Skip to main content
Log in

An internal variable description of solidification suitable for macrosegregation modeling

  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

A mathematical description of solidification suitable for macrosegregation modeling is presented. The concept incorporates the effect of finite solid diffusion locally in the dendrites, and remelting can be modeled without any need to trace the solute concentrations in the dendritic structure during solidification. This is accomplished by interpreting the mean solute concentrations in the solid as internal variables on which the solid fraction depends and by accounting for the rate of change of these variables due to solidification, remelting, and solid diffusion by additional evolution equations. The material coefficients needed in the model are estimated for a ternary AlFeSi alloy of commercial purity, and the internal variable equations are incorporated in a simple model problem for interdendritic melt flow leading to macrosegregation. The results are compared to similar studies based on the lever rule and the Scheil approach, and it is shown that the choice of solidification description has a pronounced effect on the predicted amount of macrosegregation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. W.D. Bennon and F.P. Incropera:Int. Heat Trans. Mass Trans., 1987, vol. 30 (10), pp. 2161–70.

    Article  CAS  Google Scholar 

  2. W.D. Bennon and F.P. Incropera:Metall. Trans. B, 1987, vol. 18B, pp. 611–16.

    CAS  Google Scholar 

  3. V.R. Voller, A.D. Brent, and C. Prakash:Int. J. Heat Mass Trans., 1989, vol. 32 (9), pp. 1719–32.

    Article  CAS  Google Scholar 

  4. S. Ganesan and D.R. Poirier:Metall. Trans. B, 1990, vol. 21B, pp. 173–81.

    CAS  Google Scholar 

  5. R. Viskanta:JSME Int. J., 1990, vol. 33 (3), pp. 409–23.

    CAS  Google Scholar 

  6. P.J. Prescott, F.P. Incropera, and W.D. Bennon:Int. J. Heat Mass Trans., 1991, vol. 34 (9), pp. 2351–59.

    Article  CAS  Google Scholar 

  7. J. Ni and C. Beckermann:Metall. Trans. B, 1991, vol. 22B, pp. 349–61.

    CAS  Google Scholar 

  8. Q.Z. Diao and H.L. Tsai:Metall. Trans. A, 1993, vol. 24A, pp. 963–73.

    CAS  Google Scholar 

  9. H.D. Brody and M.C. Flemings:Trans. TMS-AIME, 1966, vol. 236, pp. 615–24.

    CAS  Google Scholar 

  10. T.W. Clyne and W. Kurz:Metall. Trans. A, 1981, vol. 12A, pp. 965–71.

    Google Scholar 

  11. S. Kobayashi:J. Cryst. Growth, 1988, vol. 88, pp. 87–96.

    Article  CAS  Google Scholar 

  12. K.S. Yeum, V. Laxmanan, and D.R. Poirier:Metall. Trans. A, 1989, vol. 20A, pp. 2847–56.

    CAS  Google Scholar 

  13. S. Ganesan and D.R. Poirier:J. Cryst. Growth, 1989, vol. 97, pp. 851–959.

    Article  CAS  Google Scholar 

  14. S. Sundarraj and V.R. Voller:Int. J. Heat Mass Transfer, 1993, vol. 36, pp. 713–23.

    Article  CAS  Google Scholar 

  15. V.R. Voller and S. Sundarraj:Mater. Sci. Technol, 1993, vol. 9, pp. 474–81.

    CAS  Google Scholar 

  16. L. Nastac and D.M. Stefanescu:Metall. Trans. A, 1993, vol. 24A, pp. 2107–18.

    CAS  Google Scholar 

  17. T.P. Battle:Int. Mater. Rev., 1992, vol. 37 (6), pp. 249–70.

    CAS  Google Scholar 

