Skip to main content
Log in

Evaluation of a cotyledonary node regeneration system forAgrobacterium-mediated transformation of pea (Pisum sativum L.)

  • Genetic Transformation
  • Published:
In Vitro Cellular & Developmental Biology - Plant Aims and scope Submit manuscript

Summary

A rapid regeneration system was used for studies ofAgrobacterium-mediated transformation inPisum sativum L. Cotyledonary node explants were inoculated withAgrobacterium tumefaciens strains containing binary vectors carrying genes for nopaline synthase (NOS),β-glucuronidase (GUS), and neomycin phosphotransferase (NPTII) and placed on selection medium containing either 75 or 150 mg/liter kanamycin. A GUS encoding gene (uidA) containing an intron was used to monitor gene expression from 6 to 21 days postinoculation. GUS activity could be observed 6 days after inoculation in the area of the explant in which regeneration-occurred. Regenerating tissue containing transformed cells was observed in explants on selection medium 21 days postinoculation. Using this system, a single transgenic plant was obtained. Progeny of this plant, which contained two T-DNA inserts, demonstrated segregation for the inserts and for expression of the NOS gene in the selfed R1 progeny. NPTII activity was observed in the R2 generation, indicating inheritance and expression of the foreign DNA over at least two generations. Attempts to repeat this procedure were unsuccessful.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • An, G.; Costa, M. A.; Mitra, A., et al. Organ-specific and developmental regulation of the nopaline synthase promoter in transgenic tobacco plants. Plant Physiol. 88:547–552; 1988.

    Article  PubMed  CAS  Google Scholar 

  • An, G.; Costa, M. A.; Ha, S.-B. Nopaline synthase promoter is wound inducible and auxin inducible. Plant Cell 2:225–233; 1990.

    Article  PubMed  CAS  Google Scholar 

  • Christou, P.; McCabe, D. E.; Martinell, B. J., et al. Soybean genetic engineering—commercial production of transgenic plants. Trends Biotech. 8:145–151; 1990.

    Article  CAS  Google Scholar 

  • Deblaere, R.; Bytebier, B.; De Greve, H., et al. Efficient octopine Ti plasmid-derived vectors forAgrobacterium-mediated gene transfer to plants. Nucleic Acids Res. 13:4777–4778; 1985.

    Article  PubMed  CAS  Google Scholar 

  • Dellaporta, S. L.; Wood, J.; Hicks, J. B. Maize DNA miniprep. In: Molecular biology of plants. A laboratory manual. New York: Cold Spring Harbor Laboratory; 1985:36–37.

    Google Scholar 

  • Draper, J.; Scott, R.; Armitage, P., et al. Plant genetic transformation and gene expression. A laboratory manual. London: Blackwell Scientific Publications; 1988.

    Google Scholar 

  • Eapen, S.; Köhler, F.; Gerdemann, M., et al. Cultivar dependence of transformation rates in moth bean after co-cultivation of protoplasts withAgrobacterium tumefaciens. Theor. Appl. Genet. 75:207–210; 1987.

    Article  Google Scholar 

  • Gamborg, O. L.; Miller, R. A.; Ojima, K. Nutrient requirements of suspension cultures of soybean root cells. Exp. Cell Res. 50:151–158; 1968.

    Article  PubMed  CAS  Google Scholar 

  • Gasser, C. S.; Fraley, R. T. Genetically engineering plants for crop improvement. Science 244:1293–1299; 1989.

    Article  CAS  PubMed  Google Scholar 

  • Hinchee, M. A. W.; Conner-Ward, D. V.; Newell, C. A., et al. Production of transgenic soybean plants usingAgrobacterium-mediated DNA transfer. Bio/Technology 6:915–922; 1988.

    Article  CAS  Google Scholar 

  • Hobbs, S. L. A.; Jackson, J. A.; Mahon, J. D. Specificity of strain and genotype in the susceptibility of pea toAgrobacterium tumefaciens. Plant Cell Rep. 8:274–277; 1989.

