Skip to main content
Log in

The kinetics of carbide precipitation in silicon-aluminum steels

  • Published:
Metallurgical Transactions A Aims and scope Submit manuscript

Abstract

The kinetics of carbide precipitation in a fully processed 2.3 wt Pct silicon, 0.66 wt Pct aluminum electrical steel with carbon contents of 0.005 to 0.016 wt Pct were investigated over the temperature range from 150 to 760 °C and times from 30 seconds to 240 hours. The size, morphology, and distribution of the carbide phases, as functions of aging time and temperature, were determined by optical and transmission electron microscopy. The 1.5T core loss was also evaluated and correlated with the changes in precipitation. Distinct C curves were observed for the formation of grain-boundary cementite at temperatures above 350 °C and a transition carbide ({100} α habit plane) at temperatures below 350 °C. Grain-boundary cementite had a relatively small effect on core loss. The large increases in core loss that accompanied transition carbide precipitation peaked at specific aging temperatures depending on the carbon content of the steel. Once a transition carbide dispersion was initially established at a given aging temperature, particle coarsening and core loss changes were generally insensitive to aging time. The influence of a combined addition of silicon and aluminum on the solubility of cementite and the transition carbide in iron was estimated and discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. Neel:Cahiers Phys., 1944, Issue 25, pp. 21–44.