  18. M. Rappaz and V. Voller:Metall. Trans. A, 1990, vol. 21A, pp. 749–53.

    CAS  Google Scholar 

  19. D.R. Poirier, P.J. Nandapurkar, and S. Ganesan:Metall. Trans. B, 1991, vol. 22B, pp. 889–900.

    Article  CAS  Google Scholar 

  20. Darning Xu and Quigchun Li:Numer. Heat Transfer, 1991, vol. 20A, pp. 181–201.

    Article  Google Scholar 

  21. Quiping Yu and Yaohe Zhou:Int. J. Heat Mass Transfer, 1991, vol. 34 (3), pp. 843–52.

    Article  CAS  Google Scholar 

  22. Unified Constitutive Equations, A.K. Miller, ed., Elsevier Applied Science, Essex, England, 1987.

    Google Scholar 

  23. D.H. Kirkwood:Mater. Sci. Eng., 1984, vol. 65, pp. 101–09.

    Article  CAS  Google Scholar 

  24. W.H. Press, B.P. Flannery, S.A. Teukolsky, and W.T. Vetterling:Numerical Recipes—The Art of Scientific Computing (FORTRAN Version), Cambridge University Press, New York, NY, 1992.

    Google Scholar 

  25. Equilibrium Diagrams of Aluminium Alloy Systems, Information Bulletin No. 25, The Aluminium Development Association, London, UK, 1961, Dec.

  26. Y. Langsrud, A.L. Dons, E.K. Jensen, and S. Brusethaug:Proc. 3rd Conf. on Aluminium Alloys—Their Physical and Mechanical Properties, L. Arnberg, O. Lohne, E. Nes, and N. Ryum, eds., NTH, SINTEF, Trondheim, Norway, June 1992, vol. I, pp. 15–20.

    Google Scholar 

  27. Stephen Wolfram:Mathematica—A System for Doing Mathematics by Computer, 2nd ed., Addison-Wesley Publishing Company, Inc., 1991.

  28. Y. Langsrud: inUser Aspects of Phase Diagrams, Reading, MA, F.H. Hayes, ed., The Institute of Metals, London, 1991, pp. 90–100.

    Google Scholar 

  29. L. Bäckernd, E. Król, and J. Tamminen:Solidification Characteristics of Aluminium Alloys—Volume 1: Wrought Alloys, Skan-Aluminium, 1986, vol. 1.

  30. B.R. Henriksen and E.K. Jensen:Light Metals, Subodh K. Das, ed., TMS-AIME, Warrendale, PA, 1993, pp. 969–77.

    Google Scholar 

  31. A. Mo, T.E. Johnsen, B.R. Henriksen, E.K. Jensen, and O.R. Myhr:Light Metals, U. Mannweiler, ed., TMS-AIME, Wairendale, PA, 1994, pp. 889–96.

    Google Scholar 

  32. A. Mo:J. Heat Mass Transfer, 1993, vol. 36 (18), pp. 4335–40.

    Article  CAS  Google Scholar 

  33. D. Apelian, M.C. Flemings, and R. Mehrabian:Metall. Trans., 1974, vol. 5, pp. 2533–37.

    Article  CAS  Google Scholar 

  34. N. Streat and F. Weinberg:Metall. Trans. B, 1976, vol. 7B, pp. 417–23.

    Article  CAS  Google Scholar 

  35. K. Murakami and T. Okamoto:Acta Metall., 1984, vol. 32 (10), pp. 1741–44.

    Article  CAS  Google Scholar 

  36. R. West:Metall. Trans. A, 1985, vol. 16A, p. 693.

    CAS  Google Scholar 

  37. D.R. Poirier:Metall. Trans. B, 1987, vol. 1, pp. 245–56.

    Google Scholar 

  38. D.R. Poirier and S. Ganesan:Mater. Sci. Eng., 1992, vol. A157, pp. 113–23.

    CAS  Google Scholar 

  39. M.C. Flemings and G.E. Nereo:Trans. TMS-AIME, 1967, vol. 239, pp. 1449–61.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mo, A. An internal variable description of solidification suitable for macrosegregation modeling. Metall Mater Trans B 25, 597–605 (1994). https://doi.org/10.1007/BF02650080

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02650080

Keywords

Navigation