(D'W), QnD'W={1}.
Hence we have Q=DW/D'W=D/D'=~P/P,=3. Thus Q is a finite abelian group
isomorphic to the center 3 of G¢. It is also easy to see that
Mpop') =N(o)
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for any ceDW and p, p’eQ. In fact,

A(pop’) =A(pop'Do, Do) =A(poDy, Do) = pA (Do, Do) = pA(0)
implies that A(pop’) =2A(c).
Proposition x.17. — The intersection of P with the closure Dy of Dy consists of 0 and
the g; with (a9, &) =1.
Proof. — Let x=i21p.ie,-et§0nP;L, x%0, peZ(1<i<l). Then by o< (a;,=%),

!
(g, 2)<1, we get p,>>0(1<i</) and glgim‘-f_l where m;= (o, &;). It is known

that all m; are positive integers ([13, Exp. 17]). Since x+o0, some p,>o0. Thus
m;=u,=1 and all the other y; must be 0. Hence x=¢; for some 7, 1<i</, with
(%5 &) =1. Conversely, if («g, &) =1, ¢ is obviously in D,nP}, Q.E.D.

Now let us give an explicit description of Q. Let c=T(d)weDW be an element
of O where deP!, weW. Assume o+1. Then d+o since QnWcQnD'W={1}.
Now since ¢Dy=2D,, we have ¢D,=D,. Hence ¢(0)edD,, i.e. w(0)+d=deD,nPL.
Hence d=¢; with some ¢; such that (wy,¢)=1. Note that w is uniquely deter-
mined by d. In fact, if we have w, w'eW, T(d)weQ, T(d)w'eQ, then we get
wlw' eQnW={1}, hence w=uw'"

Now let us show conversely that if d=g¢;, («,, 5;)=1, then there exists an element
weW such that T(d)weQ (w is unique as was remarked above). It is known that
there exists in W an element wy such that wy(II)=—1II ([13, Exp. 16]). wy is unique
and satisfies w} =1. Similarly, if we denote the subset II—{a;} by II;, then the
subgroup W; of W generated by w,, ...,®;, ..., w; (®; means that w; is omitted)
contains an element wp; such that wp,(II;)=—1I;. wq, is uniquely determined in W;
and satisfies w};, = 1. Weclaim that T(¢;)wy,wneQ, i.e. T(e)wywy(De) =D,. Clearly
we have wy(Dy)=—D,. Let ae®D,. Then b=wy(a)e—D,. It is enough to show
that wp,(b)+¢;€D,. Now since wp, is a product of the w;’s with j+i, we have
wni(“i)=“i+.§ivi°‘j for some vjeZ. Hence wp,(x;)>0. Also we have wp,(a)>o.
Nowif j#1, (¢;, w;(b) + €;) = (), wr,(8)) = (wr;(«j), b) >0 since wp(a;)e—11;, be—D,.
Also we have («;, wr(b) 4 ¢;) =1 + (wy,(;), b)>o0 since wp(«;)€A* and be—D, imply
that (wp(«;), b)>—1. Finally («, wp,(b) +¢;) =1 4 (wp (o), b) <1 since wp,(xg)eAt
and be—D, imply that (wp,(«), )<o. Thus we get T(e;)wy,wy(Dy) =D, and we
have proved the following

Proposition x.18. — The mapping from the set {o}u{e; (ay, &)=1} onto Q defined
by o—1, e~ T(e)wywy s bijective.

Corollary x.19. — The order of the group Q (i.e. the index [P :P,]) s equal to
1+ N, where N is the number of ©’s such that (g, €;)=1.

Corollary 1.20 (cf. [5]). — For any cell D, the intersection DaPL consists of a single
element. In particular DynPL={0}.

Proof. — Since PL is stable under D'W and D'W is transitive on §, it is enough
to show that DynPt={o}. Let x+0 be in DynPl. Then since PLCP}, there

248



ON SOME BRUHAT DECOMPOSITION 7

issome i with x=-¢;, (g, )=1. Now since xePL, we have T(x)=T(g)eD’. Hence
T(e)wy,wneD'WnQ={1} which is a contradiction, Q_.E.D.

The unique intersection point DnP! is called the lattice point associated with the
cell . Note that for o, reD'W, 6D, and D, have the same associated lattice point
if and only if 6W=1W. In fact, the lattice point associated with ¢®, is clearly o(0),
hence it is enough to show that

6(0)=1(0)<>cW=1W.

But this is obvious since ¢(0)=1(0)<>6"'t(0)=0<>c"'7eW.

1.8. We shall now consider the automorphism o-—>pop~ of D'W defined
by peQ. Since A(psp~')=A(c), this automorphism induces a permutation of the
set {wy, wy, ..., w}. Thus we get a homomorphism from Q onto a permutation
group of /41 letters w,, w;, ..., w;. This homomorphism is injective. In fact, if
a non-trivial element p = T(¢;)wy,w;€Q, with («y, ¢;,)=1 induces the identity, we get
pw;p” ' =w;(0<j<I). In particular we get

w; T(e)wywnwi ' =T(e)wgwy (=1, ...,1).

Hence we have w;T(s;)wj'="T(s;), ie. wj(e)=¢;, ie. (aj,¢)=o0 for 1<;<L
Hence ¢;=o0, which is a contradiction.

Proposition x.2x. — (i) Let o=T(e)wnwneQ, (%, ;)=1. Then pwep™'=uw;.

(i) Let ¢ : DW =W be the natural homomorphism. Then ¢ is injective on Q and the
set {ay, ..., 0, —ay} is stable under the subgroup Wqo=¢(Q) of W.

Proof. — (i) Let us show first that pwyp~'e W, i.e. gw,p~*(0)=o0, i.e. p~*(0)€P,, ;.
Now ¢~ '(0)=wpywy(—e¢;). Since wj(e;)=¢; (j+1) we have wy,(e;)=c¢;, hence

p~1(0)=—uwpy(e;). Thuswe have to show that («,, —wy(e;)) =1, i.e. (wy(a,), —¢;)=TI.
Now wp(II)=—1I implies that wp(ey) =—0, and we have (wy(x,), —¢;)=(%, ;) =1.
Hence we get pwyp~'eW. Thus pwse~'e{w,, ..., w}. Now the natural homomor-

phism ¢ : DWW is injective on Q, since QnD={1} by Prop. 1.18. Hence
to determine the element pw,p~'eW, it is enough to determine the image of
pwep~ ' under this homomorphism DW —W. Now this image is clearly given by
Wy, Wi W, Wi Wy, = Wiy, W, Wy, Since wp (%) =—oa, and wpw, wp=w_, =w,,. Thus the
image is equal to w,; where @=uwp(«). On the other hand BeXII since
pwop 'e{wy, ..., w;}. As was remarked in the proof of Prop. 1.18, w (@g)>o.
Hence Bell. Also, since «, is of the form “i+,§'imiai and wp; is a product of the
wi’s (j¥1), P=uwr,(a) is also of the form o; + 2 yjaj, pj€Z. Thus B must coincide
with «; and we get pw,p '=uw;. e

(ii) Let p=T(e;)wywy be a non-trivial element in Q. We have seen above that

¢(p) (—a) = wn,-wn(—“o) =0,
Put 7' =T(e))wywy. Then wywn= (wywy) ™' =wpwy,. Hence
e(p) (“j) =, wn(“i) =W wn,-(“i) =%

249



18 N. IWAHORI AND H-. MATSUMOTO
(Since wp,wn(—o) =o;.) Also for o ell—{w;}, we get
¢ (p) (o) = wy (o) € wy (—1I1;) CIL

Thus ¢(p) keeps the set {oy, ..., 0, —a,} stable, Q.E.D.

Corollary x.22. — If (ag, &;)=1, then wy,(xg)=a;.

We note here that the order of p=T(e;)wy,wreQ is equal to the order of wy,wy
since the homomorphism ¢ : DW —-W is injective on Q. Thus, if the Weyl group W
has a non-trivial center, then wy=—1 and the order of p is equal to 2. Hence for
types B,, C,, D, ({=even), G,, F,, E,, Eg, every element p of Q (p+1) is of order 2.

We shall give in the following the table of the action of peQ on the set
{wy, wy, ..., w} defined by w;—>pw;p~'. We refer to Borel-de Siebenthal [1] for the

i

coeflicients m; in the expression of oy,= Zlm,.oc,-. It is also noted that the permutation
=

w;—>pw;p” ' (0<i<I) of the set {w,, w,, ..., w} induced by peQ coincides with the
permutation of the Dynkin diagram of {—uag, oy, ..., o} induced by ¢(p)eWoCW
Since ¢(p) preserves the angle between —aq, oy, ..., %, ¢(p) is an automorphism of
the Dynkin diagram of {—og, ay, ..., o}

,’0\
,”’/ \\\

(A) = T
(e 0O—------- —0
oy *2 %

Ro=0 4+ ...+

Q=~Z,,, (cyclic group of order /4 1),
p=T(e)wywy generates Q and
owip t=w,, owyp t=w,, ..., pwp t=u,.

PwoP_l =W

%
O\
(B) : .0 O—— - o =—>o
LoTT % %3 %y o
o-
—a
g =0+ 2(ctg+. ..+ )
ngzy Q:{I: P}: P =T(€l)wH,wH'
o™t =w;, pwpTl=uw,, pwpTl=uw (2<i<l).
. — &y 03220 O——=====-- o&———o0
(@) : o—- o—s

xp=2(;+...+o_4)+o
ngz, Q:{I, P}’ pzT(sl)wﬂsz'

—-1__ —-1_ —1__
PWop "=Wp, PWIP T =Wp_g, - .., PWO T =Wy
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ON SOME BRUHAT DECOMPOSITION 19

[«4 &x&
01 OI' 1

D) : \,o— ------ —0/
( I) . ’//’ %y OLN

o” o
%

ag=0y+2(xs+...+a_o)tay_;+o
Q={I, P1s Pi—1> Pl} where
pl=T(€l)wnth (1—' I, l_l,l).

l=even: Q~Z,XZ,,
— -1 -1
Pilopr L=y, piipr =W, e =1,

P10 T=W, e ey t=w_.
pwer t=w,_; (0<i<l), p_i=pe1=p01-

(2<i<I—2),

l=o0dd: Q=~Z,, p, generates Q and p, =¢?, p;_;=p-
PP P =y, el T=w_y, el =y (2<i<l—2),

—1__ —-1_
Pt 101 =Wy, QWP T =UWq.

