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Summary. — The effect of non-adsorbing, flexible polymer on the isotropic-nematic
transition in dispersions of rod-like colloids is investigated. A widening of the
biphasic gap is observed, in combination with a marked polymer partitioning
between the coexisting phases. Under certain conditions, areas of isotropic-
isotropie-nematic or isofropic-nematic-nematic three-phase coexistence appear in
the phase diagram of rod-polymer mixtures.
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PACS 82.70.Dd - Colloids.

PACS 01.30.Ce - Conference proceedings.

1. — Introduction.

The addition of non-adsorbing polymer molecules to a suspension of colloidal
particles may lead to phase separation into a colloid-rich and a colloid-poor phase. An
explanation for this phenomenon which is of fundamental interest and considerable
biological and technological importance was first advanced by Asakura and
Oosawa L, 2]. They pointed out that exclusion of the non-adsorbing polymer from the
region between two colloidal particles when their surface-surface separation becomes
smaller than the diameter of a frree polymer coil gives rise to an attractive force due to
the imbalance in osmotic pressure. The resulting interaction has been termed
depletion interaction[3,4].

One of the possible effects of this interaction, which was in fact already observed
over two centuries ago, is the significantly inereased sedimentation rate of red blood
cells in the case of various illnesses[5]. The increased sedimentation rate is caused by
the spontaneous face-to-face aggregation of the red blood cells to form rouleaux-long
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cylindrically shaped objects resembling piles of coins. There are good reasons to
believe that the aggregation of the red blood cells is induced by the depletion
mechanism associated with the increased concentrations of protein molecules in the
blood (particularly fibrinogen and globulines) in the case of illness[6]. Other
phenomena of technological and biological interest caused by the polymer-induced
depletion interaction that were already studied over half a century ago include the
concentration of rubber latex particles by creaming[7-9] and the isolation and
purification of virus particles[10].

Following the pioneering work of Asakura and Oosawall,2] a considerable amount
of work has been done to refine the treatment of the depletion interaction[3,4,11-15]
and to calculate and observe the accompanying phase separation[16-44]. These
studies were almost exclusively directed towards suspensions of spherical colloidal
particles. Some attention however has been given to the phase separation induced by
non-adsorbing polymer in suspensions of rod-like colloidal particles, namely the
precipitation of rod-like virus particles by polyethylene glycol [45-48]. The aim of this
work was the isolation and purification of viruses.

Closely related to the polymer-induced phase separation in colloidal dispersions is
the phase separation observed in solutions containing a rigid rod-like polymer and a
flexible randomly coiled polymer[49-55]. Flory[56] gave a theory for the phase
behaviour of the latter kind of system assuming that the ternary solution is an
athermal system with only excluded-volume interactions between the coils and the
rods. This means that the phase transition is due to an entropy effect like the phase
transitions caused by the depletion interaction. The theory of Flory predicts an
isotropic-nematic phase transition to occur with a marked partitioning of the rods and
coils between the isotropic and nematic phase. The coils are predicted to be almost
totally excluded from the nematic phase and the concentration of the rods is predicted
to be much lower in the isotropic phase than in the nematic phase. The
experimentally observed phase behaviour of most ternary rod-coil-solvent systems
studied so far appears to follow the theory set forth by Flory quite well [49,50,52-54].
However in some cases[51,55] the observed phase diagrams do not closely resemble
those predicted by the Flory theory. For example Marsano et al.[51] observed in
addition to biphasic isotropic-anisotropic equilibria, also biphasic isotropie-isotropic
equilibria at low polymer concentration. The large difference between the
experimental and theoretical phase diagram predicted by Flory[56] is attributed by
Marsano et al. [51] to the incompatibility of the rods and coils in the system studied
by them,

Recently in our laboratory, in addition to a biphasic isotropic-nematic
equilibrium, a three-phase isotropic-isotropic-nematic region was observed in the
phase diagram[57] of a colloidal suspension of sterically stabilized rod-like colloidal
boehmite particles [568] and polystyrene in orthodichlorobenzene. Such a triphasic
equilibrium is reminiscent of the three-phase isotropic-isotropic-solid equilibria
recently observed in suspensions of Sphel‘ical colloidal particles and non-adsorbing
polymers [37,43]. The existence of such a three-phase region in the phase diagram
was predicted by us[42].

