Skip to main content
Log in

Structural and functional studies on ø29 DNA polymerase

  • Published:
Chromosoma Aims and scope Submit manuscript

Abstract

TheBacillus subtilis phage ø29 DNA polymerase, involved in protein-primed viral DNA replication, contains several amino acid consensus sequences common to other eukaryotic-type DNA polymerases. Using site-directed mutagenesis, we have studied the functional significance of a C-terminal conserved region, represented by the Lys-X-Tyr (“K-Y”) motif. Single point mutants have been constructed and the corresponding proteins have been overproduced and characterized. Measurements of the activity of the mutant proteins indicated that the invariant Lys and Tyr residues play a critical role in DNA polymerization. Interestingly, substitution of the invariant Lys either by Arg or Thr, produced enzymes with an increased or a largely reduced, respectively, capability to use a protein as primer, an intrinsic property of TP-priming DNA polymerases. On the other hand, the viral protein p6, which stimulates initiation of ø29 DNA replication by formation of a nucleoprotein complex at both DNA replication origins, increased (about 5-fold) the insertion fidelity of ø29 DNA polymerase during the formation of the TP-dAMP initiation complex. We propose a model in which the special strategy to maintain the integrity of the ø29 DNA ends, by means of a “sliding-back” mechanism, could also contribute to increase the fidelity of ø29 DNA replication.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Argos P. (1987) Analysis of sequence-similar pentapeptides in unrelated protein tertiary structures. J. Mol. Biol. 197:331–348

    Article  PubMed  CAS  Google Scholar 

  • Bernad A., Zaballos A., Salas M., Blanco L. (1987) Structural and functional relationships between prokaryotic and eukaryotic DNA polymerases. EMBO J. 6:4219–4225

    PubMed  CAS  Google Scholar 

  • Bernad A., Blanco L., Lázaro J.M., Martin G., Salas M. (1989) A conserved 3′–5′ exonuclease active site in prokaryotic and eukaryotic DNA polymerases. Cell 59:219–228

    Article  PubMed  CAS  Google Scholar 

  • Bernad A., Lázaro J.M., Salas M., Blanco L. (1990) The highly conserved amino acid sequence motifTyr-Gly-Asp-Thr-Asp-Ser in α-like DNA polymerases is required by phage ø29 DNA polymerase for protein-primed initiation and polymerization. Proc. Natl. Acad. Sci. USA 87:4610–4614

    Article  PubMed  CAS  Google Scholar 

  • Blanco L., Salas M. (1984) Characterization and purification of a phage ø29-encoded DNA polymerase required for the initiation of replication. Proc. Natl. Acad. Sci. USA 81:5325–5329

    Article  PubMed  CAS  Google Scholar 

  • Blanco L., Salas M. (1985a) Replication of phage ø29 DNA with purified terminal protein and DNA polymerase: Synthesis of full length DNA. Proc. Natl. Acad. Sci. USA 82:6404–6408

    Article  PubMed  CAS  Google Scholar 

  • Blanco L., Salas M. (1985b) Characterization of a 3′–5′ exonuclease activity in the phage ø29 DNA polymerase. Nucl. Acids Res. 13:1239–1249

    PubMed  CAS  Google Scholar 

  • Blanco L., Bernad A., Lázaro J.M., Martin G., Garmendia C., Salas M. (1989) Highly efficient DNA synthesis by the phage ø29 DNA polymerase. Symmetrical mode of DNA replication. J. Biol. Chem. 264:8935–8940

    PubMed  CAS  Google Scholar 

  • Blanco L., Bernad A., Blasco M.A., Salas M. (1991) A general structure for DNA-dependent DNA polymerases. Gene 100:27–38

    Article  PubMed  CAS  Google Scholar 

  • Blasco M.A., Blanco L., Parés E., Salas M., Bernad A. (1990) Structural and functional analysis of temperature-sensitive mutants of the phage ø29 DNA polymerase Nucl. Acids Res. 18:4763–4770

    PubMed  CAS  Google Scholar 

  • Blasco M.A., Bernad A., Blanco L., Salas M. (1991) Characterization and mapping of the pyrophosphorolytic activity of the phage ø29 DNA polymerase. Involvement of amino acid motifs highly conserved in α-like DNA polymerases. J. Biol. Chem. 266: 7904–7909.

    PubMed  CAS  Google Scholar 

  • Blasco M.A., Lázaro J.M., Bernad A., Blanco L., Salas M. (1992) ø29 DNA polymerase active site: mutants in conserved residues Tyr254 and Tyr 390 are affected in dNTP binding. J. Biol. Chem. 267: 19427–19434

    PubMed  CAS  Google Scholar 

  • Chou P.Y., Fasman G.D. (1978) Prediction of the secondary structure of proteins from their amino acid sequence. Adv. Enzymol. 47:45–148

    PubMed  CAS  Google Scholar 

  • Darnagnez V., Tillit J., De Recondo A.M., Baldacci G. (1991) The POL 1 gene from the fission yeastSchizosaccharomyces pombe, shows conserved amino acid blocks specific for eukaryotic DNA polymerases alpha. Mol. Gen. Genet. 226:182–189

    Article  Google Scholar 

  • Esteban J.A., Salas M., Blanco L. (1992) Fidelity of ø29 DNA polymerase. Comparison between protein-primed initiation and DNA polymerization. J. Biol. Chem, in press.

