Skip to main content
Log in

A highly conserved sequence in H1 histone genes as an oligonucleotide hybridization probe: Isolation and sequence of a duck H1 gene

  • Published:
Journal of Molecular Evolution Aims and scope Submit manuscript

Summary

A 3.5-kb HindIII fragment of a histone gene cluster was isolated from a recombinant phage out of a duck genomic library. This DNA contains a duck H1 gene and its flanking sequences. The hybridization probe, which was used to screen for the H1 gene, had been designed on the basis of a comparative analysis of available H1 gene and protein data. Most H1 histones contain repeated motifs in their C-terminal domain, and these form part of an octapeptide (ser pro lys lys ala lys lys pro) that is highly conserved in many H1 histone proteins. A comparison of the duck H1 described here with two different published chicken H1 histone sequences reveals conservative amino acid exchanges at 22 (of 217 and 218, respectively) positions. The homology is maintained at the flanking sequences, and includes the putative H1 histone gene-specific signal structures and the established 3′ stem and loop structures and the CAAGA box. The duck H1 gene and its flanking sequence have been found in identical arrangements in two recombinant bacteriophages, but minor sequence variations and genomic Southern blotting after HindIII digestion suggest that we have either isolated alleles of this genome segment or that the gene described may occur twice per haploid duck genome.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Allan J, Hartman PG, Crane-Robinson C, Aviles FJ (1980) The structure of histone H1 and its location in chromatin. Nature 288:675–679

    Article  PubMed  CAS  Google Scholar 

  • Allan J, Mitchell T, Harborne N, Böhm L, Crane-Robinson C (1986) Roles of H1 domains in determining higher order chromatin structure and H1 location. J Mol Biol 187:591–601

    Article  PubMed  CAS  Google Scholar 

  • Appels R, Wells JRE (1972) Synthesis and turnover of DNA bound histone during maturation of avian red blood cells. J Mol Biol 70:425–434

    Article  PubMed  CAS  Google Scholar 

  • Benton DW, Davis RW (1977) Screening λgt recombinant clones by hydrization to single plaques in situ. Science 196:180–182

    Article  PubMed  CAS  Google Scholar 

  • Berk AJ, Sharp PA (1977) Sizing and mapping of early adenovirus mRNA's by gel electrophoresis of S1 endonuclease digested hybrids. Cell 12:721–732

    Article  PubMed  CAS  Google Scholar 

  • Birnstiel ML, Busslinger M, Strub K (1985) Transcription termination and 3′ processing: the end is in site. Cell 41:349–359

    Article  PubMed  CAS  Google Scholar 

  • Böhm L, Mitchell TC (1985) Sequence conservation, in the N-terminal domain of histone H1. FEBS Lett 193:1–4

    Article  PubMed  Google Scholar 

  • Bradury EM, Inglis RJ, Matthews HR (1974) Control of cell division by very lysine rich histone (F1) phosphorylation. Nature 247:257–261

    Article  Google Scholar 

  • Bradbury EM, Chapman GE, Danby SE, Hartman PG, Riches PL (1975) Studies on the role and mode of operation of the very lysine rich hostone H1 (F1) in eukaryote chromatin. Eur J Biochem 57:521–528

    Article  PubMed  CAS  Google Scholar 

  • Chan DCF, Biard-Roche J, Gorka C, Girardet JM, Lawrence JJ, Piette LH (1985) The role of the central globular domain of histone H5 in chromatin structure. J Biomol Struct & Dyn 2:319–332

    Google Scholar 

  • Cole KD, York RG, Kistler WS (1984) The amino acid sequence of boar H1t, a testis specific H1 histone variant. J Biol Chem 259:13695–13702

    PubMed  CAS  Google Scholar 

  • Coles LS, Wells JRE (1985) An H1 histone gene specific 5′ element and evolution, of H1 and H5 genes. Nucleic Acids Res 13:585–594

    Article  PubMed  CAS  Google Scholar 

  • Connor W, Mezquita J, Winkfein RJ, States JC, Dixon GH (1984a) Organization of the histone genes in the rainbow trout (Salmo gairdnerii). J Mol Evol 20:227–235

    Article  PubMed  CAS  Google Scholar 

  • Connor W, States JC, Mezquita J, Dixon GH (1984b) Organization and nucleotide sequence of rainbow trout histone H2A and H3 genes. J Mol Evol 20:236–250

    Article  PubMed  CAS  Google Scholar 

  • Currier TC, Nester EW (1976) Isolation of covalently closed circular DNA of high molecular weight from bacteria. Anal Biochem 76:431–444.