L1 %o X3 &5 g
(o] o o o o
. o
(Ee) : } 4
i
1
o)
o = 0y + 205 + oty + 204 + 2005 -+ g
Q=Z;, p=T(e)wywy generatesQ,
-1 —1 -1
PWop =Wy, PWIP T=Wg PWgP =Wy,
-1 —-1__ —-1__
PW P =Wy, PWep =W;, PW;p =W,
-1__
pWzp ~=ws.
00t
(Ep) :
oy oy oty oy g o — oty
Q o o o o flo Y. o
0 == 0ty + 20ty + 305 + 40ty + 2045 + Jotg + 20,
Q~Z,, Q={1,p0}, p=T(e)wywy.
-1 —1 -1
PWoep "=Wy, PWRp =Wy, PWgp ~=Ws,
-1 -1
pWyp "=Wy  PWsP = Wpe
T“G
() : O-mmm=- o o o o o o o
— 0ty oy oy oy oy o5 o« *g

oy = 20ty + 3ty + 45 + 50ty + 65 + 3ot + 4%, + 20
Q={1}.
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(F)) : L M Th
oty = 20 + 405+ g3 + 2,

Q={1}.

(Gy) : PO

oty = 30y + 20ty

Q={1}.

1.9. Weshall givein this section a formula for A(s) and applications of this formula.
Let 6=T(d)weDW, deP}l, weW. Then for a hyperplane P, ke'z, the relation

~

P, ,€A(o) is equivalent to

(2 ) —£) ((«, o(a)) —k)<o

where @ is any point in D, (see § 1.4). Now since P,,=P_, ,, we may assume
always that aeA*. Let us denote by v, the number of ke€Z satisfying the above
inequality for fixed a€A*, ae®D,. Then we have

AMo)= 2 v,.

aEA
Now let us compute v,. Since o(a) =w(a)+d and
(0, 6(a)) = (o, w(a) +d) = (w™*(a), a) + («, d),
v, is equal to the number of keZ satisfying the following inequality :
(0, @) 2kZ (w™(a), @) + (d, «).

Now v, is independent of the choice of ae®,. Taking a sufficiently close to the origin
of by, we see easily that
‘ [(e, d) | if  wa)>o,
N, d)—-1] i wi@)<o.
Thus we get the following
Proposition x.23. — Let dePl weW. Then
MT(dw)= Z @ d)|+ Z |(d)—1].

a>0
w=a)>0 w1 o) <0

Let weW. Then we denote by A} the subset of A" defined by A} =w™'A~nA+.
We also denote by n(w) the cardinality of the set A}. Then by Prop. 1.23 we get
easily the
Corollary 1.24. — Nw)=n(w) for any weW.
bl As Ii).l}:tphca.tlons of Prop. 1.23, we shall compute olé/%d)wx(c), oyr%%v A(o) for a given
Ay={aelAt; (a,d) <0}, A,={aecAt; («,d)>0}.
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ON SOME BRUHAT DECOMPOSITION 21

Then ©=(—A,)UA, obviously satisfies

A=0u(—0), On(—0)=oe.
Moreover, ® is additively closed in A, i.e. 2€®, B€®, a4 BeA imply that «+ Be0.
Hence there exists a unique element w'eW such that @w'A*=@. (See Borel-
Hirzebruch, Amer. J. Math., 8o (1958), Chap. I, § 4, or R. Steinberg, Trans. Amer.

Math. Soc., 105 (1962), 118-125.) Then we have Af, .=A; and A*—AL, .=A,.
Thus we get by Prop. 1.23,

NT@w)= 2 (| d)+0+ 2 | )

(w*)~

Then it is obvious that we have A(T(d)w")= lé/IT%(w)\(c). Similarly, there exists a
unique element ®w”eW such that w”At=Au(—A,)=—0. Hence Alu .=A,,
A*—Afw-. =4, and we have

NT@w")= Z (| d)]—1)+ Z [(xd)].

Then we obviously have A(T(d)w**)=ole\/,[rg)lw)\(c),A(T(d)w)—A(T(a')w*')=|A+l, where
|[A*| means the cardinality of the set A*. Moreover we get w =w"wy since

w At = —w'AT =w'wyA*. Now let us show that the element weW which attains the
11\045363( AMT(d)w) is unique. More precisely we shall show

AMT(d)w w) =AT(d)w")—n(w)
for any weW. In fact, we have [(w)=2xA(w)=n(w), hence
MT(d)w'w) >NT(d)w")—A(w) =T (d)w")—n(w).

by Lemma 1.5. Put w'=w"'wy; then we easily get n(w’)=n(wg)—n(w)=|A%|—n(w)

(observe that A* =(—wpAL)UAL, is a disjoint union and Al,=—wA}) and we
have '
MT(d)w)—|A* | =MT(d)w") =

AT (d)w' ww’) > NT(d)aw' ) — (') > M(T(d)") —n() — (') = A(T(d)") — | A*].

Thus we get the equalities everywhere and hence we have A (T(d)w'w)=A(T(d)w")—n(w).
Similarly we get

MT(d)w” )= \(T(d)w™) + n(w)

for any weW. Hence the element weW which attains the M1n MT(d)w) is also
unique. Thus we have proved the

Proposition 1.25. — Let dePL. Then %%3( AMT(d)w) and luyélv{rl MT(d)w) are

attained by unique elements w', w™eW respectively. Moreover we have

AT(d)w') =N, + 8],

*k I ,
AT (&)™) =N~ |5
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where |S,| (resp. | S;|) means the cardinality of the subset of A* defined by
Si={aelAt; (d, «) <o} (resp. S;={xeAt; (d, «)>o0})
and Nd=a§A| (d, @) |.
Furthermore, we have, for any weW,
MT(d)w w) =A\T(d)w") —n(w),
AT ()" 0) = N(T(d)e") + ()
We also have w"=w" wy, MT(d)w)—A(T(d)w™)=|A%|.
Corollary x .26. — Let dePL. Then &/Ie%( AMw.T(d)) and 1\/]6:1VIV1 Mw.T(d)) areattained

by unique elements W, w® respectively. We have moreover

A T(d) =N, +|R,],

I ’
A@?. T(d) =N, —|Ri],

where Ry={acA%; (d, «)>0}, Rj={acA%¥; (d, a)<o}. We also have for any weW

MwT(d)) = AV T(d)) —n(w),
Aww?® T(d)) = A(w?T(d)) +n(w),

and W =wrw?, AW"T(d))—r(@?T(d))=|A%|.

Corollaryx .27. — Let e DW.  Then I\/Ielvrvl Mwe) isattainedby w=1 ifandonlyif D,
is contained in the positive Weyl chamber {xeby; (o, x)>0 for all i=1,...,1}. Also
I\/Ieaiz,( Mwe) is attained by w=1 if and only if 6D, is contained in the negative Weyl chamber
{xebg; (%, ¥)<o for all i=1,...,1}.

Proof. — By Cor. 1.26, A(c) = MEIJVI AM(wo) is equivalent to A(w;6)>A(s) (=1, ...,1),
i.e. to P‘¢K(o-) (t=1, ...,1); which is in turn equivalent to ¢Dy~Dy(P,) =1, ..., 1),
i.e. to the fact that ¢, is contained in the positive Weyl chamber. The second half
is also proved similarly.

Remark. — Let J be any proper subset of {o, 1, ...,/}. Then the subgroup WJ
of D'W generated by {w;;je]J} is finite. More precisely, the natural homomorphism
D'W—W is injective on W,, i.e. D'nWJz{I}. In fact, since J is a proper subset
of {o,1,...,1}, IQJP,. is not empty. Let aejQJP,- and ceD’'aW,. Then o(a)=a.
However, the only element oeD’ which has a fixed point is 1. Thus we get
D’nVNV,={I}, whence W, is isomorphic to a subgroup of W. Now, using W, instead
of W, Prop. 1.26 and Cor. 1.27 are still valid under a suitable modification. However
we shall not use this fact in this paper and shall return to a detailed treatment of this
question in a subsequent paper.
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For later use, we give a criterion for P; to belong to K(o“l), l.e. a criterion
for A(ow;,) <A(c) (seDW).

Proposition x.28. — Let 6="T(d)w, dePt, weW and i an integer with 1 <i<l  Then
we have

(i) A(ow,) <A(s) Y wlw)>o, (w(w), d)>
or if  w(e)<o, (w(x), a’)>0

(i) A(ow;) >A(o) i w(e)>o, (w(x), d)<
or if (o) <o, (w(x), d)<

Proof. — Let ae®,. Then A(ow,)<A(c) is equivalent to P, E’K(G— h, ie. to
(o, @) (g, 67 %(a))<o. This is equivalent to («, 6 '(a))<o since («,a)>o0. Now
6 !(a) =w '(a—d). Hence («;, ¢ '(a)) = (w(x,), a) — (w(x,), d). Since a can be taken
arbitrarily close to the origin, («, o '(a))<o is equivalent to (w(x),d)>0 (resp.
(w(e), d)>0) if w(e;)>0 (resp.if w(e;)<o). Thus we have proved (i). (ii) is shown
similarly.

The following proposition is also proved similarly.

Proposition x.29. — Let o="T(d)w, dePL, weW. Then we have

(i) Aowo) <A(o) if w(xg)>0, 02> (w(x), d) + 1,
or if  w(xy)<0,0>(w(ay), d) + 1.
(i) A(ott) > (o) Y w(xg)>0,0<(w(x,), d) + 1,

or if  w(xy) <o, 0<(w(ag), d) + 1.

1.10. In thissection afew comments about the Poincaré series P(DW, ¢), P(D'W, )
will be given, where

P(DW, )= X 9  PD'W, )= X M9,

o €EDW cED'W

(cf. Bott [2, §§ 9, 13]). Since DW is a semi-direct product of Q@ and D'W and since
AMet)=A(r) for peQ,reD'W, we have P(DW,#)=|Q|.P(D'W,¢) where |Q] is
the order of Q.

Now let dePl, weW. We shall say that d is related to w if Min A(¢) for ceT(d)W
is attained by T(d)w. By Prop. 1.25, if d is related to w, then we have

At ={acA™t; (oc d)<o}uf{aecA™; («, d)<o},
ie. wA™ ={aeA™; (o, d)>0}u{BeA*; (B, d)>o0},
and also we have
NT@u)= I (wd)+ 2 ((wd)—1)
(% d) <0 (o,d) >0

= (@ B)+, % (4, B)—|wATnAY|

ﬁEwA—ﬁA- BEwWA-NAY
= X (d —n(w).
I (4 wp)—n(w)
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24 N. IWAHORI AND H-. MATSUMOTO

Let a2>]oa =a04+ ...+ where a, ..., q are positive integers. Then we get from

the above equality
4
NT(d)w)= 2 a(d, —wa;) —n(w).

