Skip to main content
Log in

Human epidermis reconstructed in vitro: A model to study keratinocyte differentiation and its modulation by retinoic acid

  • Regular Papers
  • Published:
In Vitro Cellular & Developmental Biology Aims and scope Submit manuscript

Summary

It was possible to reconstruct epidermis in vitro by seeding dissociated keratinocytes on de-epidermized dermis and growing such recombined cultures for 1 wk, exposed to air, at the surface of the culture medium. These conditions were chosen to mimic the transdermal feeding and the exposure to the atmosphere that occur in vivo. Contrary to classical cultures performed on plastic dishes covered with culture medium, which show rudimentary differentiation and organization, the architecture of the stratified epithelium obtained in reconstructed cultures and the distribution of differentiation markers such as suprabasal keratins, involucrin, and membrane-bound transglutaminase were similar to those of the epidermis of skin biopsies; moreover, biochemical studies showed that the synthesis of the various keratins and the production of cornified envelopes was similar to what is found with skin specimens. The reconstructed epidermis model was found to be very useful to study in vitro the effect of retinoic acid on keratinocyte differentiation and epidermal morphogenesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Asselineau, D.; Bernard, B. A.; Bailly, C., et al. Epidermal morphogenesis and induction of the 67K keratin polypeptide by culture of human keratinocytes at the air-liquid interface. Exp. Cell Res. 159:536–539; 1985.

    Article  PubMed  CAS  Google Scholar 

  2. Asselineau, D.; Bernard, B. A.; Bailly, C., et al. Human epidermis reconstructed by culture: Is it “normal”? J. Invest. Dermatol. 86:181–186; 1986.

    Article  PubMed  CAS  Google Scholar 

  3. Chopra, D. P.; Flaxman, B. A. The effect of vitamin A on growth and differentiation of human keratinocytes in vitro. J. Invest. Dermatol. 64:19–22; 1975.

    Article  PubMed  CAS  Google Scholar 

  4. Christophers, E. Growth stimulation of cultured postembryonic epidermal cells by vitamin A acid. J. Invest. Dermatol. 63:450–455; 1974.

    Article  PubMed  CAS  Google Scholar 

  5. DeLuca, L.; Yuspa, S. H. Altered glycoprotein synthesis in mouse epidermal cells treated with retinyl acetate in vitro. Exp. Cell. Res. 86:106–110; 1974.

    Article  PubMed  CAS  Google Scholar 

  6. Eckert, R. K.; Green, H. Cloning of cDNAs specifying vitamin A responsive human keratins. Proc. Natl. Acad. Sci. USA 81:4321–4325; 1984.

    Article  PubMed  CAS  Google Scholar 

  7. Elias, P. M.; Fritsch, P. O.; Lampe, M., et al. Retinoid effects of epidermal structure differentiation and permeability. Lab. Invest. 44:531–540; 1981.

    PubMed  CAS  Google Scholar 

  8. Fell, H. B.; Mellanby, E. Metaplasia produced in cultures of chick ectoderm by high vitamin A. J. Physiol. 119:470–488; 1953.

    PubMed  CAS  Google Scholar 

  9. Fleckman, P.; Haydock, P.; Blomquist, C., et al. Profilaggrin and the 67KDa keratin are coordinately expressed in cultured human epidermal keratinocytes. J. Cell Biol. 77:315a; 1984.

    Google Scholar 

  10. Funch, E.; Green, H. Changes in keratin gene expression during terminal differentiation of the keratinocyte. Cell 19:1033–1042; 1980.

    Article  Google Scholar 

  11. Fuchs, E.; Green, H. Regulation of terminal differentiation of cultured human keratinocytes by vitamin A. Cell 25:617–625; 1981.

    Article  PubMed  CAS  Google Scholar 

  12. Gilfix, B. M.; Green, H. Bioassay of retinoids using cultured human conjunctival keratinocytes. J. Cell. Physiol. 119:172–174; 1984.

