Skip to main content
Log in

The effect of hydroxyapatite crystallinity on hemolysis

  • Clinical Investigations
  • Published:
Calcified Tissue International Aims and scope Submit manuscript

Summary

Crystalline hydroxyapatite is a component of bone, teeth, and numerous pathological calcifications. The apatite crystal structure can accommodate a wide variety of atomic substitutions which gives apatite crystals an unusually high degree of variability in biochemical and physical properties. Apatite crystallites interact with numerous cellular systemsin vivo, and some of these interactions may lead to altered cellular function. One measure of crystal-membrane interactions is crystal-induced membranolysis of human red blood cells. Hemolytic potentials at constant crystal surface areas were measured at 1, 2, and 4 hours for 29 different preparations of apatite. Each apatite sample was characterized by its morphology, particle size, % CO3, zeta potential, and broadening of the (211), (112), (300), (202), and (002) diffraction maxima. Only the surface area/g and the X-ray powder diffraction line broadening showed a significant inverse correlation with hemolytic potential. These parameters were related to each other, and are indications of the degree of crystallinity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kay MI, Young RA, Posner AS (1964) Crystal structure of hydroxyapatite. Nature 204:1050–1052

    Article  PubMed  CAS  Google Scholar 

  2. Prien EL (1949) Studies in urolithiasis. II. Relationships between pathogenesis, structure, and composition of calculi. J Urol 61:821–836

    CAS  PubMed  Google Scholar 

  3. Sutor DJ, Wooley SE (1971) Composition of urinary calculi by x-ray diffraction: collected data from various localities. IX. Glasgow, Scotland. Br J Urol 43:268–272

    PubMed  CAS  Google Scholar 

  4. Brien G, Schubert G, Bick C (1982) 10,000 analyses of urinary calculi using x-ray diffraction and polarizing microscopy. Eur Urol 8:251–256

    PubMed  CAS  Google Scholar 

  5. Mandel NS, Mandel GS (in press) Physicochemistry of urinary stone formation. In: Pak CYC (ed) Renal stone disease: pathogensis, prevention, and treatment. Martinus Nijhoff, New York

  6. McCarty DJ, Halverson PB, Carrera GF, Brewer BJ, Kozin F (1981) “Milwaukee Shoulder”-association of microspheroids containing hydroxyapatite crystals, active collagenase, and neutral protease with rotator cuff defects. I. Clinical aspects. Arthritis Rheum 24:464–473

    PubMed  CAS  Google Scholar 

  7. Halverson PB, Cheung HS, McCarty DJ, Garancis J, Mandel N (1981) “Milwaukee Shoulder”-association of microspheroids containing hydroxyapatite crystals, active collagenase, and neutral protease with rotator cuff defects. II. Synovial fluid studies. Arthritis Rheum 24:474–483

    PubMed  CAS  Google Scholar 

  8. Garancis JC, Cheung HS, Halverson PB, McCarty DJ (1981) “Milwaukee Shoulder”-association of microspheroids containing hydroxyapatite crystals, active collagenase, and neutral protease with rotator cuff defects. III. Morphologic and biochemical studies of an excised synovium showing chondromatosis. Arthritis Rheum 24:484–491

    PubMed  CAS  Google Scholar 

  9. Boskey AL (1984) Cartilage calcifications: normal and aberrant. Scanning EM 2:943–952

    Google Scholar 

  10. Finlayson B, Reid F (1978) The expectation of free and fixed particles in urinary stone disease. Invest Urol 15:442–448

    PubMed  CAS  Google Scholar 

  11. Randall A (1937) The origin and growth of renal calculi. Ann Surgery 105:1009–1027

    Article  CAS  Google Scholar 

  12. Murphy BT, Pyrah LN (1962) The composition, structure, and mechanism of the formation of urinary calculi. Br J Urol 34:129–159

