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Sommario. - J~ date  dal l ' in t roduz ione .  

A theorem going back to MAUnER asserts that a connected linear alge. 
brute group over the field of complex numbers can-be rationally parametrized. 
In its algebraic formulation this result says that if G is a connected linear 
algebraic group defined over a field k, then {under certain conditions on k) 
the field k(G) of rational functions on G that are defined over k is k-iso- 
morphic to a subfield of a purely transcendental extension of k. CHEVALLE¥ 
has recently given a proof of this when k is any field of eharacteristc zero, 
and in addition he has shown that if k is also algebraically closed then k(G) 
is itself a purely transcendental  extension of k [2]. The main result of the 
present paper extends the first of these results to the case where k is an 
arbitrary perfect f ield;  as to the second, our information is incomplete. 
Needless to say, our own methods do not depend on LIE algebras, as do the 
proofs of CHEVALLEY, and are essentially elementary in nature. 

Our paper also contains a number  of other results on rationality questions, 
mostly concerning solvable algebraic groups, and assorted counterexamples.  
Among results of general interest in the theory of algebraic groups we may 
call attention to our Propositions 2, 3, and 5, which give strong evidence that the 
study of the type of field extension obtained by adjoining the characteristic 
roots of a generic element of an algebraic group of matrices to the field of 
the generic element will provide much information on the structure of the 
group. Our final section cleans up some material on fields of definition of 
generalized jacobian varieties of curves, and gives an example of a connected 
algebraic group whose maximal connected linear algebraic subgroup is not 
defined over the same field. 

The basic references for this paper are [1] and [5], whose terminology 
will be followed rather  closely (that of [5] taking precedence in a few slight 
conflicts) and whose results will usually be used without explicit reference. 
For the general notions of algebraic geometry involved, we refer to [10]. 

(t) This research was supported by the United States A i r  Force  through the A i r  Force  
Office of Scientific Research of the A i r  :Research and Development  Command under  contract 
:No. A F  18(600)-1571. 
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1. Generalities. 
A linear algebraic group is an algebraic group which is biregular ly 

isomorphic to an algebraic group of matrices. Note that a distinction is made 
between the two concepts. However, a l inear  algebraic group that is defined 
over a field k is bi regular ly  isomorphic to an algebraic group of matr ices 
that is defined over k, the isomorphism also being defined over k [5, Th. 12, 
Cor/l l ,  so that in the course of a proof we may without fur ther  ado replace 
a l inear  algebraic group by a specific biregular]y isomorphic matr ix  group. 
In  the same way we make a distinction between the concepts c ra t iona l  
homomorphism 7) and (~ rational representat ion ~, the lat ter  being a rational 
homomorphism into an algebraic group of matrices. 

The word (~ matr ix  )7 will always denote a square matr ix  of some degree, 
usually unspecified, whose elements lie in the universal  domain. When  con- 
venient, a matr ix  will be considered to operate in the usual way on an 
underlying vector space (over the universal  domain) having dimension equal  
to the degree of the matrix,  and the vector space will be identified with an 
affine space defined over the prime field. A set of matr ices S can be reduced 
to a set of matrices S'  of the same degree if there exists a matr ix  a such 
that S ' ~ a S a - ~ ;  if the elements of a are in a field k, we say that S can 
be reduced to S' over k. A semisimp!e matrix is one which can be reduced 
to a matr ix  in diagonal form, a unipotent  matr ix  is one all of whose characte.  
ristic roots equal i. An invertible matr ix a can be expressed in one and 
only one way as the product of a semisimple matr ix  a,  and a unipotent  
matr ix  au which commute with each other ;  a,  and au are called the semi- 
simple and unipotent  parts respectively of a. Under  a rational representat ion 
of an algebraic group of matrices, semisimple matr ices and unipotent  matr ices 
are mapped respectively into semisimple and unipotent  matrices. Hence it 
makes sense to speak of semisimple and unipotent  elements of a l inear 
algebraic group. The semisimple and unipotent  parts of a matr ix  a are each 
contained in any algebraic group of matrices containing a. Hence if G is a 
l inear algebraic group and gE  G, we can wri te  g - - g , g u ,  where g, ,  gu E G 
commute and are  respectively semisimple and unipotent, and this decompo- 
sition is un ique ;  g, and gu are called the semisimple and unipotent  parts 
respectively of g. Finally, a torus is an algebraic group that  is biregularly 
isomorphic to a direct product (G,,~) ~ o f  multiplicative groups in one variable. 
An algebraic group of matr ices G that is defined over k is a torus if and 
only if it is connected and can be reduced (over some extension field of k) 
to diagonal form. 

