Skip to main content
Log in

Biosensors: a viable monitoring technology?

  • Review
  • Published:
Medical and Biological Engineering and Computing Aims and scope Submit manuscript

Abstract

Biosensors for practical in vivo and in vitro applications are dependent on the effective integration of several biological and physical technologies. This review paper was stimulated by an IEE seminar. Some of the more recent advances aimed at taking techniques of fundamental and academic interest to various forms of practical reagentless biochemical analysis are highlighted, with associated clinical and commercial consequences. The paper describes some of the most recent developments in biosensor research, in particular those relating to material aspects of fabrication, including multilayer films for sensor applications, advances in ISFETs, conjugated polymers, new developments in quartz crystal based biosensors, as well as advances in amperometric enzyme electrodes and the application of devices for continuous monitoring.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Adachi, C., Tsutsui, T., andSaito, S. (1989): ‘Organic electroluminescent device having a hole conductor as an emitting layer,’Appl. Phys. Lett.,55 (15), pp. 1489–1491

    Article  Google Scholar 

  • Adachi, C., Tsutsui, T., andSaito, S. (1990): ‘Blue light-emitting organic electroluminescent devices,’Appl. Phys.,56, (9), pp. 799–801

    Google Scholar 

  • Albery, W. J., Bartlett, P. N., Cass, A. E. G., Craston, D. H., andHaggett, B. G. D. (1986): ‘Electrochemical sensors—theory and experiment,’J. Chem. Soc. Faraday Trans. (I),82 (4), pp. 1033–1050

    Article  Google Scholar 

  • Albery, W. J., andBarron, P. (1982): ‘A membrane-electrode for the determination of CO2 and O2,’J. Electroanal. Chem.,138, (1), pp. 79–87

    Article  Google Scholar 

  • Anzai, J. I., andOsa, T. (1990): ‘Langmuir-Blodgett membranes in chemical sensor applications,’Selective Electrode Rev.,12, (1), pp. 3–34

    Google Scholar 

  • Attridge, J. W., Daniels, P. B., Deacon, J. K., Robinson, G. A., andDavidson, G. P. (1991): ‘Sensitivity enhancement of optical immunosensors by the use of a surface-plasmon resonance fluoroimmunoassay,’Biosensors Bioelectron.,6 (3), pp. 201–214

    Article  Google Scholar 

  • Bartlett, P. N. (1991): ‘Some studies of electrodes made from single crystals of TTF-TCNQ,’J. Electroanal. Chem.,300, (1–2), pp. 175–189

    Article  Google Scholar 

  • Beh, S. K., Moody, G. J., andThomas, J. D. R. (1991): ‘Studies on enzyme electrodes with ferrocene and carbon paste bound with cellulose triacetate,’Analyst,116, (5), pp. 459–462

    Article  Google Scholar 

  • Bergveld, P. (1986): ‘The development and application of FET-based biosensors,’Biosensors,2 (1), pp. 15–33

    Article  Google Scholar 

  • Bindra, D. S., Hill, B. S., Wilson, G. S., Thevenot, D. R., Sternberg, R., Reach, G., andVelhog, G. (1988): ‘Recent developments in inplantable biosensors,’Abstracts Amer. Chem. Soc.,196 (122)

  • Bindra, D. S., Zhang, Y. N., Wilson, G. S., Sternberg, R., Thevenot, D. R., Moatti, D., andReach, G. (1991): ‘Design andin vitro studies of a needle-type glucose sensor for subcutaneous monitoring,’Anal. Chem.,63, (17), p. 1692–1696

    Article  Google Scholar 

  • Bradley, R. A., Drake, R. A. L., Shanks, I. A., Smith, A. M., Stephenson, P. R., andThomas, J. D. R. (1987): ‘Optical biosensors for immunoassays—the fluorescence capillary-fill device,’Philosoph. Trans. Royal Soc. Lond. B, Biol. Sci.,316, (1176), pp. 143–160

    Google Scholar 

  • Bradley, D. D. C. (1987): ‘Precursor route poly(p-phenylenevinylene) polymer characterization and control of electronic properties,’J. Phys. D—Appl. Phys.,20 (11), pp. 1389–1410

    MathSciNet  Google Scholar 

  • Bunaciu, A. A., Ionescui, M. S., Palivan, C., andCasofret, V. V. (1991): ‘A mitriptyline selective plastic membrane sensors and their pharmaceutical applications,’Analyst,116(3), pp. 239–243