Now fix weW. Then deP} is related to w if and only if

(d, wB)>0 for BeA " nw™'A~ and
(d,wp)>0  for BeA nuw lA*,

These conditions are equivalent to

(d,we)>0  for ae(—I)nw 'A~ and

(d,wae)>0  for ae(—I)nw *A*,
In fact, let —II,=(—I)nw 'A~, —Il,=(—1II)nw~*A*. Then II,, II, form a parti-
tion of IT. Let dePl satisfy (d, wax)>o0 (for any ae—II,) and (d, wa)>o0 (for any
ae—1IL,). Let BeA~ and B:aez_mva.ocﬁ—yez_mvy.y where v,, v, are non-negative

integers. Now if BeA~nw™'A~, then (d, wB):aEZ_Hlva(d, wa) +‘YEZ:H’vY(d, wy)>o.

Also if BeA~nw 'A*, then wB=GEZ_Hlva.wa+Y€§in’vy.wy>o. Hence we have

v,>o for some ye—II,. Thus we get (d, wB)=QEZ_HIv¢(d, woc)—l—YeZ_va(d, wy)>o.

Let ©(w) be the set of all deP! which are related to weW. Let

—I=(—M)nw ' A ={—u«, ..., —a},
—=(—M)nw At ={—a, (..., —x}.

Then by what we have seen above, de Pl is in O(w) if and only if & <o, ..., £,<o,

1

£,.1<0, ..., <o where w™!(d) =§1£,-si, £,eZ (1<:<I[). Moreover if deO(w),
we have -

MT(d)w)=— 2 af—n(w).

Thus we have obtained for a fixed element weW

fee] o] [=e] =]
E tMT(d)w)Zt——n(w) Z . E Z . E tam1+ ot
dE@(w) M =0 71r=0 nr+1=1 7”=1
I I t%+1 1t
= ¢~ 1w . .
1—i® I—t% 1 —t%+1 1—t%

Let us denote by a(w) the integer defined by
a(w) = Z a; (wEW).

o, € WA~
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ON SOME BRUHAT DECOMPOSITION 25
a(w)— n(w)

Then we have de%:(w)tm‘d’w)= ——. Since DW is a disjoint union of the subsets
IT (1 —z%)

i=1

0’ (w)W, where 0’(w) ={T(d)w;dcO(w)} (weW) (see Prop. 1.25), we get
P(DW, {)= X 2 e,

WEW 6 €O (W)W

Now X M= X X pO+)—PW,s) X £ (see Prop. 1.25), where
6 € O'(w)W TEOQ (w) W EW TE O'(w)

P(W, )= I ),

w EW
PW,t¢
hence we get P(DW, t)=——(—) %‘,w $aw)— n(w)
(1—1t%)
i=1
Thus we have proved
P(W, ¢
Proposition 1.30. P(DW, t)= —l_(___)_ Zw ga(w)— n(w)
(1—%)"©
i=1
P(W, ¢
P(D'W, t)= l( ) > paw)—nw)

| TT (1 —g2)" "
i=1

where a§A+a=alal+. .t aey, a(w):aiennw_m_ai.
Similarly, using lk/Ieav%( MT(d)w) we get
P(DW, t)____E(_‘_/v’_t)_t—lA*l 2 b+ nw)
I (r—) wew
i=1
where b(w)= pX a;. Hence a(w)+b(w)=a,+...44a;. We note that

o ETINw-1A*
a(wpw)=b(w), n(wgw)=|A"|—n(w).

:
Hence gwt“(“’)""("’) is self-reciprocal: (a(w)—n(w)) -+ (a(wgmw)—n(wgw)) = _Ela‘—|A+|.

Now using Cor. 1.26, 1.27, similarly as in Prop. 1.30, we obtain
P(DW, t)=P(W, ©) ogrt“‘”
where T is the set of elements ¢ in DW such that ¢®, is contained in the positive Weyl
chamber. Let I"=I'nD'W. Then we have
P(D'W, t)=P(W, ¢) GEZI" £Me),
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Let my, ..., m be the exponents of W, i.e. let the Poincaré polynomial of the compact
1

form of G be Il (14#*™*!), Then by Bott [2, § 13],

=1

D) tx(o)=__l__.
oceTl (I —tm‘)
i=1
Also it is known that ([6, p. 44])

1
PW, t)=II (1 t+... ™).
1=1

Thus we have

L O 2 P L
Proposition x.31. — P(DW, t)=|Q|II R
i=1

1— ¢
Also we get an explicit form of the polynomial denoted by Q(¢#) in Bott
2, p. 277], i.e.
(2, p- 277] Q)= = £

[ X=3 Y

where T is the set of elements ¢ in D’W such that ¢®, is contained in the parallelotope
{xebg; 0<(w, x)<1 for i=1,...,{}. By [2, § 13]

5 pa__ W

cer

b

P(DW, )= |Q|P(W, t)——g(t)—.

IT (1 —1%)
i=1
Comparing this with Prop. 1.30, we get

1
(1—1%)
=1

hence we have

— a(w) — n(w)
|Q|.Q(t)_wgwt .
Putting t=1, we get a formula for the order |W| of W

W[ =1Q[.Q(1).
:
The value Q (1) is given by [2]: Q(1)=!!Il4d,
i=1

1
where d;=(a,, ¢;) (1<i<1), i.e. ®y= 2 d;o;, Thus we have a formula for the order |W|
of the Weyl group W: Pl

1
Proposition 1.32. — |W|=|Q|I'Il 4.
1 t=1
Since |W|=II (1 +m;), we also have
i=1
1
IT (1 +m)
i=1
Q=
1'1l4

)
i=1
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ON SOME BRUHAT DECOMPOSITION 27

§ 2. On a generalized Bruhat decomposition of a Chevalley group over a
p-adic field.

2.1. Let K be a field with a non-trivial non-Archimedean discrete valuation | |,
ie. £—>]&| is a map from K into the real number field R such that

(i) |&|=o0 for any £€K and |§|=o0 if and only if £=o.

(if) |En|=|E|.|n| for any &, neK.

(iii) |€+ »n|<sup(|E[,|n]) for any E, neK.

(iv) {|&]; €eK"'=K-—{o}} is an infinite cyclic subgroup of R, ={aeR;a>o}.

Then O ={£eK;|€|<1} is a subring of K called the ring of integers of K
and P={£eK;|¢|<1} is the unique maximal ideal of O. The complement O
of P in O is the group of units of O. We denote by £ the residue class field O/B.
There exists an element = in P which attains Max{|£|; E€P}. An element = in P
attains Max{|£|; EeP} if and only if P==D. Such an element = is called a
prime element. We fix once for all a prime element =.

Now let g; be a complex semi-simple Lie algebra and §, a Cartan subalgebra
of gc. We keep the notations of § 1, i.e. II is a fundamental root system of the root
system A of g; with respect to g and so on. Let g, denote the Lie subring (over Z)
of g¢ introduced by Chevalley [6, p. 32]:

9z=Dbhz+ ag:AZXa'

Let us denote by ®, the homomorphism from SL(2, K) into the automorphism
group of the Lie algebra gy =K®g, over K which was defined in [6, p. 33]. (We
keep the notational conventions in [6, p. 36].) Let us consider the Chevalley group G
associated with the pair gg, K ([6, p. 37]); G is generated by the subgroups {X,; x€A}
and  where

I ¢
L={n0;teK} n0=2((; 1)),
9 ={h(x); xeHom(P,, K) }.
As in [6] U (resp. B) denotes the subgroup of G generated by the {X,; xeA*} (resp.
by the {X,;xeA™}).

We now introduce some subgroups of G: let U be the subgroup of G generated

by the subgroups {X, o;x€A} and $g, where

xa,D ={xa(g) 5 EGD}’
Ho={A(x); xeHom(P,, O")}.

We denote by B the subgroup of U generated by the subgroups {X, o;xeA~},
{X, 5;2xeA*} and $o, where
Xo 5 ={a(8); EcB}.
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28 N. IWAHORI AND HH. MATSUMOTO

We denote by Wy, the subgroup of U generated by the elements (Da( (——(1) :))) (x€A)

and 55.:‘,. Let § be the homomorphism from I onto the Weyl group W defined in

[6, p. 37], where W is the subgroup of G generated by the elements d)u( (—(1) (I)))

(xeA) and $. Then it is seen easily that the restriction of { to Wy is a surjective
homomorphism from MWy onto W with the kernel §g, since W= Wo$H, Ho=WonH.

We denote by D the subgroup of § defined by
D={(y); xeHom(P,, {r’; icZ}).

Since the map y—>k(y) from Hom(P,, K) onto § is an isomorphism, the group D
is isomorphic to the group Hom(P,,{r’;icZ}) via the map 4, i.e. D=~Hom(P,,Z).
On the other hand Hom(P,,Z) may be identified naturally with the module PL (§ 1.2)
via the map d—>y,;, where y,(x)=(d, «) for acP,, from P onto Hom(P,,Z). Thus
the group D defined above may be identified with the group D defined in § 1.2 via the
map h(y;)—>T(d) (dePl). Since K' is the direct product of the subgroups O and
{n*;icZ}, $ is the direct product of the subgroups $5 and D. Hence 2B is the semi-
direct product of D and g with D as a distinguished subgroup. Thus the quotient

group W= W/Ho is the semi-direct product DW of D and W=Wg/Ho. We denote
by T the canonical homomorphism from 2 onto W. Itis easily seen that there exists

a unique isomorphism from W onto the semi-direct product DW in § 1.2 preserving
the elements in D, W. We shall identify these two groups in what follows.

2.2. In this section we shall investigate the fundamental case where G =SL(2, K)

and SL(z, D):U:{(f ”) eSL(2, K); a, b, ¢, deD},

d

B={(2‘ ”) eU; a, deD", ceD, beSB}.

d
ol ) oo )]
and Wo=HoNnHow;, W=Hu Hw,
where 59:{(2 Z_l);ueD'}, wlz(_? (I))

Then, as is well known, G (resp. U) is generated by the elements {( (I) f) , (I (1)) 5 EGK}

v (5 9. (¢ )se=0)) g

Let Ug =: ((I) ':’) ; E€P }, By ={ (é (1)) ; £€0 }. Then the following proposition

for SL(2, K) is easily verified by a direct computation.
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ON SOME BRUHAT DECOMPOSITION 29

Proposition 2.1.

1) B=BoHoUp=UpHoBs.

(i) U=BuBw,B (disjoint union) and Bw,B=Bw,Bg.

(iiil) G=BWB= U~ Bow(c)B (disjoint union), where o is a map from W = W/Hg into W

cEW

such that N(co(c))=a Jor any seW. (’ZJ is the natural homomorphism SD3—>V~V=QB/59.)
The involutive elements w0=’Z( (__0_1 1;)) and w, =2)( (_O CI))) form a

T I
~

system of generators of W. Noting this fact, it is easy to prove the

Proposition 2.2. — For the system (G, B, W) and the involutive generators wy, wy of VNV,
the hypotheses of Tits [16] are all satisfied.