For future  convenience we bring together in the following lemma and 
in Prop. i a number  of easy facts, for the most part  well-known. 

LEM~A. - Let g be a matrix and let K be a fi~ld containing the elements 
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of  g. Then the minimal polynomial o f  g over the field K is independent of  
the choke of  K. 

Let  k be the smallest  field containing the elements of g ;  then k c K .  
Let  X be an indeterminate  and suppose that F(X)E K[X], with F{g)--O. 
Wri te  F - - Z a I F ~ ,  where {:¢~} is a set of elements of K that are l inearly 
independent  over k and each F~ E k[X]. Then ~he equat ion Z ~tF~{g) "-  0 
implies that  each F f ( g ) ~  O. 

PROP0SI~I0~ 1. - I f  g a semisimple matrix that is rational over the field 
k then the characteristic roots of  g are separably algebraic over k. I f  g is an 
arbitrary invertiSle matrix that is rational over k, then g, and gu are rationed 
over a purely inseparable algebraic extension of  k;  g, and gu are rational 
over b i f  and only i f  the characteristic roots of  g are separably algebraic over k. 
I f  {gl  is a set of  matrices that commute with each other and are rational 
over k, and i f  any matri~c g E i g } has all of  its characteristic roots in k, then 
the set { g t is reducible over k to a set of  matrices that split uniformly into 
square blocks situated on the main diagonal (with zeros outside the blocks) such 
that each blo~k matrix  is in  triangular form and has egual diagonal elements. 

W e  first  prove the last part. For  any f ixed g E i g }  and v Ek, if m is an 
integer  ~ 0 then the range and null space of (g - -  ce} '~' (where e ---- unit  matr ix)  
are each ~g }-invariant subspaees  of the underlying vector  space IT, and if m 
is suff iciently large then V is the direct sum of these two subspaces.  It  suffices 
to prove our  contention if V is not the direct  sum of two t g }-invariant 
subspaces  that are defined over k, and in this case, if c is a character is t ic  
root of g, we must  have ( g -  ce} nilpotent. Hence  we may suppose that each 
g E i g }  is nilpotent, and it suff ices to reduce {g} to t r iangular  form over k ;  
this we do by noting that the null space of any g E{g } is i g }-invariant and 
using induct ion on dim V. £pply ing  this to the case of a single matr ix  g 
that is rat ional  over k, invertible,  and has all of its characteris t ic  roots in k, 
we get that g ,  and gu are rat ional  over k. If  g is an arbi t rary  invert ible 
matr ix  that is rat ional  over k then the unici ty of the decomposi t ion g " -g ,gu  
shows that g, and gu are purely  inseparable  over k. I f  the character is t ic  
roots of g are separably  algebraic over k then g, and gu,  by what  we have 
shown above, are also separably algebraic over k, and hence they are rational 
over k. Noting that g and g, have the same character is t ic  roots, it remains 
only to prove the first  s tatement.  Wha t  we have done shows that a matr ix  g 
th£t is rat ional  over k is semisimple if and only if its minimal polynomial  
(over some extension field of k that contains the character is t ic  roots of g) 
has no multiple roots, so the first s ta tement  follows from the lemma. 

