Skip to main content
Log in

Ignimbrite sequence on Gran Canaria

  • Published:
Bulletin Volcanologique Aims and scope Submit manuscript

Abstract

The Miocene sequence of felsic extrusive rocks of about 1000 m total thickness on Gran Canaria is divided into three units:

  1. a)

    A lower unit of trachytic rhyolites (lavas, composite flows, ignimbrites) characterized by a phenocryst assemblage of anorthoclase (Or15–20, wt%), clinopyroxene, hypersthene (amphibole substituted for both in ignimbrites), and Fe/Ti-oxides. The commonest groundmass minerals are anorthoclase and alkali-amphibole, with minor quartz and aegirine.

  2. b)

    A middle unit of comenditic and pantelleritic ignimbrites characterized by anorthoclase (Or20–32) and amphibole. Phenocryst minerals restricted to individual flows are Fe/Ti-oxides (several comendites), clinopyroxene, biotite, and sphene. The commonest groundmass minerals are anorthoclase and Tiaegirine, with lesser katophorite, arfvedsonite and quartz.

  3. c)

    An upper unit of trachvtic and phonolitic ignimbites and lava flows (normative ne rarety exceeding 10%) with nepheline phonolite lava flows becoming increasingly abundant upwards. The ignimbrites have mostly anorthoclase (Or30-04), and biotite, with rarer Fe/Ti-oxides, hornblende, and clinopyroxene. The commonest groundmass minerals are anorthoclase, aegirine, and alkali-amphiboles, and in some flows nepheline.

The change from Na-rich to K-rich anorthoclase upwards in the sequence supports the conclusion, based on over 50 new stratigraphically controlled chemical analyses that the Na2O/K2O-ratio decreases within the sequence. possibly as a result of crystal iractionation processes and this effect is independent of probable loss of Na on post-eruptive crystallization.

While hydroxyl-bearing phenocryst minerals are absent from all rocks called lava in the field, they are ubiquitous in the ignimbrites, indicating the importance of Pu2o in the generation of suspension-type cruptions.

Compositional gradients must have been particularly pronounced in the small magma chambers that existed beneath Gran Canaria, resulting in a wide range of compositionally zoned or mixed deposits.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Bailey, D. K. andSchairer, F., 1964,Feldspar-liquid equilibria in peralkaline liquids: the orthoclase effect. Am. J. Sci.,262, 1198–1206.

    Article  Google Scholar 

  • ——— ———, 1966,The system Na 2 O-Al 2 O 3 -Fe 2 O 3 -SiO 2 at 1 atmosphere, and the petrogenesis of alkaline rocks. J. Petrol.,7, 114–170.

    Google Scholar 

  • Baker, I., 1968,Intermediate oceanic volcanic rocks and the « Daly Gap. » Earth. Plan. Sci. Lett.,4, 103–106.

    Article  Google Scholar 

  • Baker, P. E., Gass, I. G., Habbis, P. G. andLe Maitre, R. W., 1964,The volcanological report of the Royal Society expedition to Tristan da Cunha, 1962. Phil. Trans. Roy. Soc. London, ser. A.,256, 439–578.

    Google Scholar 

  • Blake, D. H., Elwell, R. W. D., Gibson, I. L., Skelhorn, R. R. andWalker, G. P. L., 1965,Some relationships resulting from the intimate association of acid and basic magmas. Quart. J. Geol. Soc. London,121, 31–49.

    Article  Google Scholar 

  • Bourcart, J. andJeremine, E., 1937,La Grande Canarie; Etude géologique et lithologique. Bull. Volc., Ser. 2,2, 3–77.

    Article  Google Scholar 

  • Bowen, N. L., 1945,Phase equilibria bearing on the origin and differentiation of the alkaline rocks. Am. J. Sci.,243 A, 75–89.

    Google Scholar 

  • Broch, P. D., 1946,I. Lavas of the Bouvet Island. In Two contributions to Antarctic petrography. Scient. Results Norw. Antarct. Exped. No. 25, 3–26.

  • Cann, J. R., 1968,Bimodal distribution of rocks from volcanic islands. Earth Plan. Sci. Lett.,4, 479–481.

    Article  Google Scholar 

  • Carmichael, I. S. E., 1962,Pantelleritic liquids and their phenocrysts. Min. Mag.,33, 86–113.

    Article  Google Scholar 

  • ——— andMackenzie, L. S., 1963,Feldspar-liquid equilibria in pantellerites: an experimental study. Am. J. Sci.,261, 382–396.

    Article  Google Scholar 

  • Chayes, F., 1963,Relative abundance of intermediate members of the oceanic basalttrachyte association. J. Geophys. Res.,68, 1519–34.

    Google Scholar 

  • Coombs, D. S., 1963,Trends and affinities of basaltic magmas and pyroxenes as illustrated on the diopside-olivine-silica diagram. Miner. Soc. Amer. (Spec. Pap. I), 227–250.

  • Daly, R. A., 1925,The geology of Ascension Island. Proc. Amer. Acad. Arts Sci.,60, 1–180.

    Google Scholar 

  • ———, 1927,The geology of St. Helena Island. Proc. Amer. Acad. Arts Sci.,62, 31–92.

    Google Scholar 

  • Ewart, A., Taylor, S. R. andCapp, A., 1968,Geochemistry of the pantellerites of Mayor Island, New Zealand. Contr. Min. Pet.,17, 116–140.

    Article  Google Scholar 

  • Finckh, L., 1913,Die Gesteine der Insel Madeira und Porto Santo. Z. D. Geol. Ges.,65, 453–517.