    Article  Google Scholar 

  • Burn, P. L., Bradley, D. D. C., Brown, A. R., Friend, R. H., andHolmes, A. B. (1991): ‘Studies on the efficient synthesis of poly(phenylenevinylene) (PPV) and poly(dimethoxy phenylenevinylene)(dimethoxy-PPV),’Synthetic Metals,141, (1–2), pp. 261–264

    Article  Google Scholar 

  • Burroughes, J. H., Jones, C. A., andFriend, R. H. (1988): ‘New semiconductor-device physics in polymer diodes and transistors,’Nature,235, (6186), pp. 137–141

    Article  Google Scholar 

  • Burroughes, J. H., Bradley, D. D. C., Brown, A. R., Marks, R. N., MacKay, K., Friend, R. H., Burns, P. L., andHolmes, A. B. (1990): ‘Light emitting diodes based on conjugated polymers,’,347 (6293), pp. 539–541

    Article  Google Scholar 

  • Cass, A. E. G. (Ed.): ‘Biosensors: a practical approach’ (Oxford University Press, 1990)

  • Churchouse, S. J., Battersby, C. M., Mullen, W. H., andVadgama, P. M. (1986): ‘Needle enzyme electrodes for biological studies,’Biosensors,2 (6), pp. 325–3422

    Article  Google Scholar 

  • Connoly, P., Clark, P., Curtis, A. S. G., Dow, J. A. T., andWilkinson, C. D. W. (1990): ‘An extracellular microelectrode array for monitoring electrogenic cells in culture,’Biosensors Bioelectron.,5 (3), pp. 223–234

    Article  Google Scholar 

  • Covington, A. K., andWhalley, P. D. (1986): ‘Simultaneous evaluation of electroactive membranes on a 4-function ISFET by a constant dilution method,’Anal. Chim. Acta,184, pp. 281–286

    Article  Google Scholar 

  • Deacon, J. K., Thomas, A. M., Page, A. L., Stops, J. E., Roberts, P. R., Whiteley, S. C., Attridge, J. W., Love, C. A., Robinson, G. A., andDavidson, G. P. (1991): ‘An assay for human chorionic-gonadotrophin using the capillary fill immunosensors,’Biosensors Bioelectron.,6 (3), pp. 193–199

    Article  Google Scholar 

  • Dong, S. J., Wang, B. X., andLui, B. F. (1992): ‘Amperometric glucose sensor with ferrocene as an electron-transfer mediator,’Biosensors Bioelectron.,7, (3), pp. 215–222

    Article  Google Scholar 

  • Engstrom, R. C. (1982): ‘Electrochemical pretreatment of glassy-carbon electrodes,’Analytical Chem.,54 (13), pp. 2310–2314

    Article  Google Scholar 

  • Feast, W. J., andSpanomanolis, C. (1981): ‘Photoreductive polymerization of dibenzylbenzenes with meta-dibenzoylbenzene,’Polymer Photochem.,1, (4), pp. 285–301

    Article  Google Scholar 

  • Franetzki, M. (1984): ‘Drug delivery by program or sensor controlled infusion devices,’Pharmaceut. Res., (6), pp. 237–244

    Article  Google Scholar 

  • Friend, R. H., Bradley, D. D. C., andTownsend, P. D. (1987): ‘Photo-excitation in conjugated polymers,’J. Phys. D-Appl. Phys.,20 (11), pp. 1367–1384

    Article  Google Scholar 

  • Gernet, S., Koudelka, M., andDerooij, N. F. (1989a): ‘Fabrication and characterisation of a planar electrochemical cell and its application as a glucose sensor,’Sensors Actuators,18 (1), pp. 59–70

    Article  Google Scholar 

  • Gernet, S., Koudelka, M., andDerooij, N. F. (1989b): ‘A planar enzyme electrode,’,17, (3–4), pp. 537–540

    Google Scholar 

  • Gonon, F. G., Fombarlet, C. M., Buda, M. J., andPujol, J. F. (1981): ‘Electrochemical treatment of pyrolytic carbon-fiber electrodes,’Anal. Chem.,53, (9), pp. 1386–1389

