Skip to main content
Log in

Regulation of transcription of the chromosomaldnaA gene ofEscherichia coli

  • Published:
Molecular and General Genetics MGG Aims and scope Submit manuscript

Summary

By comparative S1 analysis we investigated the in vivo regulation of transcription of the chromosomaldnaA gene coding for a protein essential for the initiation of replication at the chromosomal origin. Inactivation of the protein indnaA mutants results in derepression, whereas excess DnaA protein (presence of a DnaA overproducing plasmid) leads to repression ofdnaA transcription. BothdnaA promoters are subject to autoregulation allowing modulation of transcriptional efficiency by at least 20-fold. Increasing the number oforiC sequences (number of DnaA binding sites) in the cell by introducingoriC plasmids leads to a derepression of transcription. Autoregulation and binding tooriC suggest that the DnaA protein exerts a major role in the regulation of the frequency of initiation atoriC. The efficiency of transcription of thednaA2 promoter is reduced in the absence ofdam methylation, which is involved in the regulation oforiC replication.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adachi T, Mizuuchi K, Menzel R, Gellert M (1984) DNA sequence and transcription of the region upstream of theE. coli gyrB gene. Nucleic Acids Res 12:6389–6395

    PubMed  CAS  Google Scholar 

  • Arraj JA, Marinus MG (1983) Phenotypic reversal indam mutants ofEscherichia coli K12 by a recombinant plasmid containing thedam + gene. J Bacteriol 153:562–565

    PubMed  CAS  Google Scholar 

  • Atlung T, Clausen E, Hansen FG (1984) Autorepression of thednaA gene ofEscherichia coli. In: Huebscher U, Spadari S (eds) Proteins involved in DNA replication. Plenum Press, pp 199–207

  • Atlung T, Clausen E, Hansen FG (1985) Autoregulation of thednaA gene ofEscherichia coli. Mol Gen Genet 200:442–450

    Article  PubMed  CAS  Google Scholar 

  • Berk AJ, Sharp PA (1977) Sizing and mapping of early Adenovirus mRNAs by gel electrophoresis of S1 endonuclease digested hybrids. Cell 12:721–732

    Article  PubMed  CAS  Google Scholar 

  • Berk AJ, Sharp PA (1978) Structure of the Adenovirus 2 early mRNAs. Cell 14:695–711

    Article  PubMed  CAS  Google Scholar 

  • Braun RE, O'Day K, Wright A (1985) Autoregulation of the DNA replication genednaA inE. coli. Cell 40:459–469

    Article  Google Scholar 

  • Braun RE, Wright A (1986) DNA methylation differentially enhances the expression of one of the twoE. coli dnaA promoters in vivo and in vitro. Mol Gen Genet 202:246–250

    Article  PubMed  CAS  Google Scholar 

  • Brosius J, Cate RL, Perlmutter PA (1982) Precise location of two promoters for the betalactamase gene of pBR322. J Biol Chem 257:9205–9210

    PubMed  CAS  Google Scholar 

  • Buhk H-J, Messer W (1983) Replication origin region ofEscherichia coli. Nucleotide sequence and functional units. Gene 24:265–279

    Article  PubMed  CAS  Google Scholar 

  • Burgers PJM, Kornberg A, Sakakibara Y (1981) ThednaN codes for the beta subunit of DNA polymerase III holoenzyme ofE. coli. Proc Natl Acad Sci USA 78:5391–5395

    Article  PubMed  CAS  Google Scholar 

  • Chakraborty T, Yoshinaga K, Lother H, Messer W (1982) Purification of theE. coli dnaA gene product. EMBO J 1: 1545–1549

    PubMed  CAS  Google Scholar 

  • Churchward G, Holmans P, Bremer H (1983) Increased expression of thednaA gene has no effect on DNA replication in adnaA + strain ofEscherichia coli. Mol Gen Genet 192:506–508

    Article  PubMed  CAS  Google Scholar 

  • Clark AJ (1980) A view of therecBC andrecF pathways. ICN-UCLA Symp Mol Cell Biol 19:891–899

    Google Scholar 

  • Clark AJ, Volkert MR, Margossian LJ (1979) A role forrecF in repair of UV damage to DNA. Cold Spring Harbor Symp Quant Biol 43:887–892

    PubMed  CAS  Google Scholar 

  • Donachie WD (1968) Relationship between cell size and time of initiation of DNA replication. Nature 219:1077–1079

    PubMed  CAS  Google Scholar 

  • Fralick JA (1978) Studies on the regulation of initiation of chromosomal replication inEscherichia coli. J Mol Biol 122: 271–286

    Article  PubMed  CAS  Google Scholar 

  • Frey J, Chandler M, Caro L (1984) Overinitiation of chromosome and plasmid replication in adnaAcos mutant ofEscherichia coli K12: Evidence fordnA-dnaB interactions. J Mol Biol 179:171–183

    Article  PubMed  CAS  Google Scholar 

  • Fuller RS, Funnell BE, Kornberg A (1984) ThednaA protein complex with theE. coli chromosomal replication origin (oriC) and other DNA sites. Cell 38:889–900