Given the analogy of the phase behaviour of suspensions consisting of spherical
colloidal particles and non-adsorbing polymer molecules and suspensions consisting of
rod-like colloidal particles and non-adsorbing polymer with the role of the erystal
phase in the former replaced by the nematic liquid crystal phase in the latter, it
appeared worthwhile to extend the simple theory for spherical particles presented
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in[42] to rod-like particles. Some work in this direction was recently published by
Warren [59] who treated rod + coil mixtures on the second virial coefficient level.
This limits the treatment to very long rods and very low polymer concentrations in
order to ensure that the second virial contribution dominates the higher virial
contributions. Under these conditions Warren found a widening of the biphasic
isotropic-nematic gap and a partitioning of the flexible polymer towards the isotropic
phase. Like Warren we also start from the method presented in[42] for calculating
the effect of the depletion interaction on the phase behaviour but the treatment given
here is not limited to the second virial level and therefore free of the restrictions of
being only valid for very long rods and very low polymer concentrations.

2. — Theory.

2'1, Model. - The model used in this work is the same as in[42]. The polymer
molecules are treated as freely interpenetrable coils of diameter s, whose centres of
mass cannot approach the (non-adsorbing) surface of the colloidal particles closer than
a distance s/2. As the polymer coils do not feel each other the pure polymer solution
will behave thermodynamically ideally. The colloidal particles themselves are
modelled as hard spherocylinders consisting of cylinders of diameter D and length L
capped with two hemispheres. Like in[42] we use as independent thermodynamic
variables to describe the colloid + polymer mixture the number of colloidal particles
N, the chemical potential of the polymer molecules u, and the volume V. This means
that we consider the colloidal dispersion in osmotic equilibrium with a reservoir
containing a pure polymer solution characterized by a chemical potential u,. The
osmotic pressure exerted by the polymer in the reservoir will be denoted by II7.

In the presence of the polymer molecules the effective interaction (potential of
mean force[60-62]) between the colloidal particles can be written as[63]

(1) Wre, uc; pp) = Ulre, uc) = 15 () Viee (e, uc) .

Here U is the colloid-colloid interaction in the absence of polymer and V... is the
volume available for the polymer coils. Both the colloid-colloid interaction in the
polymer-free dispersion and the available volume depend on the colloidal particle
positions and orientations collectively denoted by the position vector re and the
orientation (unit) vector u.

As mentioned above the colloidal particles are modelled as hard spherocylinders
thus
© Ulre, ue) =0 in case of no particle overlap,

Ulre, ug) = @ in case of particle overlap .

The volume available to the polymer coils V.. is the volume outside the excluded
volume which consists of the colloidal particles surrounded by a shell of thickness half
the polymer diameter 5/2 (see fig. 1).

Approximating V... by its average value in the colloidal dispersion in the absence

of polymer molecules, the semi-grand potential for the system under consideration
can be written as

(3) ‘(‘I{N['I! I/s Hl .u'p!ff]) . F(_T (NCJ V! T‘vlf]) T ;I;(Vf‘ruﬂ )U .
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Fig. 1. — IHlustration of V., the available volume. V. is the unshaded volume,

Here F is the Helmholtz free energy of N colloidal rods in a volume V at a
temperature 7" and (Vi..)o is the average free volume in the absence of polymer.
Further f(u) is the orientation distribution function which gives the probability of
finding a rod with an orientation characterized by the unit vector u. This distribution
function must be normalized

) Jf(u) AR =T,

where d{} is the element of solid angle surrounding the direction u.

In order to assess the influence of added polymer on the phase behaviour of the
dispersion of rod-like particles, the Helmholtz free energy F. of the pure rod system
and the free-volume fraction

{ i free )n
5 apim e CRNRER LS
(t)) v _‘{v

have to be known as a function of the density, in the isotropic as well as in the nematic
phase.