    Article  PubMed  CAS  Google Scholar 

  13. Green, H.; Kehinde, O.; Thomas, J. Growth of cultured human epidermal cells into multiple epithelia suitable for grafting. Proc. Natl. Acad. Sci. USA 76:5665–5668; 1979.

    Article  PubMed  CAS  Google Scholar 

  14. Kim, K. H.; Schwartz, F.; Fuchs, E. Differences in keratin synthesis between normal epithelial cells and squamous cell carcinomas are mediated by vitamin A. Proc. Natl. Acad. Sci. USA 81:4280–4284; 1984.

    Article  PubMed  CAS  Google Scholar 

  15. King, I.; Melle, S. L.; Sartorelli, A. C. A sensitive method to quantify the terminal differentiation of cultured epidermal cells. Exp. Cell Res. 167:252–256; 1986.

    Article  PubMed  CAS  Google Scholar 

  16. Laemmli, U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage. Nature 227:680–685; 1970.

    Article  PubMed  CAS  Google Scholar 

  17. Lasnitzki, I. The effect of excess vitmain A on the embryonic rat oesophagus in culture. J. Exp. Med. 118:1–6; 1963.

    Article  CAS  PubMed  Google Scholar 

  18. Lenoir, M. C. L.; Bernard, B. A.; Pautrat, G., et al. Outer root sheath cells of human hair follicle are able to regenerate a fully differentiated epidermis in vitro. Dev. Biol. 130:610–620; 1988.

    Article  PubMed  CAS  Google Scholar 

  19. Michel, S.; Schmidt, R.; Shroot, B., et al. Outer root sheath cells of human hair follicle are able to regenerate a fully differentiated epidermis in vitro. Dev. Biol. 130:610–620; 1988.

    Article  Google Scholar 

  20. Milstone, L. M.; McGuire, J. Effects of retinoic acid on cultures of stratified epithelial cells. J. Cell Biol. 83:117a; 1979.

    Google Scholar 

  21. Moll, R.; Franke, W. W.; Schiller, D. L. The catalog of human cytokeratins: patterns of expression in normal epithelia, tumors and cultured cells. Cell 31:11–24; 1982.

    Article  PubMed  CAS  Google Scholar 

  22. O’Farrell, P. Z.; Goodman, H. M.; O’Farrell, P. H. High resolution two-dimensional electrophoresis of basic as well as acidic proteins. Cell 12:1133–1142; 1977.

    Article  PubMed  CAS  Google Scholar 

  23. Prunieras, M.; Regnier, M.; Schlotterer, M. Nouveau procédé de culture des cellules épidermiques humaines sur derme homologue ou hétérologue: préparation de greffons recombinés. Ann. Chir. Plast. 24:357–362; 1979.

    PubMed  CAS  Google Scholar 

  24. Regnier, M.; Prunieras, M.; Woodley, D. Growth and differentiation of adult human epidermal cells on dermal substrates. Front. Matrix Biol. 9:4–35; 1981.

    Google Scholar 

  25. Regnier, M.; Schweizer, J.; Michel, S., et al. Expression of high molecular weight (67K) keratin in human keratinocytes cultured on dead de-epidermized dermis. Exp. Cell Res. 165:63–72; 1986.

    Article  PubMed  CAS  Google Scholar 

  26. Regnier, M.; Vaigot, P.; Darmon, M., et al. Onset of epidermal differentiation in rapidly proliferating basal keratinocytes. J. Invest. Dermatol. 87:472–476; 1986.

    Article  PubMed  CAS  Google Scholar 

  27. Reginier, M.; Darmon, M. Dihydroxyvitamin D3 provokes a dramatic acceleration of epidermal differentiation. J. Invest. Dermatol. 90:600a; 1988.

    Google Scholar 

  28. Regnier, M.; Desbas, C.; Bially, C., et al. Differentiation of normal and tumoral human keratinocytes cultured on dermis: reconstruction of either normal or tumoral architecture. In Vitro 24:625–632; 1988.