To be more precise, we note that B and 2 generate G, that BnW=Hg is
a distinguished subgroup of 4B and that W/Ho= W is generated by w,, w,. Moreover,
the conditions (iii), (vii) of Tits [16] are easily verified: «(w;)Bw(s) CBw(s)Bu Bw(w,c)B
for any seW and i=o0, 1; o(w;)Bo(w,) B for i=o, 1.

Thus, by Tits [16], U and V=BuBw(w,)B are the only subgroups H of G such
that G2H2B. They are not conjugate in G (see [16]), but they are conjugate in

GL(2, K) by the element (c: 7(;) which normalizes B.

The following proposition is also easy to check and gives an ¢ Iwasawa
decomposition ” of SL(2, K).

Proposition 2.3. — G=UHU=UDU, where

ue{fy e

2.3. Now let us return to the notations of § 2.1.
Proposition 2.4.
U=UgpuBWoByp
=wewumﬂ3959m(w)2}o (disjoint union) ;

where Ugy (resp. Bp) is the subgroup of W (resp. of B) generated by {X, q; acAt} (resp.
{X, 0;2€A™}), and w is a map from W into Wg such that {(w(w))=w for any weW.

Proof. — As in the proof of [6, Lemme 4, p. 38], we see that X, 5, X_, o (x€Il)
and g generate the group U. Therefore, to prove U =UgyBoWoBy, it is enough to
show that 2UpBWeBo CURBoWo Uy for any element z in the system of generators
{90, X, 0, X_4 0 (xell)}. To begin with, we note the following facts (cf. Chevalley
[6, § III]):

(i) Ug (resp. Bp) is a distinguished subgroup of the group Uy Ho (resp. BpHo)-

(ii) u$=ag X g (resp. 239=eg_£a.b), where the product is taken in the

ascending (resp. descending) order of the roots. (We assume here that the linear ordering
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of the roots is regular in the sense of [6, p. 20] i.e. the height k(a) of aeA with respect
to II is an increasing function in « : A(a) >A(B) if «>B.)

(i) Up=2%, Uy where UP= g X9, oell
o +

aF o
ﬂ39=35_a‘.,9$%’ where B = Il X_ .0 oell
oy
Afzcul)  for any £ in X, 0
Bz Bl  for any z in X_4 0
Now the statement (i) implies immediately that z2UgBo WV CUBoWoBo for
any z€$9o. Let «; be a fundamental root. By the statements (ii) and (iii), we have
uqs%ocu%)%%)%ui,‘nx— %, 0, and more generally, for any z in X, o orin X_, o, we get
AUyBpo CUPBYX, 9X_, o CUYBYD, (SL(2, D));
therefore o
U B WoBo Cwlélwu%)%%)d)ai(SL(Q, 0))o(w)HeBs.
Now by Prop. 2.1, we have
(I)al-(SL(2> D))CX,, pX_ 5, 090V Xo pX_q, Dm(wai)ng—ai, o5
hence, if w™!(—a;)<o0, we have
WHBYD, (SL(2, 0))o () 5B C
CUYBLE, 9X_,, 00(®)HoBo v UYBOX, 9%_ a;, 00 (W ) X_ o o 0(w)HoBo C
CUpBoo(w)HoBo v UpBoo (w,w)HoBo

(by the statement (iii)); if w™'(—a;)>0, we have w™lw;!(—e;)<o,
UFBY@, (SL(2, )0 () HoBo € UPBLP, (SL(2, D)) w(w,,w)HoBs ;
hence, as in the preceding case,
UYBYD, (SL(2, 0)) () HoBo C UgBoo(w) HoBo U UgBo 0wy, 0)HpBo.

Thus we have proved U=UgBoWByp.

Now let us consider the homomorphism p defined by the reduction mod. § from U
onto the Chevalley group G, of gy over the residue class field A=9O/P. p satisfies
o(x,(8))=x,E) forany «aeA, £EcO, where £ is the residue class of £, and p(k(y)) =A(%)
where yeHom(P,, O") and jeHom(P,, £") is such that 3 () is the residue class of y(a)
for «eP,. Let B, be the Borel subgroup of G, generated by p(8Bg) and p(Hp); we have
e(UpBoHo) CB,. Therefore, from the decomposition of U which we have just shown

it follows that
Gk=BkP(QBD)Bk=wL€JWBkP(w(w))Bk°
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ON SOME BRUHAT DECOMPOSITION 31

This is nothing but the Bruhat decomposition of G, with respect to B, and G, is the
disjoint union of the double cosets B,p(w(w))B,, weW (see [6, Th. 2]). It follows
immediately from this that U is the disjoint union of the subsets UgB Ho 0 (w)Bg, weW,
and that the inverse image p~'(B,) of B, by p isequal to UpBpHoBo=UpHoBo. The
proof is now complete.

Theorem 2.5. — B=Ugy HBy.

In fact, as we have just seen, Uy HoBp is a subgroup of G, and has the same system
of generators as B.

This theorem is our fundamental tool, which will play an important part in our
later discussions.

We remark that, since Th. 2.5 is established, Prop. 2.4 gives the double coset
decomposition of U with respect to B.

Let d=#h(y) be an element in D. As we have remarked in § 2.1, d is identified
with an element in P} which is also denoted by d and we have y(a) ==** for any acP,.

Assume now that g is simple and let «, be the highest root in A. Put

w, =’Z’(®ao (( 0_1 1;))) ; we then have w,=uw,d,, where w, eW is the reflection

—
with respect to the the hyperplane {xebg; ao(x)=0} and d,eD is given by
(dyy @) =—a(H,) =—2(a, a)/(eg, #p) =—(, o) for any « in P,. (Hence it is easily
checked that this element w), is identified with the element w, defined in § 1.4, via the
identificationin§ 2.1.) Foreacho;in II={o,, ..., o}, put w;= W, =IZ((D,,‘(_(I) ;))

Let o be a map from W =DW into % such that ?(m(o‘)) =g¢ for any seW.
We then observe that the cosets Bw(s), ©(c)B and the double coset Bw(s)B are inde-
pendent of the choice of the map w and depend only on cew, since B contains the
kernel $¢ of the homomorphism T W->W. Also the subgroup «(c)Bw(s) ™' depends
only on seW butnot on w. Thus we have Baw(c)w(t) =Bw(o7), (Bu(s)) '=w(c~1)B
for any o, reW. Under these notations, we have the

Proposition 2.6. — Assume that gq is simple. Let

I;=Bno(®) 'Bo(w,) (0<i<l),
and let {t,} be a representative system in O of k=O[P. Then we have

(1) B=Ul"l-x_¢i(tv) is a disjoint union for any i=1, ..., 1

(i) B=UTyx, (nt,) is a digjoint union.

Proof. — (i) Let b be an element in B. Then b can be written as b=uhv,
uely, he$Ho, veBy by Th. 2.5. Since ﬁozﬂi(gx_%o we may write v=0'3_,(%),
v eBY, teD. Now by u(w)X, pw(w;) '= wiw, © and o(w;) X, po(w;) _1=3€w‘(¢) g (for
any aeA, 1<i</[), we have

o(w) Uo(w,) T CUY,  o(w)BPo(w) ' cBY
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because aeA~, a+ —a; implies that w;(x) €A™, w;(«)% —a;. These relations together
with  o(w;)How(w;) '=9H show that o(w;)bw(w;)”' is in B if and only if
(w;)x_ ‘,z',(t)o)(wi)“1 isin B. In other words, bel'; is equivalent to x_,(t)eB. Now
from the fact that 8HnU={1} ([6, p. 42]) and Th. 2.5, it is seen easily that x_, () eB
is equivalent to te€B. Thus we have shown that
and B=IX_, o, I'nX_, o=X_, g. Then we easily get the disjoint union
B= y Fix_q(8)-
(ii) Let b=vhueB, veBy, heHp, uelgy. Then u can be written as
u=u'x,(t), u'e Il X, p, teP.

aE At

o F o
Now we have for any a«acA, t'eK,

‘”(wo)xa(t’)@(wo)_l = xa(i ol B)t')

where B=w, (¢)=a— (a, a)o,. Since (@, x)>0 for any aeAt, we see that
(@, B) = (etg, Wq, (&) = (4, (2g), @) =— (g, @) is given by
—2 if  a=uqa,
(g, B)=¢—1 if aeAt, a%o, PLeAT,
o if aeAt, PeAt,

using the fact that (a, «) < (e, «,) (for any aeA). Thus we have w(w,)u'w(w,)~'eB.
Similarly we get o(w,)vw(w,) eB. Obviously we have o(w,)hw(w,) *eB. Thus
o(we)bw(w,) "' eB is equivalent 1o (w,)%, ()w(w,) ' €B, ie. bel is equivalent to
x_g (7 %)eB. From UHnB={1} and Th. 2.5, it is easily seen that x_, (= ~"%)eB
is equivalent to te$P?: Thus we have obtained

Lo=BoHoUYPX,,

where U= II X, o, X, qo={x,(t);teP?}. Also we see that
a €At
aF o
B=TX,, 3 FonX,,, 9= Xq, g2
Hence we get the disjoint union B=LVJI‘0xao(ﬂ:tv).
Corollary 2.%. — (i) o(w;) 'Bo(w;)*B for i=o,1,...,1L
(ii) Bo(w;)B=Bo(w;)X_,, o (1<i<!) and Bw(wi)B=LvJBm(w,-)x__¢i(tv) is a disjoint
union for i1=1,...,10
(ili) Bw(wy)B=Bw(w,)X_,, ¢ and Bw(wo)B=leBco(wo)xao(7rtv) is a disjoint union.
Proof. — (i) is clear by Prop. 2.6. (ii), (iii) are seen from the fact that the natural
map I',\B—B\Bw(w,)B from the coset space I';\B={I;6;bcB} onto the coset space
B\Bo(w;)B={Bw(w,)b; beB} defined by I';b—>Bw(w;)b is a bijection.
Now using the function A in § 1.4, we get the
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Proposition 2.8. — Assume that g¢ is simple. Let i be an integer with 0<i<[ and o
an element in W =DW. Then
(1) of AMw;6)> (o), we have Bw(w;)Bw(c)B=Bw(w;s)B;
@) if Mw;0)<A(o), we have Bew(w;)Bw(s)B=Bw(s)Bu Bw(w,;s)B.
Proof. — (i) First let >o0. Then
Bo(w;)Bw(c)B=Bo(w)X_, cw(c)B= :
=Bw(wi)w(c)w(o)_1%_a’.,Dw(c)B=Bco(w,-c).co(c)‘lx_ai'ow(o)B
by Cor. 2.7, (ii). Thus it is enough to show that (s)™'X_ «,0®(0) €B under the
assumption A(w;0)>A(c). Let ¢ '=dw, deD, weW. Then
(o) tx_ (B o (0)=x_ w(a‘_)(:*:TL'(d’ —wloly),

Now A(o™'w;) =A(w;0)>A(c)=A(c"") implies by Prop. 1.28 that (d, —w(«;))>o0 (when
w(a;)>0) and (d, —w(«;))>0 (when w(a;)<o). Therefore we get m(o)‘lf_%gm(c)CB.
The case where i=o0 1is also proved similarly using Prop. 1.29.