  2. D. Kuppers, S. Kranz, and A. Hubert:J. Appl. Phys., 1968, vol. 39, pp. 608–13.

    Article  Google Scholar 

  3. A.T. English:J. Appl. Phys., 1969, vol. 40, pp. 1573–74.

    Article  CAS  Google Scholar 

  4. C. Kittel and J.K. Galt:Solid State Physics, Academic Press, New- York, NY, 1956, vol. 3, pp. 437–564.

    Google Scholar 

  5. P. J. Adzema and D.J. Knight:Trans. ASM, 1963, vol. 56, pp. 576–82.

    CAS  Google Scholar 

  6. D. A. Leak and G. M. Leak:J. Iron and Steel inst., 1957, vol. 187, pp. 190–94.

    CAS  Google Scholar 

  7. D.J. Knight and P. J. Adzema:Trans. ASM, 1961, vol. 54, pp. 355–61.

    CAS  Google Scholar 

  8. R.M. Bozorth:Ferromagnetism, D. Van Nostrand, New York, NY, 1951, p. 59.

    Google Scholar 

  9. W. C. Leslie and D. W. Stevens:Trans. ASM, 1964, vol. 57, pp. 261–83.

    CAS  Google Scholar 

  10. W. C. Leslie:The Physical Metallurgy of Steels, McGraw-Hill, New York, NY, 1981, pp. 104–06.

    Google Scholar 

  11. J. A. Slane and P. A. Labun:Energy Efficient Electrical Steels, TMS- AIME, Warrendale, PA, 1981, pp. 169–82.

    Google Scholar 

  12. A.T. Tsou, J. Ntting, and J.W. Menter:J. Iron and Steel Inst., 1952, vol. 180, pp. 163–71.

    Google Scholar 

  13. C.A. Wert:Trans. AIME, 1951, vol. 191, pp. 1179–80.

    Google Scholar 

  14. W. Pitsch and K. Lucke:Arch. Eisenhüttenwes., 1956, vol. 27, pp. 45–54.

    CAS  Google Scholar 

  15. W. Pitsch and A. Schrader:Arch. Eisenhüttenwes., 1958, vol. 29, pp. 715–21, BISIT No. 1157.

    CAS  Google Scholar 

  16. R.H. Doremus and E. F. Koch:Trans. AIME, 1960, vol. 218, pp. 591–96.

    CAS  Google Scholar 

  17. R.H. Doremus:Trans. AIME, 1960, vol. 218, pp. 596–605.

    CAS  Google Scholar 

  18. K. F. Hale and D. Mclean:J. Iron and Steel Inst., 1963, vol. 201, pp. 337–52.

    CAS  Google Scholar 

  19. M.G.H. Wells and J.F. Butler:Trans. ASM, 1966, vol. 59, pp. 427–38.

    CAS  Google Scholar 

  20. J. F. Butler:J. Iron and Steel Inst., 1966, vol. 204, pp. 127–32.

    Google Scholar 

  21. E. W. Langer:Metals Sci. J., 1968, vol. 2, pp. 59–66.

    Article  CAS  Google Scholar 

  22. R.F. Vyhnal and S.V. Radcliffe: Acta Metall., 1972, vol. 20, pp. 435–45.

    Article  CAS  Google Scholar 

  23. G. Delisle and A. Galibois:Scripta Metall., 1971,vol. 5, pp. 309–14.

    Article  CAS  Google Scholar 

  24. W. C. Leslie:Acta Metall., 1961, vol. 9, pp. 1004–22.

    Article  CAS  Google Scholar 

  25. J. F. Enrietto, M. G. H. Wells, and E. R. Morgan:Precipitation from Iron Base Alloys, Gordon and Breach, New York, NY, 1965, pp. 141–71.

  26. S.K. Ray, R. Mishra, and O.N. Mohanty:Scripta Metall., 1981, vol. 15, pp. 971–72.

    Article  CAS  Google Scholar 

  27. S.K. Ray, S. Mishra, and O.N. Mohanty:Scripta Metall., 1982, vol. 16, pp. 43–45.

    Article  CAS  Google Scholar 

  28. W. Jaeniche, W. Heller, and J. Brauner:Arch. Eisenhüttenwes., 1966, vol. 37, pp. 821–28, BISI translation 7023.

    CAS  Google Scholar 

  29. W. C. Leslie and G. C. Rauch:Metall. Trans. A, 1978, vol. 9A, pp. 343–49.

    CAS  Google Scholar 

  30. W. C. Leslie, R. M. Fisher, and N. Sen:Acta Metall., 1959, vol. 7, pp. 632–44.

    Article  CAS  Google Scholar 

  31. W.C. Leslie, R. L. Rickett, C.P. Stroble, and G. Konoval:Trans. ASM, 1960, vol. 53, pp. 715–34.

    Google Scholar 

  32. A. S. Key and W. C. Leslie:Material Science Research, Plenum Publishing, New York, NY, 1963, vol. I, pp. 208–50.

    Google Scholar 

  33. G. Konoval, L. Zwell, L. A. Gorman, and W. C. Leslie:Nature, 1959, vol. 184, pp. 1862–63.

    Article  CAS  Google Scholar 

  34. T. Obara, K. Sakata, and T. Irie:Metallurgy of Continuous-Annealed Sheet Steel, TMS-AIME, Warrendale, PA, 1982, pp. 83–98.

    Google Scholar 

  35. L.J. Dijkstra and C. Wert:Phys. Rev., 1950, vol. 79, pp. 979–85.

    Article  CAS  Google Scholar 

  36. L.J. Dijkstra:Magnetism and Metallurgy, Academic Press, New York, NY, 1969, vol. 2, pp. 513–22.

    Google Scholar 

  37. M. Nacken and J. Rahmann:Arch. Eisenhüttenwes., 1960, vol. 31, pp. 153–60.

    CAS  Google Scholar 

  38. W. S. Owen:Trans. ASM, 1954, vol. 46, pp. 812–28.

    Google Scholar 

  39. J. Chipman:Metall. Trans., 1972, vol. 3, pp. 55–64.

    Article  CAS  Google Scholar 

  40. M. H. Thomas and A. L. Geiger: unpublished research, Republic Steel Corp., Independence, OH, 1979.

Download references

Author information

Authors and Affiliations

Authors

Additional information

This paper is based on a presentation made at the symposium “Physical Metallurgy of Electrical Steels” held at the 1985 annual AIME meeting in New York on February 24–28, 1985, under the auspices of the TMS Ferrous Metallurgy Committee.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Michal, G.M., Slane, J.A. The kinetics of carbide precipitation in silicon-aluminum steels. Metall Trans A 17, 1287–1294 (1986). https://doi.org/10.1007/BF02650109

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02650109

Keywords

Navigation