22, F'ree energy. — Onsager’'s theory for the isotropic-nematic phase transition [61]
provides an expression for the free energy of a rod system up to the second virial
contribution. This free-energy expression is accurate for systems of slender rigid
hard rods with L./D >> 1 (and in fact it is an exact theory for L./D — =) as in the case
of large axial ratios, the third and higher virial contributions become small compared
to the second virial contribution[64]. Adding polymer, however, induces an effective
attraction between the rods which (strongly) lowers the second virial coefficient.
Moreover even a weak inter-rod attraction that does not affect significantly the
second virial coefficient may have a considerable influence on the third virial
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coefficient [65]. Consequently if one does not want to limit the treatment to very long
rods and very low polymer concentrations it is imperative to use for the Helmohltz
free energy of the pure colloidal dispersion an expression which includes, be it
necessarily only approximately, contributions beyond the second virial contribution.
Such an expression is provided by the Sealed Particle Theory (SPT)[66]:

y P 1 e 2
(6) Fe - =const + In ng — In(1 — ¢¢) + ol f1+ 11, ——— + —-HH( £o ) ,
Nckl 1-—¢e 2 1—ée
where n¢ is the colloidal-particle number density
N[‘,
(M ne =
( v

and ¢ is the colloidal-particle volume fraction

®) be =g ( Tpiy Epe L).
6 4
The coefficients //, and [1; are given by the expressions
_ 3(y — 1
(€)) Ho=84+ ——»
2 {3}’_ 1} :-f[f]
and

_ 2y(2y - 1) n 129(y — 1)*
8y — 1) 8y — 1

(10) 1y elf1,

where y is the overall length-to-diameter ratio of the spherocylinders

I_f + D
(11) y = :
D

The quantities o[ f] and ¢[ f] depend on the orientation distribution function f:

12) alf]= j f(u) In[47f(u)]dQ
and
(13) olf1= 2 ” |sin®| f(u)fu')dQdQ" ,

where @ is the angle between two spherocylinders.
2'3. Free volume. — In order to calculate the free volume accessible to a polymer

coil with diameter s in a sea of N spherocylinders we write the chemical potential 1,
of the polymer molecules in the dispersion in the form

N
(14) , = const + k7 In 7’ +W'.
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Here W' stands for the reversible work required to introduce the polymer molecule in
the dispersion of rod-like colloidal particles. According to Widom’s particle insertion
method [67] the chemical potential of the polymer molecules ean also be written in the
form

const + k7 In W ']> -
(15) w, — free /0

NP
const + £7T In _V_ — kT Inv.

Combining egs. (14) and (15) we find that

(16) v= ——<V‘:f)” =exp[—lv—].

This is an exact relationship. In order to obtain a concrete result we use the scaled
particle theory [66,68-70] to calculate W' (see appendix for details). This leads to the
following (approximate) result for the free-volume fraction:

A, ,J-J 2 ¢U 3
an  v=(1-4g _A( bc )+B(v7t‘) ,,C(i)H
YL)EXp[ { 1-¢¢ 1-¢¢ 1-¢¢

where

6r . 30+, 2

A: 1
3)’—1'? 3y -1 3}'—lq
1{ 6y \& ., 6 6(y — 1)
B=—(f - ) 3+( + =7 pm)q"*,
2\8y-1 3y—1 3y—1

Al

2 129(2y — 1 12v(y — 1) .
: ( y(2y 2) 4 L2rty 2) .a[f])q"-
3y—1\ 3y-1) (3y —1)

In these expressions y is the overall length-to-diameter ratio of the spherocylinders
(eq. (11)) and q is the ratio of the polymer diameter and the colloid diameter

(18) g=o/D.