(ii) First let i>o0 and {#,} be a representative system in O of £=9O/P. Then
by Prop. 2.6, (i) we have

Bo (1) Box(0)B = U T;0(w)1_ 4 (4,) 0 (s)B.

Now put wic=rew. Then
() _ 4 (8)0(0)B = oo(;)x_ o (8) ()~ e ;) w()B
=1, (+1,)o(r)B.
On the other hand, using the homomorphism @, : SL(2, K)—>G, it is seen that #,¢ P
implies x, (+4)eBw(w;)B. Thus we have
o(w;)r_,(4,)o(c) eBo(w;)Bw(1)B=Bw(w;7)B=Bwu(s)B
for ¢,eD" since A(w;7)>A(t). In other words we have
Bo(w;)x_ (%) w(c)B=Bw(c)B for ¢eD"
If ¢,eB, the preceding computations also show that
Bo(w;)x_ ,,(4) ©(c)B=Bo(r)B=Bw(w;0)B.

Thus we have proved Bw(w;)Bw(6)B=Bw(s)BuUBw(w,;6)B. The case where i=o0 is
also proved similarly by using Prop. 1.29, Prop. 2.6 and the following fact:
o (W) %4, (Tt,) 0 (wy) “'eBw (w,) B (for £,eD"), which is seen using the homomorphism
®,, : SL(2, K)>G.

Corollary 2. 9. — Assume that g is simple.  Let i be an integer with 0 <i<[ and o an element
in W.  Then:

(1) BuBw(w,)B forms a subgroup of G.

(i1) If ANw;0)>A(o), then Bo(w,)Bo(w;s) CBw(s)uBw(w;s)B.
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Proof. — (i) Since (Bw(w;)B)"'=Bw(w;)B, we have only to show that
Bw(w;)Bo(w;)BCBuBw(w;)B, but this is an immediate corollary of Prop. 2.8, (ii).
(i) Since

Bo (w;,)Bo (w;6) =Bw(w;)Bo(w;)o(s) and Bo(w;)Be(w;)CBw(w;)Bw(w;,)B=BuBw(w;)B,

we get Bo(w;)Bo(w;6) C(BuBw(w;)B)w(s) CBw(s) uBw(w;)Bw (o).
Now by the assumption A(w;6)>X(s), Bw(w;)Bw(s) CBw(w;)Bw(6)B=Bw(w;s)B (see
Prop. 2.8). Hence the proof is complete.

2.4. Let us now consider the subgroup G’ of G which is generated by the
subgroups X,, a€A. Since our ground field K is an infinite field, G’ is the commutator
group of G) (See [6, Cor. of Th. 3] when g is simple. This immediately extends to the
case where g is semi-simple, since the Chevalley group of g, is the direct product of
the Chevalley groups of the simple factors of gg).

Let §’ be the subgroup of § defined in [6, p. 47], i.e. A(y), for xyeHom(P,, K*),
is in §’ if and only if there exists an element y'eHom(P, K") such that y'|P,=1.
We denote by D’ the subgroup of D defined by D’=Dn$’. Then it is easily seen that
this subgroup D’ coincides with the group denoted by D’ in § 1.2 under the identi-
fication in § 2.1.

Now let us consider the subgroup Q defined in § 1.7. Let us investigate the

relationship between Q and the normalizer N(B) of Bin G. Let 6= a’wew, deD, weW.
Then, ©(0)x,(t)w(0) ™" =X, (£7**®t), Therefore ©(c)Bw(s) 'CB is equivalent to
the following conditions:

(d, w(a))>o0 for aeAtnw AT,
(d,w(@))>—1 for acAtaw A,
(d, w(2))>1 for acA nw AT,
(d, w(x))>0 for acA nw A,

Thus we see that «(c)Bw(s)™'CB is equivalent to the following conditions:
(d,w@)=1 for aeA"nw AT,
(d, w(a))=0 for acA nNnw A",
In other words, (c)Bw(s)”'CB is equivalent to the following conditions:
(d,B)=1 for BeAtnwA~,
(d,B)=0 for BeAtnwAt,.
By Prop. 1.23, these conditions are equivalent to A(¢)=o0, i.e. to c€Q. Thus, since
Ao~ Y)=n(s), ®(c)Bw(s)"'CB implies that «(c) !Bw(s)CB, hence we have then
w(6)eN(B). Thus:
Proposition 2.10. — Assume that gq is simple. Let « be a map W such that
’Z(o)(c))=o- Jor any oeW. Let oeW. Then we have o(c)eN(B) if and only if ceQ.
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Now let us prove that the double cosets Bw(s)B, for ceW, are mutually disjoint.
We begin with the

Lemma 2.11. — WnB=H4.
Proof. — By [6, Cor. 1 of Th. 2], G is a disjoint union of the subsets
BHo(w)U,, (weW), where U, = I1 X, CU. Since U,=U for w=1, B is

aEATNw—1A~

contained in BHw(1)U=BHU by Th. 2.5. (Note that B=BHUy.) Thusif xeB
isin W= wgwfjco(w), we must have xeHw(1)=9H. Now any element in B can be written
asvhu with ve8Bg, heHp, uely. Furthermore, in this expression v, # and u are determined
uniquely by BHnU={1}, BnU={1}. Thus we have HnBCH,. Hence we have
shown that MWNBCHy. Obviously WNBI Hy and this completes the proof.

Corollary 2.12. — C-YQ)nB=$H5.

The proof of the following proposition is essentially the same as the one given
in Tits [16]. However, for the covenience of the reader, we shall reproduce his
proof here.

Proposition 2.13. — Assume that g¢ is simple. Let o, +eW and Bw(c)B=Bw(r)B,
then o=r.

Proof. — Let A(o)<A(r). We shall prove our assertion by induction on A(s).
If A(c)=o0, then w(c)eN(B). Hence w(r)isalsoin N(B). Then we get Bw(s)=Bw(t),
ie. w(p)eB where p=or—'eQ. Hence w(p)eBnl-1(Q)=$y by Cor. 2.12, ie,
o=C(w(p))=1. Thus we get o=r.

Now let A(c)=£k>0 and assume that our assertion is true for Bw(c’)B=Bw(z')B
with A(6’) <X (7'), AM(¢")<k. For some i with 0<:<l, we have A (wg)<A(s) by
Lemma 1.5 and Cor. 1.9. Now o(w;,)o(w;s)B=w(s)B CBwu(r)B, hence

o(w;6) B Co(w;)Be(t)B CBwu(t)B uBw(ws)B

by Prop. 2.8. Therefore Bw(w;0)B must coincide with Bw(r)B or with Be(wyr)B.
Hence, by the inductive assumption, we get w,c =1 or w;c =w;r. However, wo=r is
impossible since A w;o) <A(c) <A(r). Thus wio=uwsx, ie. o=1, Q.E.D.

Remark. — When K is locally compact, Prop. 2.13 can be also proved using a
result in Goldman-Iwahori [7, Th. 3.15].

Lemma 2.14. — BWB is a subgroup of G.

Proof. — We may assume that gy is simple. Since (BIB)~!'=BWB and
BWB= U Bw(s)B, we have only to show that Bw(c)B.w(r)BCBWB for any o, reW.

cEW
Let o=pc’, peQ, 6'eD'W (note that W is a semi-direct product of Q and D'W; cf. § 1).
Let ¢'=uw; ...w; be a reduced expression of ¢’ with respect to the generators
Wy, ..., w; of D'W. Then (o) <A(0p)<...<A(o}) where oi=uw; ...w; (1<s<r).
Hence we have by Prop. 2.8

B (o")B =B (w;)Bw(w;)B . . . Ba(w; )B.
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Hence Bow(s')Bw(t)BCBWB by Prop. 2.8. Now since (p)eN(B) we have
Bu(p) =w(p)B and Bw(s)B=Bw(p)Bw(s)B. Therefore

Bw()Bw(t)B =Bw(p)Bw(s")Bo(t)B C Ba(p) BISB = Bes (o) I8B — BIBB,

which completes the proof.

Lemma 2.15. — Assume that gg is simple. Let H be a subgroup of G such that
GDHDB, HnD=+{1}. Then H contains the subgroup G'B of G.

Proof. — Let deHnD, d+1. Then (d,a)#o0 for some «cA. Hence

H> U d'¥, gd '=X%,.
1€EZ ?
Also (d, —a)+o0 implies that HDX_,. Since ®,(SL(2, K)) is generated by X,
and X_., we have then H2®_(SL(z, K)). Then dlz(Du((z :_1))eHnD and

(dy, B)=(B, «") for any BeA. Hence, as above, HO®y(SL(2, K)) for any BeA such
that (B, «)+0. Now, since g, is simple, for any BeA there exists a chain v, ..., vy, of
rootssuch that B=rv;, a=v,, (v, Yi41) F0 for 1<i<r—1. Thus HD®,(SL(2, K))2 X,
for any BeA. Hence HDG’, which completes the proof.

Theorem 2.16. — G=BWB= U Bw(s)B (disjoint union).

cEW
Proof. — We may assume that g is simple. BIBBis a subgroup of G containing B, I3

(Lemma 2.14). Hence BIBOD. Thus BWBOG’' by Lemma 2.15. Also we have
HCWCBWB. Hence $HG'CBWB, ie. G=BWB= U Bw(s)B and this is a disjoint
union by Prop. 2.13, Q.E.D. oEW

Corollary 2.17. — (i) G=UHU=UDU.

(i1) U coincides with the subgroup of G consisting of elements x such that xgo=ggo,
where gozgo@i) is the Chevalley lattice in the sense of Bruhat [4].

Proof. — (i) is seen from o(w)eU for weW and MW=DW,.

(i) is seen by (i) and the following facts: xeU implies that xgg=gg; deD, d+1
implies that dgg=+gg-

Corollary 2.18. (cf. Bruhat [4]). — If K is a locally compact field, then U is a maximal
compact subgroup of G with respect to the natural topology of G.

Progf. — Obvious by Cor. 2.17.