    Article  Google Scholar 

  • Grande, L. H., Geren, C. R., andPaul, D. W. (1988): ‘Detection of galactosyltransferase using chemically modified piezoelectric quartz,’Sensors Actuators,14, (4), pp. 387–403

    Article  Google Scholar 

  • Higson, S. P. J., andVadgama, P. M. (1993): ‘Diamond-like carbon coated microporous polycarbonate as a composite barrier for a glucose enzyme electrode,’Anal. Chim. Acta,271, pp. 125–133

    Article  Google Scholar 

  • Heller, A. (1992): ‘Electrical connection of enzyme redox centres to electrodes,’J. Phys. Chem.,96, (9), pp. 3579–3587

    Article  Google Scholar 

  • Hill, B. S., Scolari, C. A., andWilson, G. S. (1988): ‘Mechanistic studies of the TTF-TCNQ enzyme electrode,’Abstracts Amer. Chem. Soc.,196, p. 220

    Google Scholar 

  • Hutchings, M., Dewey, I., Cherry, G. W., andRolfe, P. (1987): ‘Flexible amperometric oxygen sensor with potential application toin vivo monitoring,’Analyst,112, (10), pp. 1471–1472

    Article  Google Scholar 

  • Jackson, W. F., andDuling, B. R. (1983): ‘Toxic effects of silver/silver chloride electrodes on vascular smooth muscle,’Circ. Res.,53, (1), pp. 105–108

    Google Scholar 

  • Jain, U., Harker, A. H., Stoneham, A. M., andWilliams, D. E. (1990): ‘Effect of electrode geometry on sensor response,’Sensors Actuators B—Chemical,2, (2), pp. 111–114

    Article  Google Scholar 

  • Kawabata, Y., Takara, R., Kamichika, T., Imasaka, T., andIshibashi, N. (1990): ‘Fiberoptic potassium ion sensor using alkyl-acrinide orange in plasticised poly(vinyl chloride) membrane,’Anal. Chem.,62, (14), pp. 1528–1531

    Article  Google Scholar 

  • Koochaki, Z., Higson, S. P. J., andVadgama, P. (1993): ‘The diffusion limited oxidase based glucose enzyme electrode: relation between covering membrane permeability and substrate response,’Anal. Chem. Acta,76, pp. 261–268

    Google Scholar 

  • Koudelka, M., Rohnerjeanrenaud, F., Terrattaz, J., Bobbioniharsch, E., Derooij, N. F., andJeanrenaud, B. (1989): ‘In vivo response of microfabricated glucose sensors to glycemia changes in normal rats,’Biomedica Biochimica Acta,48, (11-1), pp. 953–956

    Google Scholar 

  • Koudelka, M., Rohnerjeanrenaud, F., Terrettaz, J., Bobbioniharsch, E., Derooij, N. F., andJeanrenaud, B. (1991): ‘In vivo behaviour of hypodermically implanted microfabricated glucose sensors,’Biosensors Bioelectron.,6, (1), pp. 31–36

    Article  Google Scholar 

  • Lal, R. (1992): ‘Integrated biosensors—promises and problems,’Bioelectrochem. Bioenergetics,27, (2), pp. 121–139

    Article  Google Scholar 

  • Leermakers, F. A. M., andNelson, A. (1990): ‘Substrate induced structural changes in electrode adsorbed lipid layers—a self consistent field theory,’J. Electroanal. Chem.,287, (1–2), pp. 53–72

    Article  Google Scholar 

  • Liverna, L. N., Spencer, S. A., Thorniley, M. S., Thorniley, M. S., Wichramasinghe, Y. A. B. D., andRolfe, P. (1991): ‘Effects of hypoxemia and bradycardia on neonatal cerebral haemodynamics,’Arch. Disease Childhood,66, NSI, pp. 376–380

    Google Scholar 

  • Loffler, U., Wiemhofer, H. D., andGopel, W. (1991): ‘Amperometric biosensors—characterization of dispersed medicator systems,’Biosensors Bioelectron.,6, (4), pp. 343–352

    Article  Google Scholar 

  • Lukosz, W., Clerc, D., Nellen, P. M., Stamm, C., andWeiss, P. (1991): ‘Output grating couplers on planar optical wave-guides as direct immunosensors,’Biosensors Bioelectron.,6, (3), pp. 227–232