    Article  PubMed  CAS  Google Scholar 

  • Fuller RS, Kaguni JM, Kornberg A (1981) Enzymatic replication of the origin of theE. coli chromosome. Proc Natl Acad Sci USA 78:7370–7374

    Article  PubMed  CAS  Google Scholar 

  • Fuller RS, Kornberg A (1983) PurifieddnaA protein in initiation of replication at theEscherichia coli chromosomal origin of replication. Proc Natl Acad Sci USA 80:5817–5821

    Article  PubMed  CAS  Google Scholar 

  • Hansen EB, Hansen FG, von Meyenburg K (1982) The nucleotide sequence of thednaA gene and the first part of thednaN gene ofEscherichia coli K12. Nucleic Acids Res 10:7373–7385

    PubMed  CAS  Google Scholar 

  • Hansen FG, Hansen EB, Atlung T (1982) The nucleotide sequence of thednaA gene promoter and of the adjacentrpmH gene, coding for the ribosomal protein L34, ofEscherichia coli. EMBO J 1:1043–1048

    PubMed  CAS  Google Scholar 

  • Hansen FG, Rasmussen KV (1977) Regulation of thednaA product inE. coli. Mol Gen Genet 155:219–225

    Article  PubMed  CAS  Google Scholar 

  • Hirota Y, Ryter A, Jacob F (1968) Thermosensitive mutants ofE. coli affected in the process of DNA synthesis and cellular division. Cold Spring Harbor Symp Quant Biol 33:677–693

    PubMed  CAS  Google Scholar 

  • Hughes P, Squali-Houssaini F-Z, Forterre P, Kohiyama M (1984)In vitro replication of adam methylated and non-methylatedoriC plasmid. J Mol Biol 176:155–159

    Article  PubMed  CAS  Google Scholar 

  • Kahmann R (1983) Methylation regulates the expression of a DNA-modification function encoded by bacteriophage Mu. Cold Springer Harbor Symp Quant Biol 47:639–646

    Google Scholar 

  • Katz L, Kingsbury DT, Helinski DR (1973) Stimulation by cyclic adenosine monophosphate of plasmid deoxyribonucleic acid replication and catabolite repression of the plasmid deoxyribonucleic acid-protein relaxation complex. J Bacteriol 114:577–591

    PubMed  CAS  Google Scholar 

  • Kellenberger-Gujer G, Podhajska AJ, Caro L (1978) A cold sensitivednaA mutant ofE. coli which overinitiates chromosome replication at low temperature. Mol Gen Genet 162:9–16

    Article  PubMed  CAS  Google Scholar 

  • Kleckner N, Morisato D, Roberts D, Bender J (1984) Mechanism and regulation of Tn10 transposition. Cold Spring Harbor Symp Quant Biol 49:235–244

    PubMed  CAS  Google Scholar 

  • Kölling R, Kücherer C, Schauzu M-A, Lother H, Messer W (1986) Analysis of incompatibility functions adjacent to the replication origin,oriC ofEscherichia coli. UCLA Symp Mol Cell Biol, in press

  • Kücherer C (1985) DnaA regulierte Transkription im Replikations-origin vonE. coli und Autorepression desdnaA Gens. PhD thesis, Freie Universität, Berlin

    Google Scholar 

  • LaDuca RJ, Helmstetter CE (1983) Expression of accumulated capacity for initiation of chromosome and minichromosome replication indnaA mutants ofEscherichia coli. J Bacteriol 154:1371–1380

    PubMed  CAS  Google Scholar 

  • Lother H, Kölling R, Kücherer C, Schauzu M (1985)dnaA protein-regulated transcription: effects on the in vitro replication ofEscherichia coli minichromosomes. EMBO J 4:555–560

    PubMed  CAS  Google Scholar 

  • Lycett GW, Orr E, Pritchard RH (1980) Chloramphenicol releases a block in initiation of chromosome replication in adnaA strain ofE. coli K12. Mol Gen Genet 178:329–336

    Article  PubMed  CAS  Google Scholar 

  • Maniatis T, Fritsch EF, Sambrook J (1982) Molecular cloning. Cold Spring Harbor Laboratory. Cold Spring Harbor, NY

    Google Scholar 

  • Marinus MG (1985) DNA methylation influencestrpR promoter activity inEscherichia coli K12. Mol Gen Genet 200:185–186

    Article  PubMed  CAS  Google Scholar 

  • Messer W, Bellekes U, Lother H (1985) Effect ofdam-methylation on the activity of the replication origin,oriC. EMBO J 4:1319–1326

    Google Scholar 

  • Messer W, Dankwarth L, Tippe-Schindler R, Womack JE, Zahn G (1975) Regulation of the initiation of DNA replication inE. coli. Isolation of oRNA and the control of oRNA synthesis. ICN-UCLA Symp Mol Cell Biol 3:602–617