PROP0SI~m~ 2. - Let G, G' be algebraic groups of  matrices, ": : G -* G' a 
rational homomorphism, and let g E G. Then the characteristic roots of  xig) 
are power products of  the characteristic roots of  g. 
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The characterist ic roots of g are the same as those of g~ and those of 
":(g) the same as those of (z(g})~--z(g~); hence we may suppose that g is semi- 
simple. Taking g to be in diagonal form and restr ict ing G, if necessary, to 
its intersection with the full diagonal group, we see that it is permissible 

~ "  O" to suppose that G is a group of ~la~,onal matrices. In  this ease, if X~, ..., Xn 
denote coordinates for the diagonal elements of our matrices, G is defined 
by a set of monomial equations t X~ '  ... X ~ -  l i ,  where (m, , . . . ,  m,,) ranges 
o~er a set of n- tuples  of integers. Since the set of all such n- tup les  is a 
subgroup of the free abelian group of rank n, we can find a basis i ( a , ,  ..., a,,,)l, 
i - -  1, ..., n, for the free abelian group (each a# being an integer) and integers 
d , , . . . ,  d , ~ 0  such that our subgroup is generated by the n- tuples  
(d~a,, ..., d,a,~), i = 1, ..., n. The map (X,, ..., X . ) ~ ( X ~  ~. . .X ,~ ,  ..., X ,  ,,~...X,~,~) 
is a biregular  antomorphism of the full diagonal group, and clearly the mnl- 
tiplicative group generated by the characterist ic  roots Of any diagonal matr ix  
is unal tered by the automorphism. We may thus assume that X~ a , -~  1, ..., 
X~- -~  1 is a set of equations defining G; in part icular  G is biregularly iso- 
morphic to the direct product of a certain number  of multiplicative groups G,, 
and a number  of finite cyclic' groups. (Note that in the case of characterist ic  
p=I =0, no d ~ >  0 is a multiple of p). Since G is commutat ive and consists 
of semisimple elements, the same is true of ":(G); taking G'-- ' : (G),  we can 
assume Chat G' is in diagonal  form. Thus it suffices to take G'C GL(I), so 
that "c is a numerical  function "c : G--~ G~. If (~c~, ..., w,,) E G, then (x,, ..., ~,,)---- 
"-(x~,  l, ..., 1). (1, ~e2, I, ..., 1 ) . . .  (1, ..., 1, x,,), each of these factors is in G, 
and ~(~,, ..., x , ) - - -  ~(x~, 1, ..., 1 ) . . .  z(1, .... 1, x,). We may thus assume that 
n ~ l .  If d , ~ O ,  let ~ be a primitive d~-th root of uni ty ;  then (a) EG and 
(:(a))a, __ ~(aa,) __ 1, so we can write ";(~) ----- a", for some integer r. If  g E G, 
we h~ve g --- (at), for some integer t, so "~(g) ~ :¢"~ ~ (:d) r. Finally, if d~ ~ 0 
we have G - - G ~ .  If  w is a coordinate funct ion on G,~ then :(~) is a rational 
function of ~, everywhere  defined and nowhere 0 or ~ for ~cE Gn,, so we 
must have ~(x)-----cxz, for some constant c and some integer  v. Since ":(1)--1, 
we have "c(x)~ ~ ,  completing the proof. 

Prop. 2 shows that if G is any l inear  algebraic group and g E G, we may 
speak of the (( multiplicative group generated by the characterist ic  roots of g )> ; 
this notion is independent  of any matr ix  representat ion of G. 

LEz~MA. - Le t  V be a variety. Then  the multiplicative group of  rational 
functions on V which are everywhere defined and  nowhere 0 or oct, modulo 
the group of  nonzero constant functions, is a free abelian group with a finite 
number of  generators. 

That we have a group is clear. If V' is a variety and ¢?: V'--- V an 
everywhere  defined generically surjective rational map, then there is a natural  
isomorphism from our group into the corresponding group for V', so it suf- 
fices to prove the lemma for V'. Hence we may suppose that V is an open 
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subset of a normal projective variety V. If  Wi,... , W,. are the various com- 
ponents of V - V of codimension one on TiT and f is a rational function on V, 

then the map f--* (ordw i f, ..., ordw r f) induces an isomorphism of the group 
we are considering into the free abeJian group with r generators. 

PROPOSITION 3 . -  Let G be a connected algebraic group, f a rational 
function on G which is everywhere defined, nowhare 0 or c~, and such that 
f(e~ --  I. Then the map g --+ f(g) is a rational homomorphism from G to G,~. 