    Article  Google Scholar 

  • Maeda, M., Mitsuhashi, Y., Nakano, K., andTagagi, M. (1992): ‘DNA immobilised gold electrode for DNA binding drug sensor,’Analytical Sci.,18, (1), pp. 83–84

    Google Scholar 

  • Medisense: ‘ExacTech’: blood glucose testing system users’ guide,’ 1989, p. 9

  • Miyazaki, K., Tohda, K., Ohzora, H., Wantanabe, K., Inoue, H., andSuzuki, K. (1990): ‘Fiberoptic potassium ion sensor based on a novel color-changing crown ether dye,’Bunseki Kagaku,39, (11), pp. 717–722

    Google Scholar 

  • Moattisirat, D., Capron, E., Poitout, V., Reach, G., Bindra, D. S., Zhang, Y., Wilson, G. S., andThevenot, D. R. (1992): ‘Towards continuous glucose monitoring—in vivo evaluation of a miniaturised glucose sensor implanted for several days in rat subcutaneous tissue,’Diabetologia,35, (3), pp. 224–230

    Article  Google Scholar 

  • Moriizumi, T. (1988): ‘Langmuir-Blodgett films as chemical sensors,’ Thin solid films,160, (1–2), pp. 413–429

    Article  Google Scholar 

  • Mullen, W. H., Keedy, F. H., Churchouse, S. J., andVadgama, P. (1986): ‘Glucose enzyme electrode with extended linearity,’Anal. Chim. Acta,183, pp. 59–66

    Article  Google Scholar 

  • Murphy, C., andRolfe, P. (1987): ‘A signal processing system for the real time analysis of doppler ultrasound in blood flow measurement’,Clin. Phys. Physiologic. Meas.,8, (4), p. 395

    Google Scholar 

  • Murphy, D., Colditz, P., Valimaki, I., Wilkinson, A., andRolfe, P. (1987): ‘Signal acquisition and analysis system for physiological variables in neonatal-intensive care,’,8, (4), p. 394

    Google Scholar 

  • Nagy, G., Gerhart, G. A., Oke, A. F., Rice, M. E., Adams, R. N., Moore, R. B., Szentirmay, M. N., andMartin, C. R. (1985): ‘Ion-exchange and transport of neurotransmitters in nafion films on conventional and microelectrode surfaces,’J. Electroanal. Chem.,188, (1–2), pp. 85–94

    Google Scholar 

  • Narayanaswamy, R. (1991): ‘Current developments in optical biochemical sensors,’Biosensors Bioelectron.6, (6), pp. 476–475

    Article  Google Scholar 

  • Nelson, A., Auffret, N., andBorlakoglu, J. (1990): ‘Interaction of hydrophobic organic compounds with mercury adsorbed dioleoylphosphatidylcholine monolayers,’Biochem. Biophys. Acta,1021, (2), pp. 205–216

    Google Scholar 

  • Nelson, A., andLeermakers, F. A. M. (1990): ‘Substrate induced structural changes in electro-adsorbed lipid layers—experimental evidence from the behaviour of phospholipid layers on the mercury water interface,’J. Electroanal. Chem.,278, (1–2), pp. 73–78

    Article  Google Scholar 

  • Petty, M. C. (1991): ‘Applications of multilayer films to molecular sensors; some examples of bioengineering at the molecular level,’J. Biomed. Eng.,13, (3), pp. 209–214

    Google Scholar 

  • Regnault, W. F., andPicciolo, G. L. (1987): ‘Review of medical biosensors and associated materials problems,’J. Biomed. Materials. Res.—Appl. Biomaterials,21, (2), pp. 163–180

    Google Scholar 

  • Reichert, W. M., Bruckner, C. J., andJoseph, J. (1987): ‘Langmuir-Blodgett films and blacklipid membranes in biospecific surface selective sensors,’ Thin solid films,152, pp. 345–376

    Article  Google Scholar 

  • Roberts, G. C. (1990): ‘Langmuir-Blodgett films’ (Plenum Press)

  • Rogers, D. B., Lacourse, J., Sivaprasad, K., andMeyer, J. (1987): ‘Temporal artery flow determination using a piezoelectric sensor array,’Aviation Space Environmental Medicine,58 (5), p. 498

    Google Scholar 

  • Rolfe, P., andMartin, M. J. (1988): ‘Medical sensors and biosensors,’Chem. Britain,24, (10), pp. 1026–1028