It is instructive to compare the SPT result for the free-volume fraction obtained here
with the expression obtained by Warren[59] from a geometric calculation

1
(19) v=1-ki¢c+ gwé ;
where
k= (1+ ¢
and

% ./ 5 3
B bl e Bt gy,
v 87 1607
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This result is exact to order ¢% in the limit L/D — . Expanding the SPT result,
eq. (17), to order ¢% and taking the limit L/D — o, we obtain

(20) v=1-(1+g) ¢c+ [(2 i %p[.f’i)q”’ ¥ %rx“}% :

Whereas eqs. (19) and (20) show agreement as far as the term of order ¢ is
concerned, there is no such agreement for the ¢% term. In addition to a quantitative
difference there is also a significant qualitative difference. The geometric calculation
shows that up to order ¢f the free volume is independent of the orientation
distribution function of the rods, whereas the SPT result does display a dependence
on it. This means that in this case SPT already deviates from the exact result on the
level of the ¢% term. Nevertheless SPT provides a practical route to obtain an
expression for the free-volume fraction beyond ¢%. In the case of colloidal spheres the
agreement between the SPT result [42] (which is now exact to order ¢%) and computer
simulations [71] is quite good for colloidal-particle volume fractions up to 0.5.

3. — Calculations.

To treat the phase behaviour of rod + polymer mixtures we must first minimize
the semi-grand-canonical potential ! with respect to the orientation distribution
function f. This can be done formally considering (2 as a funetion of f while taking into

account the normalization condition (4) by subtracting )\J'f (u)dQ (1 being a

Lagrange undetermined multiplier) and then minimizing the resulting expression.
An alternative route is to choose a (normalized) trial function with one or more
variational parameters and then minimize the free energy with respect to these
parameters. Here we shall use a Gaussian distribution funection[72]:

& | T

— exp| — —af®|, 0s6< —,

4= 2 2
(21) ) ~

X ex . (n— 6)° T i<

—_— ——p o — " -_— = =T.

4z P T g 2

This function only depends on the polar angle 6 because of the uniaxial symmetry
of a nematic phase. Using the Gaussian distribution one obtains to leading order
(large «)[72]

(22) ola) ~ In(a) — 1,

(23) pla) ~

4

V b1 '
Substitution of eqs. (22) and (23) in the Helmholtz free energy (6) and the free-volume
fraction (17) leads to an analytic expression for the grand potential (3) which depends
on a single variational parameter and hence is easily minimized.

To locate the phase transitions in the system we must solve the coexistence
conditions equating the chemical potential and osmotic pressure in the coexisting
phases. In the formalism used here the chemical potential of the polymer molecules is
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already set (by the reservoir) at a given value throughout the system and therefore
the coexistence conditions take the form

(24) (@, L ] wp) =me(@e, "] 1p),

(25) (g, L' ) pp) =T, [£"], ).

Here ¢(; and ¢{. are the colloid volume fractions in the coexisting phases and /" and /"
are the distributions that minimize (2. The expressions for u and /T are obtained from
(2 using the standard relationships

20 () oo
flp = = e — —
) e ajv’('. Vi oo : dn{';
@0 ”:_(_ag) =u”+n;‘,(u—n[,ﬂ..)_
aV Nl,‘, Hp d'n(‘_

Here u( and /1" denote the chemical potential of the colloidal particles and osmotic
pressure for the pure colloidal dispersion. Using the SPT expression (6) for the
Helmholtz free energy of the pure colloidal dispersion one obtains

A
(28) ul =const +1Inng—In(1—¢c)+ (1 +20,) ﬁ; +

1-¢c
3 A 2 e 3
+(u2 + —H,-;)( i ) + ;13( $c ) ,
2 1=4¢ 1-¢¢
1’ 1 $c 42
(29) — = + Hy —2— 41—
nekT  1-4¢¢ (1-¢c) (1-¢c)

The procedure of solving (24) and (25) was repeated for a wide range of
«geometries» determined by the length-to-width ratio L/D of the rod-like colloidal
particles and the ratio of the polymer diameter and colloid diameter s/D. For each
{L/D, s/D}-combination the phase equilibria were evaluated for different values of
the imposed polymer activity characterized by w, (or equivalently the /1], value). The
case /1, =0 corresponds to the limit of the pure colloidal dispersion.