By the lemma, the multiplieative group of all functions on G having the 
same properties as f is f initely generated,  so let f i , --- ,  f -  be a set of gene~ 
raters  for this group. Let k be a field of definition for G, f, f , , . . . ,  f . ,  and 
let g~, g z be independent  generic  points of G over k. Considering g2 as .a 
fixed and g~ as a variable point of G, f(gigs)/f(g'~) becomes an everywhere  
de f i ned  funct ion on G that is nowhere 0 or o,~ and that takes on the value 
1 at e. Hence  there exist integers s~,..., s .  such that 

f(g,g2)/f(g~) - "  ( f , ( g t ) ) ' ~  . . .  ([,(g~))',,. 
This last equation holds for all g , ,  g~ E G, so f(gig2)/f(g,) - -  [(g~e)/f(e). That  
is, f(g,g,) = f(g,)f(g~). 

PROPOSITION 4. - Let V be a variety defined over k, { W~} (a E A) a set 
of subvarielies of V each of which is defined over k. Then each component of 
the smallest algebrai~ subset of  V that contains t.)a~ A Wa is defined over k. 

Let W be the smallest algebraic set containing O~e.4Wa. If  W "), ..., W ''* 
are the components  of W then each Wa is contained in some W a'. I t  follows 
that W "~ is the smallest  algebraic set containing U~,s.4,.W~, for a certain 
subset A~ of A. Thus  we may suppose that W is irreducible.  If  V' is any 
k-open subset of V, then W (5 V' is the smallest  aIgebraic subset of V' that 
contains each Wa N V'. Thus we may suppose that V is embedded in an 
affine space. Replacing each variety by its closure in the affine space, we 
see that it suffices to assume that V is itself an affine space. Let  X~,. . . ,  X ,  
be coordinates for this affine space and suppose that  F(X)  is a polynomial  
vanishing on W. Wri te  F(X) - -  Z~=I cjF~(X), where  each Fi(X) E k[X] and 
e,, .... e, are quanti t ies that are l inearly independent  over k. If p~ is a generic 
point of W~ over k(c, , . . . ,  c,), we get 0 = F(p~)= Z c~F~(pa), and the l inear  
disjointness cf-k(pa) and k(c~, ..., c~) over k implies that each F~(pa)--0; i. e. 
each F~ vanishes on W. So the ideal of W has a basis in k[X]. Hence  W is 
def ined over k. 

COROLLARY. - Let G be an algebraic group defined over k and let t W~,I 
(a E A) be a set of  subvarieties of G each of which is defined over k. Then each 
component of the smallest algebraic subgroup of G that contains O~z A W~ is 
defined over k. I f  the points of U ~ ~ A W~ are closed under the group multipli. 
cation, then this smallest algebraic subgroup is the smallest algebraic subset 
of G containing U ~, ~ .4 Wa. 
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If ~l, ~, E A and Pt ,  P.. are independent generic points  of W~ l and W~,~ 
respectively over b, then any algebraic subgroup of G that contains W~l 
and W~ must contain the locus of PiP2 over k, since W~IW~ is dense in 
this locus. Thus, enlarging our se t  I Wal if necessary, we may assume 
that the points of U~s.4Wa are closed under  group multiplication. Let r be the 
smallest algebraic set containing t.):,$.4Wa; we know that each component 
of [" is defined over k. If  pa E W~, then the algebraic set p ~ l r  D W~,, for 
any a'E A, so p~-ll~ D r.  Since the components of I' and those of p~-ll~ are in 
one-one biregular birational correspondence, p~-lI~ - -  P. For any fixed ? E F, 
the set of points p E G such that p-l~,  E 1 ~ is an algebraic subset of G, so the 
set of all points p E G  such that p - l F C r  is an algebraic subset of G that 
contains each Wa. Thus 1~-~I ~ C F, so P is an algebraic subgroup of G. 