    CAS  Google Scholar 

  29. Regnier, M.; Ortonne, J. P.; Darmon, M. Normal or pathologic human keratinocytes cultured on dermis reconstructed of either normal of pathologic architecture. J. Invest. Dermatol. 92:144A; 1989.

    Google Scholar 

  30. Rothberg, S. The cultivation of embryonic chicken skin in a chemically defined medium and the response of the epidermis to excess of vitamin A. J. Invest. Dermatol. 49:35–38; 1967.

    Article  PubMed  CAS  Google Scholar 

  31. Rothblat, G. H.; Arborgast, L. Y.; Ovellett, L., et al. Plasma membrane of delipidized serum protein for use in cell culture systems. In vitro 12:554–557; 1976.

    PubMed  CAS  Google Scholar 

  32. Schmidt, R.; Reichert, U.; Michel, S., et al. Plasma membrane transglutaminase and cornified envelope competence in cultured human keratinocytes. FEBS Lett. 86:201–204; 1985.

    Article  Google Scholar 

  33. Shapiro, S. S. Retinoids and epithelial differentiation. In: Sherman, M. I., ed. Retinoids and cell differentiation. Boca Raton, FL: CRC; 1986:29–59.

    Google Scholar 

  34. Sherman, M. I. How do retinoids promote differentiation? In: Sherman, M. I., ed. Retinoids and cell differentiation. Boca Raton, FL: CRC; 1986:161–186.

    Google Scholar 

  35. Simon, M.; Green, H. Participation of membrane-associated proteins in the formation of the cross-linked envelope of the keratinocyte. Cell 36:827–834; 1984.

    Article  PubMed  CAS  Google Scholar 

  36. Simon, M.; Green, H. Enzymatic cross-linking of involucrin and othhr proteins by keratinocyte particulate in vitro. Cell 40:677–683; 1985.

    Article  PubMed  CAS  Google Scholar 

  37. Sporn, M. B.; Dunlop, N. M.; Yuspa, S. H. Retinyl acetate: effect of cellular contact on RNA in epidermis in cell culture in chemically defined medium. Science 182:722–723; 1973.

    Article  PubMed  CAS  Google Scholar 

  38. Sporn, M. B.; Clamon, G. H.; Dunlop, N. M., et al. Activity of vitamin A analogues in cell cultures of mouse epidermis and organ cultures of hamster trachea. Nature 253:47–50; 1975.

    Article  PubMed  CAS  Google Scholar 

  39. Sun T. T.; Eichner, R.; Nelson, W. G., et al. Kertain classes: molecular markers for different types of epithelial differentiation. J. Invest. Dermatol. 81: 109–115s; 1983.

    Article  Google Scholar 

  40. Thivolet, C. H.; Hintner, H. H.; Stanley, J. R. The effect of retinoic acid on the expression of pemphigus and pemphigoid antigens in cultured human keratinocytes. J. Invest. Dermatol. 82:329–334; 1984.

    Article  PubMed  CAS  Google Scholar 

  41. Watt, F. M.; Green, H. Involucrin synthesis is correlated with cell size in human epidermal cultures. J. Cell Biol. 90:738–742; 1981.

    Article  PubMed  CAS  Google Scholar 

  42. Watt, F. M.; Phil, D. Involucrin and other markers of keratinocyte terminal differentiation. J. Invest. Dermatol. 81:101–103s; 1983.

    Article  Google Scholar 

  43. Winter, M.; Schweizer, J.; Goerttler, K. Keratin as markers of malignancy in mouse epidermal tumors. Carcinogenesis 1:391–398; 1980.

    Article  PubMed  CAS  Google Scholar 

  44. Yuspa, S. H.; Harris, C. C. Altered differentiation of mouse epidermal cells treated with retinyl acetate in vitro. Exp. Cell Res. 86:95–105; 1974.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Regnier, M., Darmon, M. Human epidermis reconstructed in vitro: A model to study keratinocyte differentiation and its modulation by retinoic acid. In Vitro Cell Dev Biol 25, 1000–1008 (1989). https://doi.org/10.1007/BF02624133

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02624133

Key words

Navigation