4, - Results.

Depending on the length-to-width ratio of the rod-like particles and the ratio of
the polymer diameter and rod diameter we find three types of phase behaviour.

a) A phase diagram with two isotropic phases («dilute» and «concentrated» the
equivalent of vapour and liquid) and a nematic phase. This phase behaviour is
predicted to occur for mixtures of relatively short rods and large polymers.

b) A phase diagram with an isotropic and a nematic phase. This phase
behaviour is predicted to occur for rods with intermediate length-to-width ratios and
polymers with intermediate polymer-to-rod diameter ratios.

¢) A phase diagram with one isotropic phase and two nematic phases differing
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Fig. 2. — Dependence of the type of phase behaviour of rod-like colloid + flexible polymer
mixtures on the size parameters of the colloid and polymer. I, + I, + N: phase diagram with two
isotropic phases and a nematic phase, [ + N phase diagram with an isotropic and a nematic
phase, I + N; + N, phase diagram with one isotropic and two nematic phases,

in concentration. This phase behaviour is predicted to occur for long rod-like particles
and relatively small polymer molecules.

The occurrence of the three different regimes as a function of the geometrical
parameters L/D and s/D is shown in fig. 2.

The three types of phase behaviour are illustrated in fig. 3 in a representa-
tion showing colloid volume fraction ¢, against polymer volume fraction in the
reservoir ¢j.

Experimentally one controls the polymer concentration in the system rather than
the polymer concentration in the reservoir, Using the relation

N, 1(30 oI,
(30) =l :
Vo V8w v

= y— = \J-”;’I
3y

phase diagrams in the experimentally accessible (¢,, ¢ )-plane can be obtained from
the results in the (£}, ¢¢)-plane by simply multiplying with v(¢¢).

The resulting phase diagrams are shown in fig. 4. Note that in the (£, ¢¢)-
representation the triple lines present in the (£}, £¢)-representation expand into
three-phase regions bounded by three distinct two-phase regions. In fig. 3 and 4 tie
lines are indicated in the two-phase regions. Because of mass conservation they are
straight and the relative volumes of each phase can be obtained by the usual lever
rule[73]. In the three-phase regions of fig. 4 the compositions of the phases are given
by the vertices of the triangle and the phase volumes by an area rule[74].

5. = Discussion.

Obviously the approach taken in this work is highly idealised and it is not
expected that the theory will provide quantitatively agreement with experiment.
Nevertheless it is hoped that this work will serve as a guide to predict trends in the
phase behaviour upon changing the relative sizes of the rods and the polymers. Some
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Fig. 3. — Phase diagrams for rod-like colloid + flexible polymer mixtures showing colloid volume
fraction ¢¢ against polymer coil volume fraction in the reservoir ¢;. a) L/D =5, 5/D = 0.80;
by L/D =10, g/D = 0.65; ¢) L/D = 20, /D = 0.50. The lines are shown in the two-phase regions.
The critical point (¢) and and triple line (bold line marked t) are also indicated. I and N refer to
isotropic and nematic phases, respectively.

success in this direction was obtained from the experiments that were performed by
Buitenhuis et al [57] on mixtures of sterically stabilized rod-like colloidal boehmite
particles and flexible polymer (polystyrene, polydimethylsiloxane) in a good solvent
(orthodichlorobenzene, cyclohexane). For colloids with sufficiently large L/D ratios
(y = 27) just an isotropic and a nematic phase were obtained, whereas for small L/D
ratio (y = 6.4) a three-phase equilibrium consisting of two isotropic phases («dilute»
and «concentrated») and a nematic phase was observed.