There are a number of obvious extensions of the corollary. For example, 
if I Wa I (~ E A) are subvarieties of V that do not necessarily have a common 
field of definition but whose points are closed under group multiplication, 
the smallest algebraic set containing U~eAWa is still an algebraic subgroup 
of (~; the difficulty here is that the universal domain may not be of infinite 
transcendence degree over the compositum of the fields of definition of the 
various Wa' s, but this difficulty is eliminated by a temporary extension of 
the universal domain. Also, if the W~'s are all subvarieties of G that are 
defined over k and pass through e, then the sets by which we augmented 
I Wal in the proof of the corollary are also subvarieties of G that are defined 
over k, pass through e, and contain some of the original sets W~; since 
algebraic subsets of G are of bounded dimension, it follows that the smallest 
algebraic subgroup of G containing t.)auAW~ must be the subvariety in our 
augmented set of Wa's that has maximal dimension, and this has as generic 
point 5ver k a point p~p~ ... p~, where the p~' s are independent  generic points 
over k of various of the varieties Wa. Finally, if t Wal is an arbitrary set 
of subvarieties of G that pass through e (but do not necessarily have a com- 
mon field of definition), for any finite subset A' of A we can consider the 
smallest algebraic subgroup of G containing O~.4,W~, and the subgroup of 
maximal dimension which can be obtained in this way is the smallest alge. 
braic subgroup of G that contains Ua~.4W~. Thus for any set I W~,I (sEA) 
of subvarieties of G that pass through e, the smallest algebraic subgroup ]: 
of G that contains (2~,sAWa is the same as that got from a finite subset of 

Wa}, and is connected. If k is a field of definition for G and enough of 
the W~,' s, then k is also a field of definition for 1 ~, and a generic point of r 
over k can be got as the group product of independent  generic points over k 
of certain of the W~,'s that are defined over k. Since any generic point of r 
over k must be of the same form, and since any point of r is the product 
of two of its generic points over k, we see that r is simply the group gene- 
rated by all the points of U ~ A W ~ .  
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It  may be worthwhile to indicate explicitly a slight extension of the 
preceding paragraph:  Let G be an algebraic group, let I W~I (~EA) be a set 
of subvarieties of G that pass through e, and let W~', for each aEA, be a 
nonempty open subset of Wa. Then the subgroup generated by the points 
of 1.9~W~' is the same as that generated by the points of t.J~W~, and hence 
is a connected algebraic subgroup of G. (For suppose, as we may, that the 
set A is finite, let k be a field of definition for G and each Wa, and let 
each W~,' be k-open on W~. We have shown at the end of the last paragraph 
that each point of the group generated by U~W~ is the product of generic 
points over k of various of the Wa's. Since a generic point over k of Wa is 
in W~', we are done). An easy consequence in the following: Let G be an 
algebraic group defined over k and let V, W be "subvarieties of G that are 
defined over k such that at least one point Of V commutes with a point of W. 
Then [V, W] (i. e., the group generated by all commutators of points of V 
with points of  W) is a connected algebraic subgroup of G that is defined 
over k. For IV, W] contains an open subset of the locus over k of vwv-~w - ' ,  
where v, w are independent  generic points over k of V, W respectively. 

2. Solvable groups. 
As in [5], the word (~ solvable)) (and, a for t io r i ,  the word ¢ nilpotent >)), 

when applied to an algebraic group, presupposes that the group is linear. 
The unipotent  elements of a connected solvable algebraic group G are known 
to form a connected normal algebraic subgroup Gu of G such that G/Gu is 
a torus. If  k is a field of definition of G, then Gu is left fixed by all k-auto. 
morphisms of the universal domain, hence is k-closed. If T is any maximal 
torus of G, the map T X  Gu --* G defined by t X g u  --~ tg~ is birational and 
surjeet ive;  if G is nilpotent, then the maximal torus T is unique, consisting 
precisely of all semisimple elements of G, and is central, and G is biregu- 
larly isomorphic to the direct product T X  Gu. (For all these matters  el. [1]}. 
By the theorem of LIv,-KoLcnI~, a connected solvable algebraic group of 
matrices G can be reduced to t r iangular  form;  in fact if k is a field of 
definition for G, then G can be reduced to tr iangular  form by a matrix that 
is rational over the algebraic closure k of k. (The simplest proof of the 
latter modification is probably got by noting that if H4, He are a n y  k-closed 
algebraic sets of matrices, then the invertible matrices a such that aHia -~ C H2 
constitute a k-closed subset of the full l inear group). One knows that if G 
is a torus then G is reducible to diagonal form, so if G is a torus defined 
over k, then G is reducible to diagonal form over k. 

