Skip to main content
Log in

Mathematical modeling of porosity formation in solidification

  • Published:
Metallurgical Transactions B Aims and scope Submit manuscript

Abstract

Shrinkage porosity and gas porosity occur simultaneously and at the same location when conditions are such that both may exist in a solidifying casting. Porosity formation in a solidifying alloy is described numerically, including the possible evolution of dissolved gases. The calculated amount and size of the porosity formed in Al-4.5 pct Cu plate castings compares favorably with measured values. The calculated distribution of porosity in sand cast Al-4.5 pct Cu plates of 1.5 cm thickness matches experimental measurements. The decrease of the hydrogen content by strong degassing and the increase of mold chilling power are recommended to produce sound aluminum alloy castings. The calculated results for steel plate castings are in agreement with the experimental work of Pellini. The present modeling has clarified the basis of empirical rules for soundness and suggests that the simultaneous occurrence of shrinkage and gas evolution is an essential mechanism in the formation of porosity defects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. A. Jeyarajan and R.D. Pehlke:Trans. Amer. Foundrxmen’s Soc., 1978. vol. 86. pp. 457–64.

    Google Scholar 

  2. W. C. Erickson:AFS Int. Cast Metals J., 1980. vol. 5. no. 1, pp. 30–41.

    Google Scholar 

  3. E. Niyama, T. Uchida. M. Morikawa. and S. Saito:AFS Int. Cast Metals J., 1981. vol. 6. no. 2. pp. 16–22.

    Google Scholar 

  4. I. Imafuku:Trans. Japan Soc., of Mech. Engrs., Ser. C, 1981. vol. 47. pp. 918–26.

    Google Scholar 

  5. T. S. Piwonka and M.C. Flemings:Trans. TMS-AIME, 1966, vol. 236. pp. 1157–65.

    CAS  Google Scholar 

  6. J. Campbell:AFS Cast Metals Res. J., 1969. vol. 5. no. 1, pp. 1–8.

    Google Scholar 

  7. V. de L. Davies:AFS Cast Metals Res. J., 1975. vol. 11. no. 2, pp. 33–44.

    CAS  Google Scholar 

  8. I. Ohnaka. Y. Mori. Y. Nagasaka, and T. Fukusako:J. Japan Foundrymen’s Soc., 1981. vol. 53, pp. 673–79.

    Google Scholar 

  9. J.C. Fisher:J. App. Phys., 1948. vol. 19. pp. 1062–67.

    Article  Google Scholar 

  10. K. Kubo, R. D. Pehlke, and T. Fukusako*: The University of Michigan, Ann Arbor, MI and *Osaka University, Suita, Osaka, Japan, unpublished research, 1984.

  11. M.C. Flemings:Solidification Processing. McGraw-Hill Book Co., New York. NY. 1974. pp. 34. 148. 207. and 234.

    Google Scholar 

  12. H. Bester and K.W. Lange:Arch. Eisenhiittennes.. 1972. vol. 43. pp. 207–13.

    CAS  Google Scholar 

  13. J.B. Murphy:Acta Metall., 1961. vol. 9, pp. 563–69.

    Article  CAS  Google Scholar 

  14. P.C. Carman:Trans. Inst. Chem. Eng., 1937. vol. 15. pp. 150–66.

    CAS  Google Scholar 

  15. E.T. Turkdogan:Trans. TMS-AIME. 1965. vol. 233. pp. 2100–12.

    CAS  Google Scholar 

  16. P. J. Roache:Computational Fluid Dynamics. Hermosa Publishers, 1972. p. 64.

  17. M. Hansen:Constitution of Binary Alloys. 2nd ed. McGraw-Hill Book Co., New York. NY. 1958. pp. 84–90. 353-65.

    Google Scholar 

  18. S. Matoba. K. Gunji. and T. Kuwana:Tetsu to Hagané. 1959, vol. 45. pp. 229–232.

    Google Scholar 

  19. T. F. Bower. H.D. Brody. and M.C. Flemings:Trans. TMS-AIME. 1966. vol. 236. pp. 624–34.

    CAS  Google Scholar 

  20. T. Z. Kattamis. J.C. Coughlin, and M.C. Flemings:Trans. TMSAIME. 1967. vol. 239. pp. 1504–11.

    CAS  Google Scholar 

  21. A. Suzuki. T. Suzuki. Y. Nagaoka, and Y. Iwata:Tetsu to Hagané, 1968. vol. 32. pp. 1301–05.

    CAS  Google Scholar 

  22. K. Mori. A. Kamimori, M. Deguchi. and T. Shimoda:Tetsu to Hagané. 1973. vol. 59, pp. 887–97.

    CAS  Google Scholar 

  23. S. Nishi and T. Kurobuchi:Keikinzoku. 1974, vol. 24. pp. 245–54.

    CAS  Google Scholar 

  24. B.R. Deoras and V. Kondic:Foundry Trade J., 1956, vol. 100, pp. 361–64.

    CAS  Google Scholar 

  25. S. Nishi, Y. Shinada. and T. Kurobuchi:Keikinzoku. 1974. vol. 24. pp. 130–34.

    Google Scholar 

  26. K. Kubo. T. Fukusako, and I. Ohnaka:J. Japan Foundrymen’s Soc., 1979. vol. 51. pp. 586–91.

    CAS  Google Scholar 

  27. W. S. Pellini:Trans. Amer. Foundrymen’s Soc., 1953, vol. 61, pp. 61–80.

    Google Scholar 

  28. P. R. Beely:Foundry Technology. Butterworths, London, 1972, p. 112.

    Google Scholar 

  29. C.E. Ransley and D.E. Talbot:Z. Metallknde., 1955, vol.46, p. 328.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kubo, K., Pehlke, R.D. Mathematical modeling of porosity formation in solidification. Metall Trans B 16, 359–366 (1985). https://doi.org/10.1007/BF02679728

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02679728

Keywords

Navigation