    Article  PubMed  CAS  Google Scholar 

  13. Khan SR, Finlayson B, Hackett RL (1982) Experimental calcium oxalate nephrolithiasis in the rat. Role of the renal papillae. AJP 107:59–69

    PubMed  CAS  Google Scholar 

  14. Cheung HS, Halverson PB, McCarty DJ (1981) Release of collagenase, neutral protease, and prostaglandins from cultured mammalian synovial cells by hydroxyapatite and calcium pyrophosphate dihydrate crystals. Arthritis Rheum 24:1338–1344

    PubMed  CAS  Google Scholar 

  15. Schumacher TM, Somlyo AP, Tse RL, Maurer K (1977) Arthritis associated with apatite crystals. Ann Intern Med 87:411–416

    PubMed  CAS  Google Scholar 

  16. Allison AC, Harrington JS, Birbeck M (1966) An examination of the cytotoxic effects of silica on macrophages. J Exp Med 124:141–153

    Article  PubMed  CAS  Google Scholar 

  17. Wallingford WR, McCarty DJ (1971) Differential membranolytic effects of microcrystalline sodium urate and calcium pyrophosphate dihydrate. J. Exp Med 133:100–112

    Article  PubMed  CAS  Google Scholar 

  18. Mandel NS (1976) The molecular basis of crystal-induced membranolysis. Arthritis Rheum 19:439–445

    PubMed  CAS  Google Scholar 

  19. Spencer M, Grynpas M (1978) Hydroxyapatite for chromatography: I. Physical and chemical properties of different preparations. J Chrom 166:423–434

    Article  CAS  Google Scholar 

  20. Young RA, Holcomb DW (1982) Variability of hydroxyapatite preparations. Calcif Tissue Int 34:S17-S32

    PubMed  Google Scholar 

  21. Featherstone JDB, Shields CP, Khademazad B, Oldershaw MD (1983) Acid reactivity of carbonated apatites with strontium and fluoride substitutions. J Dental Res 62:1049–1053

    CAS  Google Scholar 

  22. Klug HP, Alexander LE (1954) X-ray diffraction procedures for polycrystalline and amorphous materials. John Wiley & Sons, New York, pp 491–538

    Google Scholar 

  23. Kozin F, Millstein B, Mandel G, Mandel N (1982) Silica-induced membranolysis: a study of different structural forms of crystalline and amorphous silica and the effects of protein adsorption. J Colloid Int Sci 88:326–337

    Article  CAS  Google Scholar 

  24. Wiessner JH, Mandel GS, Mandel NS (1986) Membrane interactions with calcium oxalate crystals: variation in hemolytic potentials with crystal morphology. J Urol 135:835–839

    PubMed  CAS  Google Scholar 

  25. Eckelman WC (1975) Technical considerations in labeling of blood elements. Sem Nucl Med 5:3–10

    Article  CAS  Google Scholar 

  26. Mandel NS, Millstein B, Kozin F, Mandel GS (1979) Crystal-mediated membranolysis in pseudogout. Arthritis Rheum 22:637

    Google Scholar 

  27. Stout GH, Jensen LH (1968) X-ray structure determination. Macmillan, New York, pp 66–67

    Google Scholar 

  28. McCarty DJ (1985) Pathogenesis and treatment in crystal-induced inflammation. In: McCarty DJ (ed) Arthritis and allied conditions. Lea & Febiger, Philadelphia, pp 1494–1514

    Google Scholar 

  29. Ryan LM, McCarty DJ (1985) Calcium pyrophosphate crystal deposition disease: Pseudogout: Articular chondrocalcinosis. In: McCarty DJ (ed) Arthritis and allied conditions. Lea & Febiger, Philadelphia, pp 1515–1546

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wiessner, J., Mandel, G., Halverson, P. et al. The effect of hydroxyapatite crystallinity on hemolysis. Calcif Tissue Int 42, 210–219 (1988). https://doi.org/10.1007/BF02553746

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02553746

Key words

Navigation