Corollary 2.19. — N(B):le"l(Q), N(B):pléjan(p) (disjoint union) and
N(B)/B=Q=P/P,.

r

Proof. — Let xeN(B). We may write x=05,w(s)b, where b ,eB, b,eB, ceW.
Then w(s)eN(B). Hence 6eQ by Prop. 2.10. Thus N(B)C leJQBo)(p). N(B)DplEJQBco(p)
e

is obvious and we have N(B) =plEJQBco(p). Now this is a disjoint union by Cor. 2.12.

Hence we get N(B)/B~Q=~P/P,, Q.E.D.
Now assume that g, is simple and let us consider the union H= . Elg,cho(o)B. This

is a subgroup since D'W is generated by w,, w,, ..., w, (see the proof of Lemma 2.14).
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H contains B and a non-trivial element of D since H contains (W) and w(w,). Hence
H>G’B. Now since we may assume that o(w;) eG’ (0<¢</), we have HCG'B. Thus
we get the , ,
Proposition 2.20. — G'B=°elglem(o)B (disjoint union).
Corollary 2.21. — G'N(B) =N(B)G'=G, N(B)nG'B=B.
Proof. — By , \

N(B)= U Bop), GB=_U Ba(e)B and W—DW=0Q(D'W)=(DW)Q,

we get
G'N(B) = (G'B).N(B)=_U_Bau(c)Bu(e)B
PEQ
= eLg'me(GP)B = aLeJVVBm(G)B = GT

PEQ

Also QnD'W={1} implies that N(B)nG’B=B using the preceding double coset
decompositions. '

Now let W'=C-1(D'W). Then, for 6eW, w(c)e2" is equivalent to «(c)eG'BnIW
by Prop. 2.20 and Th. 2.16. Hence W =G'BnIW. By Lemma 2.11, we have
WNB=Hs. The quotient group W'/Hg is isomorphic to D'W.

Theorem 2.22. — The hypotheses of Tits [16] are all satisfied for the triple of groups
(G'B, B, ") and the involutive generators w, (a€Il), ¥, ..., w" of D'W (cf. Prop. 1.2
Sor the notations w®).

Proof. — We may assume that g is simple. We have to show with respect to
the involutive generators w,, w,, ..., w; of D'W the following facts:

a) o(w;)Bw(c) CBw(wos)BuBw(s)B for any w; and oceD’'W, where o is a map
from D'W into 9" such that % (w(c)) =0 for any ceD'W. ‘ '

b) o(w)Bo(w,)+B for any w,.

¢) B and " generate the group G'B.

However we have already verified these properties a), ) and ¢) in Prop. 2.8,
Cor. 2.7 and Prop. 2.20.

Thus we now can apply the theorems of Tits [16] to the group G’'B. In particular,
when g is simple, w,, w,, ..., w, are the only elements of D’W such that BuBw(s)B
is a subgroup of G'B. Hence, returning to the case where gy is semi-simple, let
ge=a¥’+ ... +g¢’ be the decomposition of gyinto simple ideals g, ..., gf. Let
A=A%y...UA" be the corresponding orthogonal decomposition of the root system.
Let of be the highest root of A¥ (1<i<r) and w” the element of D'W defined by
w=dPw, 0 where dWeD’ is given by (d9, a)=2(x, &{)/(af, «/') for any a«eA.
Now let IT={«y, ..., o} and w;=w, (1<i<[). Then we get by the above remark
the following :

Proposition 2.23. — wy, ..., 1w, wY ..., " are the only elements of D'W such
that BuBw(c)B is a subgroup of G'B.
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Also, by Tits [16], the subgroups H such that G'BDHDB (the parabolic subgroups
containing B in the sense of [16]) are determined. Namely, for any subset J' of
J={wy, ..., w, 0", ..., 0"}, let W,. be the subgroup of D'W generated by J’. Then
Bm(WJ,)B is a subgroup of G'B containing B. The map J’—)Bm(WJ,)B is a bijection
from the set consisting of all subsets J of J onto the set of all parabolic subgroups
containing B. If Bco(f\TVJ;)B and Bm(WJ;)B are conjugate in G'B, then J;=];.

Now let us modify Th. 2.22 to obtain the

Theorem 2.24. — Let B'=BnG’, W =WnG', H5=9HonG'. Then

(i) B'=UpHsBs, B'nW'=Ho.

(it) W'= oel.g,w.‘f);gm(c) is a disjoint union, where  is a map from D'W into W’ such that
?((o(c)): 6 for any ceD'W. Hence the quotient group W'|DHe s isomorphic to D'W.

(iii) G'=oel]JyWB'co(c)B' is a disjoint union.

(iv) The triple of groups (G',B’, W’) and the involutive generators w, (aell),
wh, ..., " of D'W satisfy all the hypotheses of Tits [16].

Proof. — Since UyCG’, BoCG’', an element b=uhv of B, where uelly, heHyp,
veBg, is in G’ if and only if keHy. Hence B'=UypHBy. Now

B oW =BaWnG' =HnG' = Hp.

Thus we get (i). Now let T be the restriction of the homomorphism 7 : m->DW
to W’'. Then, since ’Z“(c)nG’ is not empty for any seD'W, we have fZJ’(ﬂB’)zD’W
and the kernel of T coincides with WnHo=9Ho. Thus we have proved (ii). To
prove (iii), (iv), we may assume that g; is simple. Then it is not difficult to verify
all the analogues of Propositions 2.6 to 2.11, 2.13 to 2.15 replacing B, I3, $o, D, DW
by B’, W', H5, D’, D'W respectively. Hence we get (iii), (iv) quite analogously as above.

Thus the results of Tits [16] are also valid for (G’, B/, W’). In particular, there
is a bijection of the set of all subgroups H' such that G'DH’'DB’ on the set of subsets J’
of J={wy, ..., w,»", ..., w"}. Hence, there is a bijection of the set of all parabolic
subgroups of (G’, B’, ') containing B’ on the set of all parabolic subgroups of (G’'B, B, I8")
containing B, whose inverse is given by H—H’, where

G'BOHDB, G'ODH'DOB, H'=HnG".

If H= U Bo(s)B, we may assume that «(s)eG’ and we have H'= U B'w(s)B.
o EW, cEW,
Hence we also have H—=BH'B. In particular we have !

Corollary 2.25. — Let ceD'W, w(c)eW’, T (w(o))=0. Then
(Bw(s)B)nG'=B'w(s)B'.
2.5. We shall now determine the subgroups H of G containing B. Let H be

such a subgroup. Then HaMIBnW=Hy and W, =~(QBnH) is a subgroup of
W=DW. Since HOB, H has an expression H= léJOBco(c)B for some subset ©
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of W. Then we obviously have ?“‘(@):Hn% and © =WH. Thus H—>V~VH is
an injective map from the set S of all subgroups H of G containing B into the set & of
all subgroups of W. Let &, be the image of S under this injection. We have to deter-
mine the set S,. Let HeS. Then QH=QnVNVH and Wﬁ:D’WnWH are subgroups
of Q and D'W respectively. Let J be the set of all 6eD'W such that BuBw(c)B forms
a subgroup of G. Then in our former notation, J={w,, ..., w,, ", ..., ™). Now
let us prove that W{I is generated by the subset ‘]H=VV,’{nJ and that WH=QH.VV}}.
To begin with:

Lemma 2.26. — Assume that gq is simple. Let 0<i<[ and seW. If ANw;6) <o),
then o(w;)eBw(c)Bw(s) B (cf. Tits [16, Cor. 2 to Th. 1]).

Proof. — By Prop. 2.8, the intersection Bw(w;)Bw(c)Bn Bw(s)B is not empty.
Hence there exist b, b,, b,eB such that o(w;)bo(c)="b,0(s)b, i.e. o(w;)eBw(c)Bw(s) B,

: Q.E.D.

Now let He& and cewﬁ. We can write oc=1p with 7eD'W, peQ. Let
T=w; ... w; be a reduced expression of t. Then A(w;0c)=2nr(w;7)<A(7)=2A(0).
Hence we have by Lemma 2.26 «(w;)eBw(c)Bw(c)"'BCH, i.e. wi‘ewﬂ. Therefore
w; c=uw; ... w,-rper\JVH. Continuing in the same manner, we get w;, ..., wireVVH
and pewﬂ. Thus we see that \’K7}’,—_—D’Wn\"7’H is generated by JH=V~V}'1 nJ and
that Wy=0,. W;.

Furthermore, J is normalized by any element peQy : pJge™'=Jg. In fact, Jy is
the set of all 6eD'W such that A(s)=1 and ceVVH (cf. Prop. 1.10). Hence

eJup~ ' CJy for any peQy by using the fact A(pop™!)=A(s). Therefore we get pJue =]y
for any peQy.

Let now &, be the set of all pairs (Q', J') consisting of a subgroup Q' of Q and
a subset J' of J such that pJye~'=]Jy forany peQ’. Then wegetasabovea map S—G,

defined by H—(Qy, Ju). Thisis injective since H= U B (c)B, \TVH=QHVVI'{=W}’IQH
ocEW,
and Wy is generated by J;. Now let us show that this map is surjective. Let (Q',J")eG,;.
Let W, be the subgroup of W’ generated by J. Then obviously QW =W3,Q" is a
subgroup of \ containing VV} as a distinguished subgroup. Then H=Bm(Q’V~V’J.)B
is a subgroup of G by the same argument as in the proof of Lemma 2.14. It is easy
to see that HOB and Q'=Q, VV}:VNV}'I Then we get J'=]Jy by Tits [16, Cor. 3]
since (G’, B’, M’) satisfies the hypotheses of Tits. Thus we have proved the
Theorem 2.2%7. — The map H—(Qy, Jy) defined above from the set S of all subgroups H
of G containing B into the set S, of all pairs (Q',]’) of a subgroup Q' of Q and a subset J' of
the standard generators J of D'W is bijective.
Now we shall consider the conjugacy problem of H,, H,eS. If H,;, H,e© are
conjugate in G, there is an element xeG such that xH,x~'=H,. Now by Th. 2.16
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we may write x =b,w(c)b, with b, b,€B, oeW. Then o(6)H,0(s)"*=H,. Therefore
o(c)Bw(c)"'CH,. Put o=r1p, 7cD'W, 0cQ and let t=uw; ...w; be a reduced
expression of . Then by Lemma 2.26 we get as above o(w;)eBw(s)Bw(s) 'BCH,.
Hence o(w; 6)H;o(w; c)"'=H, andsoon. Therefore finally we get «(p)H;w(p)~'=H,.
Then we get immediately

Qu=Qq, eJue '=Ju.