In connection we note that the mirror image three-phase equilibrium, i.e. two
nematic phases and an isotropic phase predicted by the present theory will be
difficult to realize experimentally. First of all according to the calculations the more
concentrated nematic phase will appear at colloid volume fractions above the
concentration where the dispersion experimentally is observed to turn into a
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Fig. 4. — Phase diagrams for rod-like colloid + flexible polymer mixtures showing colloid volume

fraction ¢ against polymer coil volume fraction in the system ¢ ,. The notation is the same as in
fig. 3.

glass-like state[58]. Another issue that complicates matters here is that at
sufficiently high concentrations of rod-like colloidal particles more highly ordered
(liquid) erystal phases, such as the colloidal smectic A phase and the colloidal crystal
phase are predicted to occur[75,76]. These more highly ordered phases were not
considered in the theory presented here but on the basis of the known simulation
results for pure systems of hard rod-like particles [75,76] we expect them to preempt
the second (more concentrated) nematic phase in systems with added non-adsorbing
polymer, More work is required to confirm this speculation.

From the work on the isolation and purification of virus particles as mentioned in
the Introduction, it appears that significantly less polymer is needed to precipitate
rod-like virus particles in comparison with spherical virus particles. This trend is also
predicted by the theory presented here. As can be seen from fig. 4, increasing the
aspect ratio of the colloidal particles leads to a situation where less polymer is
required to cause phase separation. In fact the present theory, in some cases, even
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leads to semi-quantitative agreement with the experimental data. For example,
Leberman [47] observed that in a colloidal dispersion of Tobaceco Mosaie Virus (TMV;
L =300 nm; D = 18 nm) with a concentration of 1 mg /ml, precipitation of the virus
particles already occurred at a concentration as low as 5mg/ml polyethyleneglycol
(PEG) of molecular weight 6000. Using as an estimate for the diameter of the PEG
molecules 5= T7.5nm, the above-mentioned polymer concentration of 5mg/ml
corresponds to a polymer coil volume fraction of 11%. Our calculations yield for this
system a polymer coil volume fraction of about 14% to induce phase separation.

Clearly in the system discussed above the charge interactions between the TMV
particles will play a role and thus they are not simply hard rods as assumed in the
theory. Similarly the PEG molecules are not freely interpenetrable coils. Given these
facts the simple theory presented here gives quite reasonable results for the polymer
concentration required for phase separation.

APPENDIX

Calculation of the reversible work W' required to insert a polymer coil in a
dispersion of hard rod-like colloidal particles.

The basic idea of SPT to calculate the work W' required to insert at some fixed
position an additional particle into the system is to expand (scale) the particle to be
inserted from zero to its final size. In the case of a spherical particle this expansion
can be described in terms of a single scaling parameter 2 for the diameter. So the
scaled particle has a diameter 2s. In the limit 2 — 0 the work needed to insert a
sphere can be easily calculated by inverting the relation given by eq. (16)

(A.1) W'= =kT Inv

and realizing that in the limit considered there is no overlap of excluded-volume
shells and thus

(A.2) W'() = —kT In [1 - -n(‘[;::(f) + ao)? + E(D + A-:)‘“’LH (A —0).
b

For a large value of the sealing parameter A the work required to insert an
additional particle is just the work required to create the volume of the scaled particle
against the osmotic pressure //" of the fluid of hard rod-like colloidal particles

(A3) W' () = E(AT)"‘H” G 1).

Now, in the scaled-particle treatment it is assumed that the work to add a particle
with arbitrary values of the scaling parameters can be obtained by expanding (A.2) in
a Taylor series around 2 =0 up to quadratic terms and adding (A.3) as the
third-order term

(A 4) W' () =W'(0) + il A+ _la W 224+ =)',
oL la=0 2 3r° li=0 6

The reversible work to insert a polymer coil with a diameter - in a dispersion
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of hard rod-like colloidal particles is obtained from the above expression, by
setting 2 = 1 and using for the osmotic pressure /1° the result given by eq. (29). This
leads to

A 2 i 3
(A.5) W’:_ln[1“¢(:]+8(1": )+C( Fe ],

¥C 1 _¢{‘-

where A, B and C have the same meaning as in eq. (17). Inserting W’ obtained here in
eq. (16) leads to the result given by eq. (17).
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