PnOPOS]TIO~ 5. - Let G be a connected algebraic group of  matrices defined 
over k, wi th  g a ge~erie point  of  G over k. ~ hen a necessary and sufficient 
condition that G be reducible to triangular form over k is that all the characte- 
ristic roots of  g be contained in k(g). I f  this condition is verified, it  also holds 
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for any rational representation of G that is defined over k, the unipotent part  
G,~ of G is also defined over k, and G can be reduced to triangular form 
over k in such a way as to send any given torus of G that is defined over k 
into diagonal form. 

The necessity of the given condition is clear, so suppose that all the 
characterist ic roots of g are in k(g). If f(g) is one of these characterist ic  
roots, then the determinant  t g - - f (g~e]  is zero, so the rational function 
fEk(G) is integrally dependent  on the r ing of everywhere  finite rational 
functions on G, hence is itself an everywhere finite rational function on G. 
In  particular,  since G is a nonsingular  variety f is everywhere  defined on G. 
If g'E G, the equation Ig ' - - f (g ' )e  I ~ 0  shows that f(g') is a characterist ic  
root of g' ;  thus f is nowhere 0 or ~ on G and assumes the value 1 at e. 
By Prop. 3, the map g ~ f{g) gives a rational homomorphism defined over k 
from G into G,~. Suppose G C GL(n), and that f4(g),..., f,(g) are all the 
characteris t ic  roots of g, each repeated as mar~y times as it occurs. Then 
IIi~l (g f,(g)e) 0, so for any g'E G we have II '~ ' e - - -  i=1 (g' - -  L(g ) ) "-  0, implying 
that the characterist ic roots of g' are to be found ' among  f~(g'), ..., f,,(g'). The 
map g --* (fi(g), "", f-(g)) gives a rational homomorphism defined over k 'from 
G into a torus, and each element of the kernel  H of this homomorphism is 
unipotent. Since H is solvable and G/H is commutative,  G is solvable. :Now 
let ¢p: G ~ G' be a surjective rational representat ion that is defined over k. 
Then G' is connected, solvable, and defined over k, hence reduci~)le to trian- 
gular  form over k. Thus the characterist ic  roots of ~(g} are all contained in 
]~(~(g)). But by our assumptions and Prop. 2, these characterist ic roots are 
contained in k(g), hence in k(~(gt) (1 k(g). But k and k(g) are l inearly disjoint 
over k, so (by [6, § 2, Lemma 3]) this intersection is precisely k(c~{g}); hence 
G' a l ~  satisfies the conditions of the proposition. We now prove the part  
about the reducibil i ty of G to t r iangular  form over k by induction on the 
dimension of the under lying vector space V on which G operates. If dim V ~  0 
there is nothing to prove, so suppose dim V ~  0. Since G is reducible to 
t r iangular  form over k, there exists a nonzero vector v E V that is rational 
over k and is a characteris t ic  vector for all T E G. Wri te  v ~ E~=l a~v~, where 
each v~ E V is nonzero and rational over k and a~,..., creek are l inearly 
independent  over k. Then g(v)--f(g)v,  where f(g)E k{g) is one of the characte- 
ristic roots of g, so E~(g(v~)- - f (g)v~)- -0 .  By the l inear disjointness of 
and k(g) over k, we get g(v i )~  flg)v~ for i - - 1 , . . . ,  v. Thus there exists a 
nonzero vector v~ E V that is rational over k and is a characterist ic  vector 
for each T E G. Application of our induction assumption to the n~tural  repre. 
sentation of G by a group of l inear  transformations on the vector space 
V/(v~) shows that G is reducible to t r iangular  form over k. If G is a torus, 
then V is direct  sum of invariant one-dimensional  subspaees defined over k, 
and the above proof shows that these subspaces may actually be taken to be 
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defined over k; thus if G is a torus it is reducible to diagonal form over k. 
Now suppose that the group G satisfies the condition of the proposition and 
that T is a torus of G that is defined over k. Since G is reducible to trian. 
gular  form over k, T also satisfies the condition of the theorem. Let 
V-~- 1/0 D V~ D V~ ~ ... be G-invariant  subspaces of V. all defined over k, such 
that for i----0, 1, ..., dim V~/V~+i----1. The natural,  representat ion of T by a 
group of l inear  t ransformations on V~ is reducible over k to diagonal form, 
so there exists a vector v~E V~, v,~ V~+, that is rat ional  over k and is a 
character is t ic  vector for each t E I'. If  we use the basis (v0, v~,...) of V, we 
reduce (/ to t r iangular  form over k in such a way that T goes into a diago- 
nal group. I t  remains only to show that Gu is defined over k. Let z: G--*/Gu 
be the natura l  rational homomorphism and suppos~ that the torus G/Gu is 
taken r o b e  an algebraic group of matr ices  in diagonal form. Suppose our  
point g is generic for G over the compositum of k and a field of definition 
of ~. Each diagonal element of ~(g) is a characteris t ic  root of "~(g}, hence (by 
Prop. 2 and our assumptions) is an element of k(g). Thus the separable ratio. 
hal homomorphism -c is defined over k. The kernel  Gu of x is a rational 
cycle over k [5, Prop. 1, Cor.]. Since Gu is connected, it is defined over k. 
Q . E . D .  