Conversely, if these conditions for Qy , Qy , Jy, , Ju, are satisfied for some peQ, we have
easily o(p)H;0(p) '=H,. Thus we have proved the

Proposition 2.28. — Let Hy, H, be subgroups of G containing B. If H, and H, are
conjugate by an element of G, then they are conjugate by an element of N(B). Moreover, H, and H,
are conjugate in G if and only if Qu =Qy and pJy e~ '=Jy, for some peQ.

By a similar argument as above, we have the

Proposition 2.29. — Let N(H)=L be the normalizer of a subgroup H with GOHDB.
Then

Qy :{9‘59-5 eJup™ =JH}a Jv=Ju-

Now using Prop. 2.28 and the table of the action of Q on J given in § 1.8, we can
determine easily the number of conjugate classes of maximal subgroups of G containing
a conjugate of B for each type of simple Lie algebra over C. (We note that for H,, HyeG,
H,CH, is equivalent to Qy CQy and Jy CJy,.)

We observe that if H is a maximal subgroup such that G2 HDB, then only the
following cases are possible:

a) Qy=20Q; then Jy is a maximal Q-invariant subset of J.

b) Qu+Q; then Jy=]J and Qp is a maximal subgroup of Q.

Then we easily get the

Proposition 2.30. — The number of conjugacy classes of maximal subgroups of G containing
a conjugate of B is equal to the sum of the number of Q-orbits of J and the number of maximal

subgroups of Q. For simple Lie algebras over G these numbers are given by the following
table (I).

Table (I)
(A);>1 ¢ I+s, where sis the number of prime divisors of [+ 1.
Bise t 1 +1.
[

(Cz)z_>_2 : 2+[§]-

“g‘, if 1is odd.
(Dz)1_>_3 o

2 43, if [iseven.
(Eg) ¢ 4
(E,) : 6.
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4]
(Eg) 9
(Fy) 5
(Gy) 3

Next let us consider the case where K is a locally compact field. Then £=9O/9
is a finite field and G is an algebraic subgroup of GL(gx)= GL(n, K) where n=dimgg,
(Ono [11]). It is seen easily then that U and B are open compact subgroups of G.
Now we shall determine the number of conjugacy classes of :naximal compact subgroups
of G containing a conjugate of B for each simple Lie algebra gc over C. If H is a subgroup
of G containing B, then by H= U. Bw(s)B, H is compact if and only if WH is a finite

cEW
subgroup, i.e. if and only if J;$J (seg the remark in § 1.9). Thus, in order to determine
the number in question, we only have to determine the maximal ones in the subset
S,={(Q,])eS,;J'SJ} and then we have to determine the partition of S, by the
equivalence relation given in Prop. 2.28. In this way, a simple computation using § 1.8
gives us the following

Proposition 2.9x. — Let K be a locally compact field. Then the number of conjugacy
classes of maximal compact subgroups of G containing a conjugate of B for simple Lie algebras g
over G is given by the following table (II).

Table (II)

(A));>1 © the number of positive divisors of [+ 1.
B)iss : I+1.
(Cz)lzs sl

A l if  [is odd.
Diizs [ 142, if [iseven.
(B ¢ 5
(E,) . 8.
(Es) © 9.
(F) © 5
(Gy) -3

For example, for type (D,)(/=2v), the representatives of the conjugacy classes
of maximal compact subgroups H containing B (or conjugates of B) are given using
(Qy, Ju) as follows (the notations being that of § 1.8):

Case (i) Quy=2Q. Then Jy is of the form J;=]—1L, where L is an orbit of Q
in J. There are v orbits of Q in J and we get v conjugacy classes for this case.

Case (ii) Qu={1,¢,}. Then Jy is of the form Jz=]J—L’, where L’ is an orbit
of {1,p,} and cannot contain any Q-orbit. Thus we get v—1 conjugacy
classes for this case.
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Case (iii) Qy={1,p,_,}. Then we getonly one conjugacy class, e.g. Jy=J—{w,, w, }.
Case (iv) Qu={1,¢}. We get only one conjugacy class, e.g. Jy=]—{w,, w}.
Case (v) Quy={1}. We get only one conjugacy class, e.g. Jy=J—{w,}.

Thus the total number of the conjugacy classes in question is v+ (v—1) 4 g=1{[+2.

The situation is much simpler when we consider the group G'B or G’. Namely,
a subgroup H of G'B (resp. of G’) containing B (resp. B’) is determined by a subset Jy
of J, where Jy is the intersection of J and the subgroup WH, of D'W defined by
Wy ={6eD'W; Bo(c)BCH} (resp. by Wy, ={ceD'W;B'w(c)B'CH}). Hence H is
maximal if and only if J; is a maximal subset of J, i.e. if and only if |Jy|=|J|—1
where |Jy|, |J| mean the cardinalities of the finite sets Jy, J respectively. Thus if K is
locally compact, every proper subgroup H of G'B (resp. of G’) with HDB (resp. with
HDB’) consists of finite double cosets of the open, compact subgroup B (resp. B’),
hence H is compact. Therefore we have the

Proposition 2.32. — Let K be a locally compact field. Then the number of conjugate
classes of maximal compact subgroups of G'B (resp. of G') containing a conjugate of B (resp. of B')
is equal to |J|=1[+r, where | is the rank of gg and r is the number of simple ideals of g.

We shall now give an “ Iwasawa decomposition ” of G.

Proposition 2.33. — G=UHU=UDU.

Proof. — Take the following system of generators of G: X, (xeA™), 9, X_,, (oell).
We then can show without difficulty that UHUCUHU for any z in the system of
generators, by using Prop. 2.3.

Finally we shall give the decomposition of G into double cosets of the form
H,xH, (xeG), where H, and H, are subgroups of G containing B. As before, we fix
a map o from W=DW into B such that ?((o(c)) =¢ for any ceW.

Proposition 2.94. — Let Hy and H, be subgroups of G containing B and WHI, WH, be
the subgroups of W associated with H,, H, respectively.

(i) Let oeW. Then Ho(o)H,= U _ Bo(7)B.

T €Wy, oWy, _

(ii) Let o, teW. Then Hyw(o)Hy,=H, o (t)H, if and only Wy oWy, =Wy tWy, .

(iii) Let W= L}\J\/'\JVHI.o-x.\/w’H2 be any partition of W into double cosets mod. \TVH‘ : WHZ.
Then G= LAJcho(cr)\)H2 is a disjoint union.

Proof. — (i) Let A= U Bw(r)B. Then clearly we have ACH, 0(s)H,.

‘c(EWchWH2
Since w(s)eA, to show A=H,w(s)H,, itis enough to show H;ACA and AH,CA.
Since H, is generated by

o) (peQy), o(z) (reWy), and B,

to show H;ACA, it is sufficient to see that zACA for any z in the above system of
generators of H;. For zeB, zZACA is trivial. For z=w(p), peQy, zis in N(B) and

we have o(p)Bw(§)B=Bw(pf)B; hence zACA. Now let reVVﬁ‘. Then © can be
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written as t=uw; ...w; with w;,...,w; €]y. Thus we have only to show that
o(w;)ACA for any w;eJy. However this is easily seen, because if &eWchWH,,
then by Prop. 2.8, we have o(w;,)Bo(£)BCBw(£)BuBw(w,£)BCA. Similarly we have
AH;CA and the proof of (i) is complete.

(ii), (iii) are immediate consequences of (i).

Corollary 2.35. — (i) szLEJDBdUzdléJDUdB (disjoint unions).

(ii) Let D, ={deD; (d, &) >0 for 1<i<I}. Then szg)+UdU is a disjoint
union.

Proof. — (i) Since U =w'éJwa(w)B, we have VNVU=W. Now since W =DW = WD
is a semi-direct product, we get (i).

(i1) This is immediate since DW=dg)+WdW is a disjoint union.

§ 3. On the structure of the Hecke ring J7(G, B).

Through this section we assume that £=O/B is a finite field consisting of
¢ elements. (But we assume nothing about the completeness of K, thus K need not
be locally compact.) We use the notations of §§ 1, 2. Also for the convenience of
description, we assume that g is simple through § 3.

3.1. Let xeG. We denote by ind(x) the index [B:Bnx~'Bx].
ind(bxb’') =ind(x) for any xeG;b, b €B.

Let I'=Bnx~'Bx. Thenthemap I'y—~Bxy (y€B) from the coset space T\B={T'y; yeB}
into the coset space B\BxB={Buxy, yeB} is bijective. Hence

ind(x) = | B\BxB]|

where |B\BxB| means the cardinality of the set B\BxB.

Suppose ind(x) < oo, ind(y)<co. Then we have ind(xy)<oco. In fact, we have
BxyBCBxByB. Moreover there exist finite subsets {x,, ..., x},{», ...,7} of B such
that BxB = L} Bx;, ByB= liJByj. Hence BxByB= HBxiByi = ljJBxBy,- = H Bx; y;.  Now,
by Prop. 2.6, we have

ind(w(w,))=¢q fori=o,1,...,!

~

where o is a map from DW into 2 such that {(w(s)) =0c for any ceDW. Hence
we have ind(x)<o for any xeG'B by Prop. 2.20 and the proof of Lemma 2.14.
Also it is clear that we have ind(x) =1 for every xeN(B). Thus we get by Cor. 2.21
that

Proposition 3.x. — We have ind(x)<oco for any xeG.

Thus B is commensurable with any conjugate of it and we can consider the Hecke
ring (G, B) (see e.g. [10, § 1]). (G, B) is defined as follows: let I be the free
Z-module generated by the double cosets Bw(s)B, 6 cDW. We denote by S the double
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coset Bw(c)B regarded as an element in 9. Then the multiplication between the
basic elements S, (ceDW) of M is defined by

S,S.=Ym"_S
w

¢, T~

where the structure constants mj . are defined as the number of cosets of the form Bx
in the set Bw(s) 'Bw(w)nBo(t)B:

m .=|B\Bw(c) 'Bo(p) nBw(t)B|.
Then, for any fixed o, t€eDW, there is only a finite number of weDW such that m} _+ o,
because mf . +0 is equivalent to
Bo(p)BCBw(s)Bw(t)B.
Provided with this multiplication law, 5 (G, B) forms a ring with the unit element

1=3S, (see e.g. [10, § 1]).
The map X2,.S,—>XA,.ind(w(s))€Z is a ring homomorphism from (G, B)

onto Z (cf. e.g. [10, § 1]). We denote this homomorphism also by ind:
ind(X2,.S,) =X2,.ind(w(s)).

Now let 6eDW, =091, peQ, 1eD'W. Then, since w(p) is in the normalizer N(B)
of B, we easily have S,—S,S..

Let t=w; ...w; be a reduced expression of 7. Then A(z)<A(r) where '=uw; =
and we get by Prop. 2.8 (i) and Cor. 2.9

S.=S5;5., where we put S§;=S§,.

