Skip to main content
Log in

Bone densitometry of excised vertebrae; Anatomical relationships

  • Clinical Investigations
  • Published:
Calcified Tissue International Aims and scope Submit manuscript

Summary

Bone mineral density (BMD) was determined in 32 excised vertebrae using three methods: (1) dual-energy quantitative computed tomography (QCT), (2) dual-photon absorptiometry (DPA) with 153-Gd in an anteriorposterior projection and (3) scanning slit X-ray absorptiometry (SSXA) in both AP and lateral projections. The QCT region-of-interest in the anterior vertebral body had a lower density than that of the total trabecular portion of the body, but was highly correlated to this larger region (r=0.96; SEE=8 mg/cm3). The anterior QCT region also correlated moderately with BMD from DPA (r=0.77; SEE=18 mg/cm3). Measurements of the vertebral body in lateral projection were less well correlated (r=0.5–0.7) to QCT densities. Both the anterior QCT region (r=0.81; SEE=18 mg/cm3) and the BMD from DPA (r=0.86; SEE=16 mg/cm3) were similarly predictive of density of the integral vertebral body. Differences among densitometric methods on the spine depend on the projection used and the region examined.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Mazess RB, Barden HS (1989) Bone densitometry for diagnosis and monitoring osteoporosis. Proc Soc Exp Biol 191:261–271

    CAS  Google Scholar 

  2. Barden HS, Mazess RB (1989) Bone densitometry of the appendicular and axial skeleton. Top Geriatr Rehabil 4:1–12

    Google Scholar 

  3. Sartoris DJ, Resnick D (1989) Dual-energy radiographic absorptiometry for bone densitometry: current status and perspective. AJR 152:241–246

    PubMed  CAS  Google Scholar 

  4. Jones CD, Laval-Jeantet AM, Laval-Jeantet MH, Genant HK (1987) Importance of measurement of spongious vertebral bone mineral density in the assessment of osteoporosis. Bone 8:201–206

    Article  PubMed  CAS  Google Scholar 

  5. Banks LM, Stevenson JC (1986) Modified method of spinal computed tomography for trabecular bone mineral measurements. J Comput Assist Tomogr 10:463–467

    Article  PubMed  CAS  Google Scholar 

  6. Lambiase R, Sartoris DJ, Fellingham L, Andre M, Resnick D (1987) Vertebral mineral status: assessment with single-versus multi-section CT. Radiology 164:231–236

    PubMed  CAS  Google Scholar 

  7. Kalender WA, Klotz E, Suess C (1987) Vertebral bone mineral analysis: an integrated approach with CT. Radiology 164:419–423

    PubMed  CAS  Google Scholar 

  8. Steiger P, Block JE, Steiger S, Heuck AF, Friedlander A, Ettinger B, Harris ST, Gljer CC, Genant HK (1990) Spinal bone mineral density measured with quantitative CT: effect of region of interest, vertebral level, and technique. Radiology 175:537–543

    PubMed  CAS  Google Scholar 

  9. Reinbold WD, Genant HK, Reiser UJ, Harris ST, Ettinger B (1986) Bone mineral content in early-postmenopausal and post-menopausal osteoporotic women: comparison of measurement methods. Radiology 160:469–478

    PubMed  CAS  Google Scholar 

  10. Eriksson S, Isberg B, Lindgren JU (1988) Vertebral bone mineral measurement using dual photon absorptiometry and computed tomography. Acta Radiol 29:89–94

    Article  PubMed  CAS  Google Scholar 

  11. Mosekilde Li, Bentzen SM, Ortoft G, Jorgensen J (1989) The predictive value of quantitative computed tomography for vertebral body compressive strength and ash density. Bone 10:465–470

    Article  PubMed  CAS  Google Scholar 

  12. Vetter JR, Perman WH, Kalender WA, Mazess RB, Holden JE (1986) Evaluation of a prototype dual-energy computed tomographic apparatus. II. Determination of vertebral bone mineral content. Med Phys 13:340–343

    Article  PubMed  CAS  Google Scholar 

  13. Alvarez RE, Macovski A (1976) Energy-selective reconstruction in x-ray computerized tomography. Phys Med Biol 21:733–744

    Article  PubMed  CAS  Google Scholar 

  14. Wahner HW, Dunn WL, Mazess RB, Towsley M, Lindsay R, Markhardt L, Dempster D (1985) Dual-photon (Gd-153) absorptiometry of bone. Radiology 156:203–206