    CAS  Google Scholar 

  • Meyernburg K von, Hansen FG, Atlung T, Boe L, Clausen IG, Deurs B van, Hansen EB, Nielsen J, Pederson PE, Rasmussen K, Riise E, Skovgaard O (1985) Facets on the chromosomal origin of replication,oriC, ofE. coli. In: Schaechter M, Neidhardt FC, Ingraham J, Kjeldgaard NO (eds) Molecular biology of bacterial growth. Jones and Banthem Publisher Inc, pp 260–281

  • Meyenburg K von, Hansen FG, Nielsen LD, Riise E (1978) Origin of replication,oriC, of theEscherichia coli chromosome on specialized transducing phages lambda-asn. Mol Gen Genet 160:287–295

    Article  Google Scholar 

  • Meyenburg K von, Hansen FG, Riise E, Bergmans HEN, Meijer M, Messer W (1979) Origin of replication,oriC, of theE. coli K-12 chromosome: genetic mapping and minichromosome replication. Cold Spring Harbor Symp Quant Biol 43:121–128

    Google Scholar 

  • Plasterk RHA, Vrieling H, Van de Putte P (1983) Transcription initiation of Mumom depends on methylation of the promoter region and a phage encoded transactivator. Nature 301:344–347

    Article  PubMed  CAS  Google Scholar 

  • Polaczek P, Ciesla Z (1984) Effect of altered efficiency of the RNA I and RNA II promoters onin vivo replication of colE1-like plasmids inE. coli. Mol Gen Genet 194:227–231

    Article  PubMed  CAS  Google Scholar 

  • Razin A, Urieli S, Pollack Y, Gruenbaum Y, Glaser G (1980) Studies on the biological role of DNA methylation: IV. Mode of methylation of DNA inE. coli cells. Nucleic Acids Res 8:1783–1792

    PubMed  CAS  Google Scholar 

  • Ream LW, Clark AJ (1984) Molecular analysis of therecF gene ofE. coli. Proc Natl Acad Sci USA 81:4622–4626

    Article  PubMed  Google Scholar 

  • Ream LW, Margossian L, Clark AJ, Hansen FG, Meyenburg K von (1980) Genetic and physical mapping ofrecF inEscherichia coli K-12. Mol Gen Genet 180:115–121

    Article  PubMed  CAS  Google Scholar 

  • Rokeach LA, Sogaard-Anderson L, Molin S (1985) Two functions of the E protein are key elements in the plasmid F replication control system. J Bacteriol 164:1262–1270

    PubMed  CAS  Google Scholar 

  • Sakakibara Y, Mizukami T (1980) A temperature sensitiveEscherichia coli mutant defective in DNA replication:dnaN, a new gene adjacent to thednaA gene. Mol Gen Genet 178:541–553

    Article  PubMed  CAS  Google Scholar 

  • Sako T, Sakakibara Y (1980) Coordinate expression ofEscherichia coli dnaA anddnaN genes. Mol Gen Genet 179:521–526

    Article  PubMed  CAS  Google Scholar 

  • Smith DW, Garland AM, Herman G, Enns RE, Baker TA, Zyskind JW (1985) Importance of state of methylation oforiC GATC sites in initiation of DNA replication inEscherichia coli. EMBO J 4:1327–1332

    Google Scholar 

  • Sompayrac L, Maaloe O (1973) Autorepressor model for control of DNA replication. Nature New Biol 241:133–135

    Article  PubMed  CAS  Google Scholar 

  • Sternberg N (1985) Evidence that adenine methylation influences DNA-protein interactions inE. coli. J Bacteriol 164:490–493

    PubMed  CAS  Google Scholar 

  • Stuitje AR, Meijer M (1983) Maintenance and incompatibility of plasmids carrying the replication origin of theE. coli chromosome: evidence for a control region of replication betweenoriC andasnA. Nucleic Acids Res 12:3321–3332

    Google Scholar 

  • Stuitje AR, de Wind N, van der Spek JC, Pors TH, Meijer M (1986) Dissection of promoter sequences involved in transcriptional activation of theEscherichia coli replication origin. Nucleic Acids Res 14:2333–2344

    PubMed  CAS  Google Scholar 

  • Tippe-Schindler R, Zahn G, Messer W (1979) Control of the initiation of DNA replication inE. coli. I. Negative control of initiation. Mol Gen Genet 168:185–195

    Article  PubMed  CAS  Google Scholar 

  • Trawick JD, Kline BC (1985) A two-stage molecular model for control of mini-F replication. Plasmid 13:59–69

    Article  PubMed  CAS  Google Scholar 

  • Zyskind JW, Cleary JM, Brusilow WSA, Harding NE, Smith DW (1983) Chromosomal replication origin from the marine bacteriumVibrio harveyi functions inEscherichia coli: oriC consensus sequence. Proc Natl Acad Sci USA 80:1164–1168

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by R. Devoret

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kücherer, C., Lother, H., Kölling, R. et al. Regulation of transcription of the chromosomaldnaA gene ofEscherichia coli . Molec. Gen. Genet. 205, 115–121 (1986). https://doi.org/10.1007/BF02428040

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02428040

Key words

Navigation