  • Garmendia C., Bernad A., Esteban J.A., Blanco L., Salas M. (1992) The bacteriophage ø29 DNA polymerase, a proof-reading enzyme. J. Biol. Chem. 267:2594–2599

    PubMed  CAS  Google Scholar 

  • Garnier J., Osguthorpe D.J., Robson B. (1978) Analysis of the accuracy and implications of simple methods for predicting the secondary structure of globular proteins. J. Mol. Biol. 120:97–120

    Article  PubMed  CAS  Google Scholar 

  • Hishinuma F., Hirai K. (1991) Genome organization of the linear plasmid pSKL, isolated fromSaccharomyces kluyveri. Mol. Gen. Genet. 226:97–106

    Article  PubMed  CAS  Google Scholar 

  • Ito J., Braithwaite D.K. (1991) Compilation and alignment of DNA polymerase sequences. Nucl. Acids Res. 19:4045–4057

    PubMed  CAS  Google Scholar 

  • Leegwater P.A.J., Strating M, Murphy NB, Kooy RF, van der Vliet PC, Overdulve JP (1991) TheTrypanosoma brucei DNA polymerase α core subunit gene is developmentally regulated and linked to a constitutively expressed open reading frame. Nucl. Acids Res. 19:6441–6447

    PubMed  CAS  Google Scholar 

  • Méndez J., Blanco L., Esteban J.A., Bernad A., Salas M. (1992) Initiation of ø29 DNA replication occurs at the second 3′ nucleotide of the linear template: a sliding-back mechanism for protein-primed DNA replication. Proc. Natl. Acad. Sci. USA, in press.

  • Nakamaye K., Eckstein F. (1986) Inhibition of restriction endonuclease Ncil cleavage by phosphorothioate groups and its application to oligonucleotide-directed mutagenesis. Nucl. Acids Res. 14: 9679–9698

    PubMed  CAS  Google Scholar 

  • Pastrana R., Lázaro J.M., Blanco L., García J.A., Méndez E., Salas M. (1985) Overproduction and purification of protein p6 ofBacillus subtilis phage ø29: role in the initiation of DNA replication. Nucl. Acids Res. 13:3083–3100

    PubMed  CAS  Google Scholar 

  • Peñalva M.A., Salas M. (1982) Initiation of phage ø29 DNA replicationin vitro: formation of a covalent complex between the terminal protein p3 and 5′-dAMP. Proc. Natl. Acad. Sci. USA 79:5522–5526

    Article  PubMed  Google Scholar 

  • Ridley R.G., White J.H., McAleese S.M., Goman M., Alano P., de Vries E., Kilbey B.J. (1991) DNA polymerase δ: gene sequences fromPlasmodium falciparum indicate that this enzyme is more highly conserved than DNA polymerase α. Nucl. Acids Res. 19: 6731–6736

    PubMed  CAS  Google Scholar 

  • Robison M.M., Roger J.C., Horgen P.A. (1991) Homology between mitochondrial DNA ofAgaricus bisporus and an internal portion of a linear mitochondrial plasmid ofAgaricus bitorquis. Curr. Genet. 19:495–502

    Article  PubMed  CAS  Google Scholar 

  • Rohe M., Schrage K., Meinhardt F. (1991) The linear plasmid pMC3-2 fromMorchella conica is structurally related to adenoviruses. Curr. Genet. 20:527–533

    Article  PubMed  CAS  Google Scholar 

  • Salas M. (1991) Protein-priming of DNA replication. Annu. Rev. Biochem. 60:39–71

    Article  PubMed  CAS  Google Scholar 

  • Serrano M., Gutiérrez J., Prieto I., Hermoso, J.M., Salas M. (1989) Signals at the bacteriophage ø29 DNA replication origins required for protein p6 binding and activity. EMBO J. 8:1879–1885

    PubMed  CAS  Google Scholar 

  • Serrano M., Salas M., Hermoso J.M. (1990) A novel nucleoprotein complex at a replication origin. Science 248:1012–1016

    PubMed  CAS  Google Scholar 

  • Studier F.W., Moffat B.A. (1986) Use of bacteriophage T7 RNA polymerase to direct selective high-level expression of cloned genes. J. Mol. Biol. 1989:113–130

  • Tabor S., Richardson C.C. (1985) A bacteriophage T7 RNA polymerase/promoter system for controlled exclusive expression of specific genes. Proc. Natl. Acad. Sci. USA 82:1074–1078

    Article  PubMed  CAS  Google Scholar 

  • Tabor S., Richardson C.C. (1987) DNA sequence analysis with a modified bacteriophage T7 DNA polymerase. Proc. Natl. Acad. Sci. USA 84:4767–4771

    Article  PubMed  CAS  Google Scholar 

  • Tomalski M.D., Wu J., Miller L.K. (1988) The location, sequence, transcription, and regulation of a baculovirus DNA polymerase gene. Virology 167:591–600

    PubMed  CAS  Google Scholar 

  • Zaballos A., Salas M. (1989) Functional domains in the bacteriophage ø29 terminal protein for interaction with the ø29 DNA polymerase and with DNA. Nucl. Acids Res. 17:10353–10366

    PubMed  CAS  Google Scholar 

  • Zhang J., Chung D.W., Tan C.-K., Downey K.M., Davie E.W., So A.G. (1991) Primary structure of the catalytic subunit of calf thymus DNA polymerase δ: sequence similarities with other DNA polymerases. Biochemistry 30:11742–11750

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Blasco, M.A., Esteban, J.A., Méndez, J. et al. Structural and functional studies on ø29 DNA polymerase. Chromosoma 102 (Suppl 1), S32–S38 (1992). https://doi.org/10.1007/BF02451783

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02451783

Keywords

Navigation