    PubMed  CAS  Google Scholar 

  15. Dobbins JT, Pedersen PL, Mazess RB, Cameron JR, Hansen JL, Hefner LV (1984) A scanning-slit x-ray video-absorptiometric technique for bone mineral measurement. Med Phys 11:582–588

    Article  PubMed  Google Scholar 

  16. Burgess AE, Colborne B, Zoffmann E (1987) Vertebral trabecular bone: comparison of single and dual-energy CT measurements with chemical analysis. J Comput Assist Tomogr 11:506–515

    Article  PubMed  CAS  Google Scholar 

  17. Goodsitt MM, Kilcoyne RF, Gutcheck RA, Richardson ML, Rosenthal DI (1988) Effect of collagen on bone mineral analysis with CT. Radiology 167:787–791

    PubMed  CAS  Google Scholar 

  18. Mazess RB, Vetter J (1985) The influence of marrow on measurement of trabecular bone using computed tomography. Bone 6:349–351

    Article  PubMed  CAS  Google Scholar 

  19. Gluer CC, Reiser UJ, Davis CA, Rutt BK, Genant HK (1988) Vertebral mineral determination by quantitative computed tomography (QCT): accuracy of single and dual energy measurements. J Comput Assist Tomogr 12(2):242–258

    Article  PubMed  CAS  Google Scholar 

  20. Laval-Jeantet AM, Cann CE, Roger B, Dallant P (1984) A postprocessing dual energy technique for vertebral CT densitometry. J Comput Assist Tomogr 8(6):1164–1167

    Article  PubMed  CAS  Google Scholar 

  21. Cann CE, Genant HK, Ettinger B, Gordon GS (1980) Spinal mineral loss in oophorectomized women. JAMA 244:256–259

    Article  Google Scholar 

  22. Krolner B (1982) Osteoporosis and normality: how to express the bone mineral content of lumbar vertebrae. Clin Phys 2:139–146

    CAS  Google Scholar 

  23. Eriksson SAV, Isberg BO, Lindgren JU (1989) Prediction of vertebral strength by dual photon absorptiometry and quantitative computed tomography. Calcif Tissue Int 44:243–250

    PubMed  CAS  Google Scholar 

  24. Hansson T, Roos B, Nachemson A (1980) The bone mineral content and ultimate compressive strength of lumbar vertebrae. Spine 5:46–55

    Article  PubMed  CAS  Google Scholar 

  25. McBroom RJ, Hayes WC, Edwards WT, Goldberg RP, White AA (1985) Prediction of vertebral body compressive fracture using quantitative computed tomography. J Bone Jt Surg 67:1206–1214

    CAS  Google Scholar 

  26. Mueller KH, Trias A, Ray RD (1967) Bone density and composition: age-related and pathological changes in water and mineral content. J Bone Jt Surg 48A:140–148

    Google Scholar 

  27. Brassow F, Crone-Munzebrock W, Weh L, Kranz R, Eggers-Stroeder G (1982) Correlations between breaking load and CT absorption values of vertebral bodies. Eur J Radiol 2:99–101

    PubMed  CAS  Google Scholar 

  28. Biggemann M, Hilweg D, Brinckmann P (1988) Prediction of the compressive strength of vertebral bodies of the lumbar spine by quantitative computed tomography. Skeletal Radiol 17:264–269

    Article  PubMed  CAS  Google Scholar 

  29. Brinckmann P, Biggemann M, Hillweg D (1989) Prediction of the compressive strength of human lumbar vertebrae. Spine 14:606–610

    Article  PubMed  CAS  Google Scholar 

  30. Raymakers JA, Hoekstra O, Van Putten J, Kerkhoff H, Duursma SA (1986) Fracture prevalence and bone mineral mass in osteoporosis measured with computed tomography and dual energy photon absorptiometry.Skeletal Radiol 15:191–197

    Article  PubMed  CAS  Google Scholar 

  31. Van Berkum FNR, Birkenhaer JC, Van Veen LCP, Zeelenberg J, Birkenhager-Frenkel DH, Trouerbach WT, Stijnen T, Pols HAP (1989) Noninvasive axial and peripheral assessment of bone mineral content: a comparison between osteoporotic women and normal subjects.J Bone Min Res 4:679–685

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mazess, R.B., Pedersen, P., Vetter, J. et al. Bone densitometry of excised vertebrae; Anatomical relationships. Calcif Tissue Int 48, 380–386 (1991). https://doi.org/10.1007/BF02556450

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02556450

Key words

Navigation