    Google Scholar 

  • Sanchez, P. D., Ordieres, A. J. M., Garcia, A. C., andBlanco, P. T. (1991): ‘Peroxidase ferrocene modified carbon paste electrode as an amperometric sensor for the hydrogen-peroxide assay,’Electroanalysis,3, (4–5), pp. 281–285

    Article  Google Scholar 

  • Schima, H., Trubel, W., Moritz, A., Weiselthaler, G., Stohr, H. G., Thoma, H., Losert, U., andWolner, E. (1992): ‘Non-invasive monitoring of rotary blood pumps—necessity, possibilities and limitations,’Artificial Organs,16, (2), pp. 195–202

    Article  Google Scholar 

  • Sloper, A. N., andFlanagan, M. T. (1988): ‘Novel iron phosphate optical wave-guides fabricated by a low-temperature process,’Electron. Lett.,24, (6), pp. 353–355

    Google Scholar 

  • Sloper, A. N., Deacon, J. K., andFlanagan, M. T. (1990): ‘A planar indium phosphate monomode wave-guide evanescent field immunosensor,’Sensors Actuators B-Chemical,1, (1–6), pp. 589–591

    Article  Google Scholar 

  • Southampton Electrochemistry Group (1985): ‘Instrumental methods in electrochemistry’ (John Wiley and Sons)

  • Spencer, J. A. D., Wolton, R. S., Rolfe, P., andJohnson, P. (1987): ‘Spectrometer system for continuous skin-surface and intravascular blood-gas measurement of maternal-foetal respiration in labour,’J. Biomed. Eng.,9, (2), pp. 161–168

    Google Scholar 

  • Sternberg, R., Barrau, M. B., Gangiotti, L., Thevenot, D. R., Bindra, D. S., Wilson, G. S., Velho, G., Froguel, P., andReach, G. (1989): ‘Study and development of multilayer needle-type enzyme based glucose microsensors,’Biosensors,4, (1), pp. 27–40

    Article  Google Scholar 

  • Suzuki, K., Tohda, K., Tanda, Y., Ohzora, H., Nishihama, S., Inoue, H., andShirai, T. (1989): ‘Fiber optic magnesium and calcium ion sensor based on a natural carboxylic polyether antibiotic,’Anal. Chem.,61, (4), pp. 382–384

    Article  Google Scholar 

  • Tang, C. W., Vanslyke, S. A., andChen, C. H. (1989): ‘Electroluminescence of doped organic thin-films,’J. Appl. Phys.,65, (9), pp. 3610–3616

    Article  Google Scholar 

  • Tang, L. X., Koochaki, Z. B., andVadgama, P. (1990): ‘Composite liquid membrane for enzyme electrode construction,’Anal. Chim. Acta,232, (2), pp. 357–365

    Article  Google Scholar 

  • Tieke, B. (1991): ‘Langmuir-Blodgett membranes for separation and sensing,’Advanced Materials,3, (11), p. 532

    Article  Google Scholar 

  • Tiefenthaler, K., andLukosz, W. (1989): ‘Sensitivity of grating couplers as integrated-optical chemical sensors,’J. Opt. Soc. Amer. B—Optical Phys.,6, (2), pp. 209–220

    Google Scholar 

  • Thorniley, M. S., Wickramasinghe, Y. A. B. D., andRolfe, P. (1988): ‘Near infrared spectroscopy—a new technique for the non-invasive monitoring of tissue and blood oxygenationin vivo,’Biochem. Soc. Trans.,16, (6), pp. 978–979

    Google Scholar 

  • Thorniley, M. S., Liverna, N., Wickramasinghe, Y. A. B. D., andRolfe, P. (1989): ‘Non invasive monitoring of cerebral tissue oxygenationin vivo by near infrared spectroscopy—a sensitive indicator of oxygenation changes’,,17, (5), pp. 903–904

    Google Scholar 

  • Thorniley, M. S., Liverna, N., Wickramasinghe, Y. A. B. D., andRolfe, P. (1990a): ‘A studyin vivo into the kinetics of the dissociation of oxygen from oxyhaemoglobin compared with changes in the redox state of cytochrome-oxidase in rat brain utilising near I.R. spectroscopy,’,18, (5), pp. 1019–1021