If G is any connected solvable algebraic group of matr ices  that is defi- 
ned over k, Prop. 5 shows that there is a smallest extension field k~ D k over 
which G can be reduced to t r iangular  form (namely, k~ = the smallest  over. 
field of k that is a field of definition for the various rat ional  functions on G 
got from the character is t ic  roots). If a cer tain matr ix  rat ional  over k reduces  
G to t r iangular  form, so does any of its conjugates over k. Thus k~ is a finite 
normal  algebraic extension of k. If G' is an algebraic group of matr ices  that 
is bi regular ly  isomorph4c over k to G, then by Prop. 2 the two fields k, 
and k/  are equal. Thus a wel l -def ined extension field k~ of k can be asso. 
ciated with any connected solvable algebraic group defined over k. 

COI~OLLAI~Y 1. - I f  G is an algebraic group of matrices each of whose 
components is defined over k a~d each of whose elements is ~nil)otent, then G 
is reducible to triangular form over k. 

Even when G is not connected it can be reduced to t r iangular  form 
(a resul t  of KOLCHIZ~ which appears in [1, Ch. IV]), s o  the only modification 
which need be made in the per t inent  part  o f  the above proof is to replace 
the single point g by a set of generic  points over k of the various compo- 
nents  of G. 

We recall  that a connected solvable algebraic group G is said to have k 
as a field of definition for its solvability if G possesses a normal  chain of 
connected algebraic subgroups (starting with G and going down to l e I), each 
defined over k, whose successive factor groups ~being taken, together with 
the various canonical  rat ional  homomorpbisms involved, to be defined over k) 

Annali di Maternatica 5 
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are each biregular ly  isomorphic over k to ei ther  the Additive group G a o r  

the multiplicative group G,, [5, § 4]. 
COROLT,An¥ 2. - I f  the connected algebraic group of matrices G, defined 

over the perfect field k, satisfies the condition of Prop. 5 then k is a field of 
definition for the solvability of G. Furthermore, a normal chain of algebraic 
subgroups of G exhibitiug this fact can be found which consists entirely of 
subgroups that are normal in G. 