    Article  CAS  Google Scholar 

  • Hobbs, S. L. A.; Kpodar, P.; DeLong, C. M. O. The effect of T-DNA copy number, position and methylation on reporter gene expression in tobacco transformants. Plant Mol. Biol. 15:851–864; 1990.

    Article  PubMed  CAS  Google Scholar 

  • Hood, E. E.; Helmer, G. L.; Fraley, R. T., et al. The hypervirulence ofAgrobacterium tumefaciens A281 is encoded in a region of pTiBo542 outside of T-DNA. J. Bacteriol. 168:1291–1301; 1986.

    PubMed  CAS  Google Scholar 

  • Jackson, J. A.; Hobbs, S. L. A. Rapid multiple shoot production from cotyledonary node explants of pea (Pisum sativum L.). In Vitro Cell. Dev. Biol. 26:835–838; 1990.

    Article  CAS  Google Scholar 

  • Lulsdorf, M. M.; Rempel, H.; Jackson, J. A., et al. Optimizing the production of transformed pea (Pisum sativumL.) callus using disarmedAgrobacterium tumefaciens strains. Plant Cell Rep. 9:479–483; 1991.

    Article  CAS  Google Scholar 

  • Murashige, T.; Skoog, F. A revised medium for the rapid growth and bioassays with tobacco tissue cultures. Physiol. Plant. 15:473–497; 1962.

    Article  CAS  Google Scholar 

  • Potrykus, I. Gene transfer to plants: assessment and perspectives. Physiol. Plant. 79:125–134; 1990.

    Article  CAS  Google Scholar 

  • Puonti-Kaerlas, J.; Stabel, P.; Eriksson, T. Transformation of pea (Pisum sativum L.) byAgrobacterium tumefaciens. Plant Cell Rep. 8:321–324; 1989.

    Article  Google Scholar 

  • Puonti-Kaerlas, J.; Eriksson, T.; Engström, P. Production of transgenic pea (Pisum sativum L.) plants byAgrobacterium tumefaciens-mediated gene transfer. Theor. Appl. Genet. 80:246–252; 1990.

    Article  Google Scholar 

  • Puonti-Kaerlas, J.; Eriksson, T.; Engström, P. Inheritance of a bacterial hygromycin phosphotransferase gene in the progeny of primary transgenic pea plants. Theor. Appl. Genet. 84:443–450; 1992.

    Article  Google Scholar 

  • Radke, S. E.; Andrews, B. M.; Moloney, M. M., et al. Transformation ofBrassica napus L. usingAgrobacterium tumefaciens: developmentally regulated expression of a reintroduced napin gene. Theor. Appl. Genet. 75:685–694; 1988.

    Article  CAS  Google Scholar 

  • Rogers, S. G.; Klee, H. J.; Horsch, R. B., et al. Improved vectors for plant transformation: expression cassette vectors and new selectable markers. Methods Enzymol. 153:253–277; 1987.

    Article  CAS  Google Scholar 

  • Sambrook, J.; Fritsch, E. F.; Maniatis, T. Molecular cloning: a laboratory manual. New York: Cold Spring Harbor Laboratory; 1989.

    Google Scholar 

  • Vancanneyt, G.; Schmidt, R.; O’Connor-Sanchez, A., et al. Construction of an intron-containing marker gene: splicing of the intron in transgenic plants and its use in monitoring early events inAgrobacterium-mediated plant transformation. Mol. & Gen. Genet. 220:245–250; 1990.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jordan, M.C., Hobbs, S.L.A. Evaluation of a cotyledonary node regeneration system forAgrobacterium-mediated transformation of pea (Pisum sativum L.). In Vitro Cell Dev Biol - Plant 29, 77–82 (1993). https://doi.org/10.1007/BF02632256

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02632256

Key words

Navigation