Skip to main content
Log in

Rotating finite liquid systems under zero-gravity

  • Published:
Forschung im Ingenieurwesen A Aims and scope Submit manuscript

Abstract

The coupled natural frequency equation for rotating cylindrical liquid bridges of finite length consisting of one liquid or two immiscible liquids are presented. Various important cases such as a single liquid around a center core, two immiscible liquids in a completely filled circular cylindrical container, two immiscible liquids exhibiting besides the interface also an outer free surface have been treated. Natural frequencies and surface- and interface elevations have been treated numerically.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Proceedings of the Third Space Processing Symposium, Skylab Results. NASA-Report M, April 30-May 1, 1974. Marshall Space Flight Center, Alabama, USA 35812.

  2. Lewis, G., P. Fostor andB. White: Preliminary study of a general-purpose floating zone electrophoresis facility in space. Proc. Second European Symposium on Material Sciences in Space. Frascati/Italy April 6–8, 1976, ESA-SP-114 (Sept. 1976) pp. 167/74.

  3. Da-Riva, I., andJ.M. Ruesga: Fluid-physics-module experiments. Proc. Second European Symposium on Material Sciences in Space. Frascati/Italy April 6–8, 1976, ESA-SP-114 (Sept. 1976) pp. 265/75.

  4. Wuest, W.: Fluid-dynamics of a floating zone. Proc. Second European Symposium on Material Sciences in Space. Frascati/Italy April 6–8, 1976, ESA-SP-114 (Sept. 1976) pp. 455/65.

  5. Chun, Ch.-H.: Marangoni convection in a floating zone under reduced gravity. J. Crystal Growth Vol. 48 (1980) pp. 600/10.

    Google Scholar 

  6. Lord Rayleigh: On the capillarity phenomena of jets. Proc. Roy. Soc. XXIX (1879), pp. 71/97, and: On the instability of jets. Proc. Lond. Math. Soc. Vol. X (1879) pp. 4/13.

    Google Scholar 

  7. Lamb, H.: Hydrodynamics. New York: Dover Publication 1945, pp. 471/73.

    Google Scholar 

  8. Lord Rayleigh: On the instability of cylindrical fluid surfaces. Philos. Mag. Vol. XXXIV (1892) pp. 177/80.

    Google Scholar 

  9. Bauer, H.F.: Schwingungen nichtmischbarer Flüssigkeiten im rotierenden Kreiszylinder. ZAMM Vol. 60 (1980) pp. 653/61.

    Google Scholar 

  10. Bauer, H.F.: Freie Schwingungen nichtmischbarer Flüssigkeiten im rotierenden Kreiszylinder unter Berücksichtigung der Oberflächenspannungen. Forsch. Ing.-Wes. Vol. 47 (1981) No. 6, pp. 190/98.

    Google Scholar 

  11. Gillis, J.: Stability of a column of rotating viscous liquid. Proc. Cambridge Phil. Soc. Vol. 57 (1961) pp. 152/59.

    MathSciNet  Google Scholar 

  12. Mason, G.: An experimental determination of the stable length of cylindrical liquid bubbles. J. Colloid Interface Sci. Vol. 32 (1970) pp. 172/76.

    Article  Google Scholar 

  13. Carruthers, J.R., andM. Grasso: Studies of floating liquid zones in simulated zero gravity. J. Appl. Phys. Vol. 43 (1972) No. 2, pp. 436/45.

    Article  Google Scholar 

  14. Padday, J.F.: Capillary forces and stability in zerogravity environments. Proc. Second European Symposium on Material Sciences in Space. Frascati/Italy April 6–8, 1976, ESA-SP-114 (Sept. 1976) pp. 443/54.

  15. Fowle, A.A., J.J. Haggerty, R.R. Perron, P.F. Strong andJ.L. Swanson: Float-zone processing in a weightless environment. NASA CR 2768, Nov. 1976.

  16. Plateau, J.A.F.: Experimental and theoretical researches on the figures of equilibrium of a liquid mass withdrawn from the action of gravity. Smithonian Inst. Ann. Rep. (1863) pp. 207/85; (1864) pp. 286/369: (1865) pp. 411/35; (1866) pp. 255/89. Washington: Government Printing Office.

  17. Brice, J.C.: The kinetics of growth from solution. J. Crystal Growth Vol. 1 (1967) pp. 218/24.

    Google Scholar 

  18. Da-Riva, I., andI. Martinez: Floating zone stability. Proc. Third European Symp. on Material Science in Space, Grenoble April 24–27, 1979, ESA-SP-142 (1979) pp. 67/73.

  19. Martinez, I.: Floating zone under reduced gravity—Axisymmetric equilibrium shapes. Proc. Second European Symposium on Material Sciences in Space, Frascati/Italy April 6–8, 1976, ESA-SP-114 (Sept. 1976) pp. 277/82.

  20. Bauer, H.F.: Gekoppelte Schwingungen einer rotierenden Flüssigkeitsbrücke aus nichtmischbaren Flüssigkeiten, Teil I und II. Forschungsbericht der Hochschule der Bundeswehr München, Germany, LRT-WE-9-FB-13-80 and FB-4-81.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bauer, H.F. Rotating finite liquid systems under zero-gravity. Forsch Ing-Wes 48, 169–179 (1982). https://doi.org/10.1007/BF02561600

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02561600

Keywords

Navigation