Skip to main content
Log in

Bioartificial organs I: Silica gel encapsulated pancreatic islets for the treatment of diabetes mellitus

  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

The primary objective of this work is to evaluate the potential of silica gel encapsulated pancreatic islets of Langerhans, or islet tissue, as a means by which insulin secretory capacity might be restored to individuals with insulin dependent, type 1, diabetes mellitus. The encapsulation material under investigation is comprised of sol-gel derived silica ceramic that hardens under conditions of pH, salinity, and temperature that are not harmful to living cells and organisms. Preliminary efficacy has been demonstrated by measurement of insulin secretory response of silica gel encapsulated pancreatic isletsin vitro and blood sugar levels of nonobese diabetic micein vivo.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. Hetenyi, The day after: How insulin was received by the medical profession. Perspectives in Biology and Medicine38(3), 396–405 (1995).

    Google Scholar 

  2. W.F. Ballinger and P.E. Lacy, Transplantation of intact pancreatic islets in rats. Surgery72, 175–186 (1972).

    CAS  Google Scholar 

  3. C.M. Peterson, L. Jovanovic-Peterson, and B. Formby (Eds.),Fetal Islet Transplantation: Implications for Diabetes (Springer-Verlag, New York, 1988).

    Google Scholar 

  4. P.M. Galletti, P. Aebischer, and M.J. Lysaght, The dawn of biotechnology in artificial organs. ASAIO Journal41(1), 49–57 (1995).

    CAS  Google Scholar 

  5. P.E. Lacy, Treating diabetes with transplanted cells. Scientific American, 50–58 (July, 1995).

  6. J.A. Hubbell, Biomaterials in tissue engineering. Bio/Technology13, 565–576 (1995).

    Article  CAS  Google Scholar 

  7. J.A. Hubbell and R. Langer, Tissue engineering. Chemical and Engineering News, 42–54 (March 13, 1995).

  8. R. Lipkin, Tissue engineering. Science News148, 24–26 (July 8, 1995).

    Google Scholar 

  9. S.L. Danheiser, Encapsulated cell therapies target range of applications. Genetic Engineering News15(13), 1, 12–13 (1995).

    Google Scholar 

  10. R. Langer and J.P. Vacanti, Tissue engineering. Science260, 920 (1993).

    CAS  Google Scholar 

  11. C. Ezzell, Tissue engineering and the human body shop. J. of NIH Research7(6), 47–51 (1995);7(7), 49–53 (1995).

    Google Scholar 

  12. B.I. Lee and E.J.A. Pope,Chemical Processing of Ceramics (Marcel-Dekker, Inc., New York, 1994).

    Google Scholar 

  13. E.J.A. Pope and J.D. Mackenzie, Sol-gel processing of silica II: The role of the catalyst. J. Non-Cryst. Sol.87, 185–198 (1986).

    Article  CAS  Google Scholar 

  14. E.J.A. Pope, Dye-doped silicate matrices.Proceedings of the International Conference on LASERS’93, edited by V.J. Corcoran and T.A. Goldman, (STS Press, McLean, VA, 1994), pp. 372–379.

    Google Scholar 

  15. E.J.A. Pope, Fiber optic chemical microsensors employing optically active silica microspheres. InAdvances in Fluorescence Sensing Technology II, edited by J.R. Lakowicz (SPIE Conf. Proc. 2388, 1995), pp. 245–256.

  16. E.J.A. Pope, Photochromic nanocomposites. InSol-Gel Optics III, edited by J.D. Mackenzie (Society of Photo-Optic Instrumentation Engineers, Billingham, WA, 1994) vol. 2288, pp. 410–421.

    Google Scholar 

  17. J.I. Zink et al., Biomolecular Materials based upon sol-gel encapsulated proteins. J. Sol-Gel Sci. and Tech.2, 791–795 (1994).

    Article  CAS  Google Scholar 

  18. E.J.A. Pope, Gel encapsulated microorganisms: Saccharomyces cerevisiao silica gel biocomposites. J. Sol-Gel Sci. & Tech.4, 225–229 (1995).

    Article  CAS  Google Scholar 

  19. E.J.A. Pope, K. Braun, M. Van Hirtum, C.M. Peterson, P. Tresco, and J.D. Andrade, Living ceramics. Insol-Gel Science and Technology, edited by E.J.A. Pope, S. Sakka, and L.C. Klein (American Ceramic Society Transactions, Westerville, OH, 1995).

    Google Scholar 

  20. E.J.A. Pope, Living materials: The encapsulation of microorganisms and live mammalian tissue cells for transplantation, environmental remediation, biosensors, and pharmaceuticals production, Mat. Tech. (in press).

  21. E.J.A. Pope, Sol-gel derived glasses and life in glass. Proceedings of Primeiro Simpósio Nacional de Vidros (Academia de Ciências do Estado de São Paulo, São Paulo, Brasil, 1995) vol. 2 (in press).

    Google Scholar 

  22. E.J.A. Pope, Living ceramic gels for bioartificial organs. InBiomedical and Biological Applications of Glass and Ceramics, edited by G. Fischman and R. Rusin (American Ceramic Society, Westerville, OH, 1995).

    Google Scholar 

  23. E.J.A. Pope, Life in glass: The encapsulation of living cells in inorganic gels. In Proceedings of the XVII International Congress on Glass, Beijing, China (in press).

  24. P. Tresco and E.J.A. Pope, (in preparation).

  25. D. Ahmann and E.J.A. Pope, (in preparation).

  26. J.D. Andrade and E.J.A. Pope, (in preparation).

  27. C.J. Brinker, J. Non-Cryst. Sol.48, 47 (1982); ibid. C.J. Brinker, J. Non-Cryst. Sol.63, 45 (1984).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pope, E.J.A., Braun, K. & Peterson, C.M. Bioartificial organs I: Silica gel encapsulated pancreatic islets for the treatment of diabetes mellitus. J Sol-Gel Sci Technol 8, 635–639 (1997). https://doi.org/10.1007/BF02436914

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02436914

Keywords

Navigation