Continuing this, we get finally
ST:Si, PR Sir'

Therefore, by applying the homomorphism ind : #(G, B) -Z, we see that
ind(S,)=¢" = ¢"".

Now, since ind(S,)=1, we have proved the

Proposition 3.2. — ind(w(s))=ind(S,)=¢"° for any scDW.

Corollary 3.3. — ind(x)=ind(x™ ') for any x€G.

Also, by what we have shown above, we have the

Theorem 3.3. — A (G, B) s generated by S, (p€Q), Sq, Sy, ..., S where S;=S,
(0<i<1). Moreover, let ¢=pt, peQ, teD'W, and t=w; ...w; a reduced expression

of =. Then Se=95,5.=S,S, ...5; .

ir

Now let us consider the Hecke ring #(G'B, B). #(G'B, B) can be regarded in
an obvious way as a subring of #(G, B) with the common unit element. By Prop. 2.20
and Th. 3.3, #(G’'B, B) is generated by 1, S, S;, ..., S,. Now we shall characterize
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the ring #°(G’B, B) by giving the defining relations among the generators 1,S,, ..., S,.
Let us denote by 6;,==0; (1 <:+;</) the angle between the fundamental roots «;, o« .
Also we denote by 0,,=0,, (1<i</) the angle between «; and —a,, where «, is the
highest root of the root system A.

Proposition 3.4. — (1) Si=gq.1+(¢q—1)S; for i=o,...,L
\ 8,8, =S,S,, TR
B 1'S;8;S;=S§,5;5;, i b=2n/3,
. [SSP=ESR T byl
(8:8)*=(§;8)%  if  0;=57/6.

~

Proof. — (i) By Prop. 2.8, Bw(w;)Bo(w;)B=Bw(w;)BuB. Hence S}=nr.1+4 1.5,
with some positive integers A, p.. Furthermore, A, u are given by
A= |B\Bo(w;) " 'BnBw(w;)B|=|B\Bw(w,)B| =g,
w=|B\Bo(w,) " 'Bw(w;) nBw(w;)B|.

However the value of u is easily obtained by applying the homomorphism
ind : # (G, B) >Z to the equality S?=»x.1+u.S;: we get ¢*=r-+u.¢. Since r=gq,
we get pw=g—1I.

(i1) Let 6;=mn/2. Then ww,=w;w,. Now if we can show that A(w,w,)=2,
then we have also Aw;w;)=2. Thus w;w;, w;w; are both reduced expressions of some
element ceD'W. Hence we get S,=8,S; and S,=S8;S; by Th. 3.3. So let us prove
that 0;=r/2 implies A(ww;)=2. Firstly, we have A(w,w;)=Il(w;w;) (Prop. 1.10),
hence A(w,w;)<2. If Mww)=o0, then we have w,w;eQnD'W ={1}, hence w,=uw;,
which contradicts 6;=m=/2. If A(w;w;)==1, then we get a contradiction by Prop. 1.5.
Thus we have Aw,w,)= 2.

Next let 6,,=2n/3. Then we get w;w;w;=w,;w;w; and by the same reason as

above, it is enough to show that A(w,w;w;)=3 in order to prove that S§,S;5,=S§;S;S;.
Firstly we obviously have A(w,w;w;)<3. On the other hand, by 6;=2n/3, we get

[had ek

(with the notation of § 1) that the hyperplanes P;, w;(P)), w,w;(P;) are all distinct.
Then we have {P;, w;(P;), wiwi(Pi)}CZ(ww-w.) by Cor. 1.4 and A(w,w;w;)<3. Thus

1 % [had Rad
we have A(w,w,w;)=3, hence sisjsizs,.éisj. The remaining cases are also proved
in a similar manner.
Theorem 3.5. — Let & be the free ring over Z generated by A, Ay, ..., A, together with
the unit element 1. Let ¢ be the ring homomorphism from & onto #(G'B, B) defined by
o(A) =S, (0<i<l). Then the kernel of © coincides with the ideal a of §& generated by the following

elements

A2—(g.14(g—1)A) (0<i<l),

AN —AN, (for 0,;=rm/2),

A — A NN, (for  0;=2r/3),
(84 —(8;8)° (for  0;=37/4),
(AA)°— (A0 (for  0;=757/6)
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Proof. — We have aCKer(p) by Prop. 3.4. Thus ¢ induces a ring homo-
morphism g from F—=F/a onto #(G'B, B) such that 3(A,)=S; (0<i<[), where A, is
the image of A; under the canonical homomorphism §-—>F The A, satisfy the
relations (i), (ii) of Prop. 3.4 (replacing there each S; by A, respectively). Now we
have to show that ¢ is bijective. Let © be the set of all finite sequences (i, #y, ..., ,)
of integers 1,, ...,7, with 0<¢, ...,¢,</. For each element s in D'W let us choose
a reduced expression ¢=uw; ...w; of cand denote by 6(s) the element of © defined by

6(6)=(j1, .. '5js)'

Let ©,={0(c); oceD'W}. Now, for each 6e®, let us denote by A(6) the element
of § defined by A(0)=A4,;...A; where 6=(i, ..., %), and by A@®)=1 if 0 is
empty. Let &, be the submodule of § spanned by A(0(s)), ceD’W. Then we have
#(A(0(0)))=S,. Since {S,;6eD'W} form a base of the free Z-module #(G'B, B),
{Z(O(c));ceD'W} are linearly independent over Z and §|J, is a bijective map
from &, onto #(G'B, B). Hence we shall get Ker(¢)=a if we can show that F=E,.
Therefore we claim that §, is a subring of & (Then, since 1, 4,, ..., A€, we get
immediately §=g,). Thus we have only to show that A(6(s)).A(6(c))eF, for any o,
eD'W. However this will be the case if we have A;.A(0(z))e, for any 7 with 0<i<!
and for any weD'W. Let 0(z)=(j;, ...,J,). We distinguish two cases:

Case 1. — Suppose that A(w;wj ... w;)=s-+1. Then, by Prop. 1.15, we have
A(0(c))=A; A ., where o=w;w; ... w;. Hence A; A(B(1))e,.

Case 2. — Suppose that A(w;wj, ...w;)=s—1. Then, by Cor. 1.11 and
Lemma 1.5, there exists a reduced expression wy, ...wy, of = such that i=k,;. Then
by Prop. 1.15, we have A(8(r))=A;Ay ...A,. Hence

EiZ(e(T))ZE%(Kk, Zk)
= Ak, A+ (g OAD,, Ay
— g8 (0() + (g—1EO(),

where p=uwy, ... wg=w;t. Thus A;A(B(x))eF,, which completes the proof.
Corollary 3.6. — Let 6cDW, 0<i<I[. Then
SiS _qsw1o+( —I)So> Ur )\( )
S;S;=¢Seu;+(g—1)Ss,  if  Aow;)<A(o),
Sisc_swio’ @f )\(
SS; = Squis if  A(ow;) > (o).

Progf. — This is obvious from above if ceD'W. When oeDW, let o=np,
teD'W, peQ. Then, by S,=S8.5,, we get the desired formulas easily.

Now by Th. g.5, the defining relations for the generators S, ..., S, of J#(G’'B, B)
are given. Thus the structure of 5#(G'B, B) is determined only by the structures of g
and k=9O/P. Hence, for example, #(G'B, B)=~#(G'B, B) where bar means the
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corresponding groups for the Chevalley group associated with g, over the completion K
of K.

It is almost obvious that for the Hecke ring 5#(G’, B’), Th. 3.5 is also true, and
in fact, it is shown quite analogously using the properties of G’, B’ in § 2. More precisely
we shall give the following proposition. (We may omit the proof.)

Proposition 3.7. — Let S, denote the double coset B'w(c)B’ (6eD'W) regarded as an
element of #(G’,B'). Then ind(S,)=¢". If oc=uw, ... w; is a reduced expression
of ceD'W, then S,=S; ...S; where S;=S,,.. H(G',B') is isomorphic to #(G'B, B)
by the map S, —S, (ceD'W).

Now let us consider (G, B). Let Z[Q] be the integral group ring of Q.
Then it is easy to see that p—S, (p€Q) defines an injective ring homomorphism
from Z[Q] into H#(G, B) since S S.=S,, for any peQ, teDW. We shall identify
the ring Z[Q] with its image S (N(B),B) in (G, B). Now by Q(D'W)=DW
and QnD'W={1}, (G, B) is identified as Z-module with the tensor product
# (N(B), B) Q;)%’(G’B, B) :Z[Q]C??%”(G’B, B) by p®S_,=8,S, (p€Q, 6eD'W). Now for
any peQ, S, isinvertible in #°(G, B): S,S,_..=S_,..S,=1. Hence Q acts on #(G'B, B)
as an automorphism group through the setting o(S;) =S, S,S'=S (peQ, ceD'W).

e~o™~p T Mpop—?

Thus the multiplication law in the tensor product Z[Q]@%” (G'B, B) is given by
(p®S,) . (p"®S,) = pp'®'p 71 (S,)S

o
for any p, p'€eQ and o,6'eD'W,

Let us call in general such a ring structure of Z[I‘]@Z@m, where R is a ring over Z

and I' is a group acting on R as an automorphism group, the twisted tensor product and

denote by Z[F]@‘R the ring thus obtained Then we have the following proposition
by what we have observed above:
Proposition 3.8. — #(G, B)=Z[Q]®# (G, B').
For example, if g4 is of type (A)), then (G, B) is generated by 1,5, S,, ..., 5
together with the following defining relations:
o' ft=1, pS;p7'=8, ., (0<i<;5,,,=5),
Si=g¢.1+(¢g—1)S;,  (0<i<D).
S;5;5,=S§;S;S;, if j=it1 (mod.l+ 1),

8:8,=5.5:, i jEit1 (mod.l+1).

For the other complex simple Lie algebras, similar relations are easily obtained by
considering the extended Dynkin diagram (with —a«, attached) and the action of Q

on J={w,, ..., w} (cf. § 1.8).

3.2. As an application of Th. 3.5 and Prop. 3.8, we see that S;—>—1 (0<:i</)
S, =1 (p€Q) can be extended uniquely to a homomorphism from #°(G, B) into Z. We
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shall denote this homomorphism by sgn. Then, as in [10, § 5] an involutive automor-
phism E>E of # (G, B) is defined by

Si=(g—1).1—8,  (0<i<))

which satisfies the following properties:
(i) S; is invertible in #o(G, B) =£(G, B)(?Q and S7! =;(Si(q— 1).1). Then
every S, (6€DW) is also invertible in J#4(G, B) and we have

S, =sgn(S,).ind(S,)S; !

(ii) ind(Z) =sgn(£), sgn(£)=ind(£) for any Ze.#(G, B).
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