    Article  PubMed  CAS  Google Scholar 

  • Czelusniak J, Goodman M, Hewett-Emmett D, Weiss ML, Venta PJ, Tashian RE (1982) Phylogenetic origins and adaptive evolution of avian hemoglobin genes. Nature (Lond) 298:297–300

    Article  CAS  Google Scholar 

  • D'Andrea R, Coles LS, Lesnikowski C, Tabe L, Wells JRE (1985) Chromosomal organization of chicken histone genes: preferred associations and inverted duplications Mol Cell Biol 5:3108–3115

    PubMed  Google Scholar 

  • Doenecke D, Tönjes R (1984) Conserved dyad symmetry structures at the 3′ end of H5 histone genes: analysis of the duck H5 gene. J Mol Biol 178:121–135

    Article  PubMed  CAS  Google Scholar 

  • Doenecke D, Tönjes R (1986) Differential distribution of lysine and arginine residues in the closely related histones H1° and H5. Analysis of a human H1° gene. J Mol Biol 187:461–464

    Article  PubMed  CAS  Google Scholar 

  • Gjerset R, Gorka C, Hasthorpe S, Lawrence JJ, Eisen H (1982) Developmental and hormonal regulation of protein H1° in rodents. Proc Natl Acad Sci USA 79:2333–2337

    Article  PubMed  CAS  Google Scholar 

  • Greenaway PJ, Murray K (1971) Heterogeneity and polymorphism in chicken erythrocyte histone fraction V. Nature New Biol 229:233–238

    Article  PubMed  CAS  Google Scholar 

  • Hohmann P (1983) Phosphorylation of H1 histones. Mol Cell Biochem 57:81–92

    Article  PubMed  CAS  Google Scholar 

  • Isenberg I (1979) Histones. Annu Rev Biochem 48: 159–191

    Article  PubMed  CAS  Google Scholar 

  • Krieg PA, Robins AJ, Colman A, Wells JRE (1982) Chicken histone H5 mRNA: the polyadenylated RNA lacks the conserved histone 3′ terminator sequence. Nucleic Acids Res 10:6777–6785

    Article  PubMed  CAS  Google Scholar 

  • Lathe R (1985) Synthetic oligonucleotide probes deduced from amino acid sequence data. Theoretical and practical considerations. J Mol Biol 183:1–12

    Article  PubMed  CAS  Google Scholar 

  • Louie AJ, Dixon GH (1973) Kinetics of phosphorylation of testis histones and their possible role in determining chromosomal structure. Nature New Biol 243:164–168

    PubMed  CAS  Google Scholar 

  • Macleod AR, Wong NCW, Dixon GH (1977) The amino acid sequence of trout testis histone H1. Eur J Biochem 78:281–291

    Article  PubMed  CAS  Google Scholar 

  • Maniatis T, Fritsch EF, Sambrook J (1982) Molecular cloning. a laboratory manual. Cold Spring Harbor Laboratory, Cold Spring Harbor NY

    Google Scholar 

  • Maxam A, Gilbert W (1977) Sequencing end-labelled DNA with base specific chemical cleavages. Methods Enzymol 65:499–560

    Article  Google Scholar 

  • Mezquita J, Connor W, Winkfein RJ, Dixon GH (1985) An H1 histone gene from rainbow trout (Salmo gairdnerii). J Mol Evol 21:209–219

    Article  CAS  Google Scholar 

  • Niessing J, Erbil C, Neubauer V (1982) The isolation and partial characterization of linked αA and αD globin genes from a duck DNA recombinant library. Gene 18:187–191

    Article  PubMed  CAS  Google Scholar 

  • Overton GC, Weinberg ES (1978) Length and sequence heterogeneity of the histone gene repeat unit of the sea urchinS. purpuratus. Cell 14:247–257

    Article  PubMed  CAS  Google Scholar 

  • Panyim S, Chalkley R (1969) A new histone found only in mammalian tissues with little cell division. Biochem Biophys Res Commun 37:1042–1049