    Google Scholar 

  • Gass, I. G. andMallick, D. I. J., 1968,Jebel Khariz: An Upper Miocene Strato- Volcano of Comenditic Affinity on the South Arabian Coast. Bull. volc.,32, 33–89.

    Google Scholar 

  • Gibson, I. L. andTazieff, H., 1967,Additional theory of origin of fiamme in ignimbrites. Nature,215, 1473–1474.

    Article  Google Scholar 

  • Hausen, H., 1958,Contributions to the geology of Tenerife (Canary Islands). Soc. sci. Fenn. comm. phys. math.,18, 1–270.

    Google Scholar 

  • ———, 1962,New contributions of the geology of Grand Canary. Soc. sci. Fenn. comm. phys. math.,27, 1–418.

    Google Scholar 

  • Jeremine, E., 1933,Contribution à l’étude pétrographique des trois iles de l’archipel canarien — Ténérife, La Palma, Gran Canaria. Bull. Soc. Fr. min. crist.,56, 189–261.

    Google Scholar 

  • Le Maitre, R. W., 1962,Petrology of volcanic rocks, Gough Island, South Atlantic. Bull. Geol. Soc. Amer.,73, 1309–1340.

    Article  Google Scholar 

  • ———, 1968,Chemical variation within and between volcanic rock series — A statistical approach. Jour. Petrol.,9, 220–252.

    Google Scholar 

  • Lipman, P. W., 1967,Mineral and chemical variations within an ash-flow sheet from Aso Caldera, Southwestern Japan. Contr. Min. Pet.,16, 300–327.

    Article  Google Scholar 

  • Macdonald, G. A. andKatsura, T., 1964,Chemical composition of Hawaiian lavas. Jour. Petr.,5, 82–133.

    Google Scholar 

  • McBirney, A. R. andGass, I. G., 1967,Relations of occasion volcanic rocks to midocean rises and heat flow. Earth Planet. Sci. Lett.,2, 265–276.

    Article  Google Scholar 

  • Melson, W. G., Thompson, G. andVan Andei, T., 1968,Volcanism and metamorphism in the Mid-Atlantic Ridge, 22° N Latitude. J. Geophys. Res.73, 5925–5943.

    Article  Google Scholar 

  • Nicholls, J. andCarmichael, J. S. E., 1969.Peralkaline acid liquids: A petrological study. Contr. Min. Pet.,20, 268–294.

    Article  Google Scholar 

  • Noble, D. C., 1965,Gold Flat Member of the Thirsty Canyon Tuff — a pantellerite ashflow sheet in Southern Nevada. U. S. Geol. Survey, Proless. Papers 525-B, 85–90.

  • ———, 1967,Sodium, Potassium, and Ferrous Iron Contents of some secondarily hydrated natural silicic glasses. Am. Min.,52, 280–285.

    Google Scholar 

  • ———, 1968,Systematic variation of major elements in comendite and pantellerite Glasses. Earth Planet. Sci. Lett.4, 167–172.

    Article  Google Scholar 

  • Romano, R., 1968,New petrochemical data of volcanites from the Island of Pantelleria (Channel of Sicily). Geol. Rundsch.,57, 773–784.

    Article  Google Scholar 

  • Schmincke, H. U., 1967,Cone sheet swarm, resurgence of Tejeda Caldera and the early geologic history of Gran Canaria. Bull. vole.,13, 153–162.

    Article  Google Scholar 

  • ———, 1968a, Faulting versus erosion and the reconstruction of the Mid-Miocene shield volcano of Gran Canaria, Geol. Mitt.,8, 23–50.

    Google Scholar 

  • ---, 1968b,Simultancruption cines rhyolitischen Ignimbrits und einer basaltischen Lava auf Gran Canaria. Deutsche Mineralogrsche Gesellschalt. 46. Jahrestagung Sept. 1968 (Abs.).

  • ---, andSwanson, D. A., 1966,Eine alte Caldera aut Gran Canaria, N. Jb. Geol. Pal. Mh., 260–269.

  • ——— ———, 1967a, Ignimbrite origin of autaxites from Tencrife, Canary Islands. N. Jb. Geol. Pal. Mh.,1967, 700–703.

    Google Scholar 

  • Schmincke, H. U., andSwanson, D. A., 1967b, Laminar viscous flowage structures in welded ash flow tuffs from Gran Canaria, Canary Islands. J. Geol.,75, 641–663.

    Article  Google Scholar 

  • Smith, R. L., 1960,Ash flows. Geol. Soc. Am. Bull.,71, 795–841.

    Google Scholar 

  • ———, andBailey, R. A., 1966,The Bandelier tuff: A study of ash-flow eruption cycles from zoned magma chambers. Bull. volc.,29, 83–105.

    Article  Google Scholar 

  • Torre De Assunçao, C. F., 1961,Estudo petrografico da Ilha de S. Miguel (Açores). Comm. Serv. Geol. Portugal, XLV, 81–176.

  • Vlodavetz, V. I., 1966,The problem of tufflavas and ignimbrites. 1–15, InTufflavas and ignimbrites. Earl F. Cook, Ed., Elsevier, Amsterdam, 1–212.

    Google Scholar 

  • Wager, L. R., Vincent, E. A., Brown, G. M. andBell, J. D., 1965,Marscoite and related rocks of the western Red Hills Complex, Isle of Skye. Roy. Soc. London. Philos. Trans. A,257, 273–307.

    Google Scholar 

  • Walker, G. P. L., 1966,Acid volcanic rocks in Iceland. Bull. volc.,29, 375–402.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schmincke, H.U. Ignimbrite sequence on Gran Canaria. Bull Volcanol 33, 1199–1219 (1969). https://doi.org/10.1007/BF02597716

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02597716

Keywords

Navigation