    Google Scholar 

  • Thorniley, M. S., Houston, R., Wickramasinghe, Y. A. R. B., andRolfe, P. (1990b): ‘Application of near infrared spectroscopy for the assessment of the oxygenation level of myoglobin and haemoglobin in cardiac musclein vivo’,18, (6), pp. 1195–1196

    Google Scholar 

  • Thompson, M., Dhaliwal, G. K., Arthur, C. L., andCalabrese, G. S. (1987): ‘The potential of the bulk acoustic-wave device as a liquid-phase immunosensor,’IEEE Trans.,UFFC-34, (2), pp. 127–135

    MathSciNet  Google Scholar 

  • Turner, A. P. F., Karube, I., andWilson, G. S.: ‘Biosensors—fundamentals and applications’ (Oxford Science Publications, 1989)

  • Vadgama, P., Mullen, W., Churchouse, S., andBattersby, C. (1988): ‘The glucose enzyme electrode—is simple peroxide detection at a needle sensor acceptable?,’Hormone Metabolite Res.,20 S, pp. 20–22

    Article  Google Scholar 

  • Vadgama, P., Spoors, J., Tang, L. X., andBattersby, C. (1989): ‘The needle enzyme glucose electrode—in vitro performance and optimisation for implantation,’Biomedica Biochimica Acta,48, (11-1), pp. 935–942

    Google Scholar 

  • Vadgama, P. (1990): ‘Adaptation for practical use,’Sensors Actuators B—Chem.,1, (1–6), p. 1–7

    Article  Google Scholar 

  • Vadgama, P., Desai, M. A., Cristie, I., andKoochaki, Z. (1991): ‘Chemical sensors and biosensors—nearer the patient,’Pure Appl. Chem.,63, (8), pp. 1147–1152

    Google Scholar 

  • Valdesperezgasga, F., andCovington, A. K. (1992): ‘Multisensor operation of ion-selective field-effect transistors in the constant current mode,’Sensors Actuators B—Chem.,6, (1–3), pp. 219–222

    Article  Google Scholar 

  • Vandenberg, A., Grisel, A., andVerneynorberg, E. (1991): ‘An ISFET based calcium sensor using a photopolymerised polysiloxane membrane,’Sensors Actuators B—Chem.,4 (3–4), pp. 235–238

    Article  Google Scholar 

  • Wang, J., Wu, L. H., Li, R. L., andSanchez, J. (1990): ‘Mixed ferrocene glucose-oxidase carbon paste electrode for amperometric determination of glucose,’Anal. Chim. Acta,228, pp. 251–257

    Article  Google Scholar 

  • Wilson, G. S., Reach, G., andThevenot, D. R. (1991): ‘Biosensors for intracorporeal measurements—problems and strategies,’Biochem. Soc. Trans.,19, (1), pp. 9–11

    Google Scholar 

  • Weise, D. A., Bowen, T. P., andKost, G. J. (1989): ‘Enzyme electrode for glucose measurement in whole-blood with a critical care profiling instrument,’Clin. Chem.,35, (6), p. 1098

    Google Scholar 

  • Woodward, S. C. (1982): ‘How fibroblasts and giant-cells encapsulate implants—considerations in design of glucose sensors,’Diabetes Care,5, (3), pp. 278–281

    Google Scholar 

  • Yamakoshi, K., Rolfe, P., andMurphy, C. (1988): ‘Current developments in non-invasive measurement of arterial blood-pressure,’J. Biomed. Eng.,10, (2), pp. 130–137

    Google Scholar 

  • Yamasaki, K., Yasuda, M., Kokusenya, Y., andMatsuo, M. (1991): ‘Effect of anodic pretreatment of glassy-carbon electrodes on electrochemical detection of denopamine,’Bunseki Kagaku,40, (4), pp. 193–197

    Google Scholar 

  • Zeimelis, K. E., Hussain, A. T., Bradley, D. D. C., Friend, R. H., Ruhe, J., andWegner, G. (1991): ‘Optical spectroscopy of field-induced charge in poly(3-hexylthienylene) metal-insulator semiconductor structures—evidence for polarons,’Phys. Rev. Lett.,66, (17), pp. 2231–2234

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Higson, S.P.J., Vadgama, P.M. Biosensors: a viable monitoring technology?. Med. Biol. Eng. Comput. 32, 601–609 (1994). https://doi.org/10.1007/BF02524233

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02524233

Keywords

Navigation