    Article  PubMed  CAS  Google Scholar 

  • Rigby PWJ, Dieckmann M, Rhodes C, Berg P (1977) Labeling deoxyribonucleic acid to high specific activity in vitro by nick translation with DNA polymerase I. J Mol Biol 113:237–251

    Article  PubMed  CAS  Google Scholar 

  • Ruiz-Carrillo A, Affolter M, Renaud J (1983) Genomic organization of the genes coding for the six main histones of the chicken: complete sequence of the H5 gene. J Mol Biol 170:843–859

    Article  PubMed  CAS  Google Scholar 

  • Sinha ND, Biernat J, McManus J, Köster H (1984) Polymer support oligonucleotide synthesis XVIII: use of β-cyanoethyl-N,N-dialkyl-amino-N-morpholino phosphoramidite of deoxynucleosides for the synthesis of DNA fragments simplifying deprotection and isolation of the final product. Nucleic Acids Res 12:4539–4557

    Article  PubMed  CAS  Google Scholar 

  • Southern E (1975) Detection of specific sequences among DNA fragments separated by gel electrophoresis. J Mol Biol 98:503–517

    Article  PubMed  CAS  Google Scholar 

  • Stein GS, Stein JL, Marzluff WF (eds) (1984) Histone genes, structure, organization and regulation. Wiley Interscience, New York

    Google Scholar 

  • Sugarman BJ, Dodgson JB, Engel JD (1983) Genomic organization, DNA sequence, and expression of chicken embryonic histone genes. J Biol Chem 258:9005–9016

    PubMed  CAS  Google Scholar 

  • Thoma F, Koller T, Klug A (1979) Involvement of histone H1 in the organization of the nucleosome and of the salt dependent superstructures of chromatin. J Cell Biol 83:403–427

    Article  PubMed  CAS  Google Scholar 

  • Thoma F, Losa R, Koller T (1983) Involvement of the domains of histones H1 and H5 in the structural organization of soluble chromatin. J Mol Biol 167:619–640

    Article  PubMed  CAS  Google Scholar 

  • Thomas PS (1980) Hybridization of denatured RNA and small DNA fragments transferred to nitrocellulose. Proc Natl Acad Sci USA 77:5201–5205

    Article  PubMed  CAS  Google Scholar 

  • Tönjes R, Doenecke D (1985) Structure of a duck H3 variant histone gene: a H3 subtype with four cysteine residues. Gene 39:275–279

    Article  PubMed  Google Scholar 

  • Turner PC, Aldridge TC, Woodland HR, Old RW (1983) Nucleotide sequence of H1 histone genes fromXenopus laevis. A recently diverged pair of H1 genes and an unusual H1 pseudogene. Nucleic Acids Res 11:4093–4107

    Article  PubMed  CAS  Google Scholar 

  • Von Holt C, Strickland WN, Brandt WF, Strickland MS (1979) More histone structure. FEBS Lett 100:201–218

    Article  Google Scholar 

  • Wells DE (1986) Compilation analysis of histones and histone genes. Nucleic Acids Res 14(Suppl):r119-r149

    PubMed  CAS  Google Scholar 

  • Yaguchi M, Roy C, Dove M, Seligy V (1979) Amino acid sequence homologies between H1 and H5 histones. Biochem Biophys Res Commun 76:100–106

    Article  Google Scholar 

  • Yasuda H, Matsumoto Y, Mita S, Marunouchi T, Yamada M (1981) A mouse temperature-sensitive mutant defective in H1 histone phosphorylation is defective in deoxyribonucleic acid synthesis and chromosome condensation. Biochemistry 20:4414–4419

    Article  PubMed  CAS  Google Scholar 

  • Younghusband HB, Sturm R, Wells JRE (1986) Mutagenesis of conserved 5′ elements and transcription of a chicken H1 histone gene. Nucleic Acids Res 14:635–644

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tönjes, R., Doenecke, D. A highly conserved sequence in H1 histone genes as an oligonucleotide hybridization probe: Isolation and sequence of a duck H1 gene. J Mol Evol 25, 361–370 (1987). https://doi.org/10.1007/BF02603121

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02603121

Key words

Navigation