Skip to main content
Log in

Natural damped frequencies and axial response of a sloshing rotating finite viscous liquid layer in a cylindrical container

  • Published:
Forschung im Ingenieurwesen Aims and scope Submit manuscript

Zusammenfassung

For a finite solidly rotating cylindrical liquid layer of thickness (a−b) in a tank the damped natural axisymmetric frequencies have been determined. The liquid was considered incompressible and viscous. The cases of freely slipping edges and that of anchored edges have been treated. It was found that instability appears in a purely aperiodic root for the spinning liquid bridge. This is in contrast to the instability appearing in the damped oscillatory natural frequency of a non-spinning liquid column at\(\frac{h}{a} \geqq 2\pi \). The spinning viscous liquid layer exhibits the same instability as the frictioneless liquid. It appears at\(\frac{h}{a} \geqq 2\pi /\sqrt {1 + We} \) for axisymmetric, oscillations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. Thomson, W.: On gravitational oscillations of rotating water. Proc. Roy. Soc. Edin. 92 (1879), 141–148 Phil. Mag. 10 (1880), 97–109.

    Google Scholar 

  2. Miles, J.W. andTroesch, B. A.: Surface oscillations of a rotating liquid. J. Appl. Mech. 83 (1961), 491–496.

    MathSciNet  Google Scholar 

  3. Kollman, F.G.: Freie Schwingungen eines rotierenden Flüssigkeitsringes. Ing. Arch. 31 (1962), 250–257.

    Article  MathSciNet  Google Scholar 

  4. Bauer, H.F.: Schwingungen nichtmischbarer Flüssigkeiten im rotierenden Kreiszylinder. ZAMM 60 (1980), 653–661.

    MATH  Google Scholar 

  5. Bauer, H.F.: Freie Schwingugen nichtmischbarer, Flüssigkeiten im rotierenden Kreiszylinder unter Berücksichtigung der Oberflächenspannungen. Forsch. Ing. Wes. 47 (1981), 190–198.

    Article  Google Scholar 

  6. Bauer, H.F.: Rotating finite liquid systems under zerogravity. Forsch. Ing. Wes. 48 (1982), 169–179.

    Article  Google Scholar 

  7. Bauer, H.F.: Coupled oscillations of a solidly rotating liquid bridge. Acta Astronaut. 9 (1982), 547–563.

    Article  MATH  Google Scholar 

  8. Bauer, H.F.: Liquid sloshing response in spin-stabilized missiles or satellites due to axial excitation. Z. Flugwiss. Weltraumforsch. 15 (1991), 252–256.

    Google Scholar 

  9. Bauer, H.F.: Liquid sloshing response in a spinning container due to pitching excitation. Z. Flugwiss. Weltraumforsch. 15 (1991), 386–392.

    Google Scholar 

  10. Bauer, H.F.: Response of a spinning liquid column to axial excitation. Acta Mech. 77 (1989), 153–179.

    Article  MathSciNet  Google Scholar 

  11. Bauer, H.F.: Damped response of an axially excited rotating liquid bridge in zero-gravity. Acta Mech. 79 (1989), 295–301.

    Article  MATH  Google Scholar 

  12. Rayleigh, Lord: On the stability of cylindrical fluid surfaces. Phil. Mag. 34 (1892), 177–180.

    Google Scholar 

  13. Gilles, J.: Stability of a column of rotating viscous liquid. Proc. Cambridge Phil. Soc. 57 (1961), 152–159.

    Article  Google Scholar 

  14. Hocking, L.M.: The stability of a rotating column of liquid. Mathematika 7 (1960), 1–9.

    Article  MathSciNet  MATH  Google Scholar 

  15. Gillis, J. andKaufmann, B.: The stability of a rotating viscous jet. Quart. Appl. Math. 19 (1962), 301–308.

    MATH  MathSciNet  Google Scholar 

  16. Hocking, L.M. andMichael, D.H.: The stability of a column of rotating liquid. Mathematika 6 (1959), 25–32.

    MathSciNet  MATH  Google Scholar 

  17. Gillis, J. andShuh, K.S.: Stability of a rotating liquid column. Phys. Fluids 5 (1962), 1149–1155.

    Article  MATH  Google Scholar 

  18. Bauer, H.F.: Surface- and interface oscillation of a rotating viscous liquid column of immiscible liquids. Forsch. Ing. Wes. 50 (1984), 21–31.

    Article  Google Scholar 

  19. Bauer, H.F.: Surface- and interface oscillations of a rotating visco-elastic liquid column of immiscible liquids. ZAMP 37 (1986), 514–537.

    Article  MATH  Google Scholar 

  20. Carruthers, J.R. andGrasso, M.: Studies of floating liquid zones in simulated zero-gravity. J. Appl. Phys. 43 (1972), 436–445.

    Article  Google Scholar 

  21. Chun, Ch.-H.; Ehmann, M.; Siekmann, J. andWozniak, G.: Vibrations of rotating menisci. Proc. of 6th Europ. Symp. on Material Sciences under Microgravity Conditions. Borde France, 2.–5. Dec. 1986. ESA-SP-256 (1987), 226–234.

  22. Raake, D. andSiekmann, J.: Axially excited natural frequencies in a rapidly rotating cylindrical container. Z. Flugwiss. Weltraumforsch. 15 (1991), 289–296.

    Google Scholar 

  23. Veldman, A.E.P. andVogels, M.E.S.: Axisymmetric liquid sloshing under low-gravity conditions. Acta Astron. 11 (1984), 641–649.

    Article  MATH  Google Scholar 

  24. Ehmann, M.: Numerische Berechnung der Schwingungen axial angeregter rotationssymmetrischer Flüssigkeitsannuli in rotierenden Behältern. Dissertation, Fachbereich Maschinentechnik, Universität-Gesamthochschule-Essen (1991).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bauer, H.F. Natural damped frequencies and axial response of a sloshing rotating finite viscous liquid layer in a cylindrical container. Forsch Ing-Wes 60, 193–205 (1994). https://doi.org/10.1007/BF02628947

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02628947

Keywords

Navigation