We may assume that G is in t r iangular  form. If ~ is the full group of 
t r iangular  matrices, it is known that ~ has a normal  chain ~ - -  ~c0~ D ~ D ... 
such that each ~('~ is normal  in ¢g and defined over the prime field, the 
unipotent  part  ¢~u of ~ is ~( ' )  (if CgC GL(n)), and the dimensions of the 
groups in this chain go down one at each step. Gu ~--" G A ~;(,), and the con- 
nected k-closed groups G ~ G (5 ~(o) D (G (~ ~))0  D (G N ~7(~))o D ... are each 
normal in G and the dimensions of the groups in this chain go down by a t  
most one at each step. If we el iminate repetitions, we get a normal  chain 
of connected normal k-closed subgroups of G, say G --: G C°) D G (~) D G ('~ D. . . ,  
going down in dimension by one at each step and such that Gu-----G c'~) for 
some v ~ 0 .  Since k is perfect, each G (~), i = 0 ,  1,..., is defined over k, so 
we may take the various natural  rational homomorphism G(~)~ G(~)/G ('+~) to 
be defined over k. For  any i ~ v, G(~)/G (l+~) is biregular]y isomorphic over k 
to a subgroup of the terns G/G "+'). If we take G/G (~+~) to be an algebraic 
group of matrices, the proposition shows that it is reducible to diagonal 
form over k, so G(~/G ~'+~ is bire~ular]y isomorphic over k to a group of 
matrices in diagonal form, hence to G,~. On the other hand i f  i ~  v, then 
G(')/G(~+~ consists ent irely of unipotent  elements, so it remains only to show 
that  if H is an algebraic group defined over the perfect  field k that is bire. 
gular~y isomorphic to Ga over some extension field of k, then H is biregu. 
larly isomorphic to Ga over k. Since k is perfect, the genus of the curve H 
does not change upon ground field extensions, so k(H)/k is of genus zero;  
since H has a rational point over k, k(H) is a simple t ranscendental  exten- 
sion of k, so we .may take H to be a k-open subset of the projective line D. 
{ D - - H )  oonsists of only one point, which must  be purely inseparable over k, 
hence rational over k. If  we take (0) to be the identity of H and (cx~) the 
point ( D - - H ) ,  it is trivial to verify that the group operation on H is got 
by the addition of coordinates. 

Cor. 2 shows that if G is a connected solvable algebraic group defined 
over the field k, then k is a field of definition for the solvability of G; if G 
contains only unipotent  elements and k has characterist ic p, then k ~-~  is a 
field of definition for the solvability of G. The author  does not know if 
there exists a minimal  overfield of k that is a field of definition for the 
solvability of G. 

We may make the following comment  relat ive to the lat ter  part  of the 
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above proof:  I f  G is an algebraic group defined over k, bi regular ly  isomor- 
phic to Ga (over some extension field of k), and if G is a rational curve 
over k, then G is biregular ly  isomorphic to Ga over k, except possibly when  
k has character is t ic  two. For  we may take G to be the projective line D 
minus  a point (P} that is purely  inseparable over k. I f  xi ,  x~ are  independent  
variables over k and x~ o~c 2 denotes the coordinate funct ion of the group 
product of the points (~c~) and (x~), then the relations k(x,~, x,~) - -  k(x,~, x,~ o x,~) --  
k ( ~ ,  x,  0 x~) show that x~ o x 2 - -  (a + bx I + cx~ + dx~x,2)/(e -¢- fxi  --t-gx,~ + h~¢~), 
for cer ta in  a, ..., h E k, and since P - -  x~ O P we get t h a t / )  is quadrat ic  over k. 
If k has character is t ic  :]= 2, P must  be rat ional  over k and the proof given 
above obtains. A counterexample  in the case of a field k of character is t ic  
two is given by wj o x~ ---- tx i -t- ~2)/(1 -t- ax~x,.,), where a E k, a ~ k s. Here  an 
additive parameter  for the group is x / ( w -  a-~/2). 

The next  two propositions will tie together more closely the notion of a 
field of definit ion for the solvability of a group and the content  of Prop. 5. 

PROPOSITIO~ 6. - Let  G be a connected solvable algebraic group, k a field 
of  definition for its solvability, and  ~ : G ~ G' a surjeetive rational homomorphism 
defined over k. Then G' also has k as a field of  definition for its solvability. 

If  dim G----l, embed G in the ust~al way in the project ive l ine "D 
(D - -  G I.) (co) or G U (0) I.) (c~) according as G is a Ga or G,~). If  we exclude 
the trivial case dim G ' =  0, G' is a curve that is rational over k;  since O' is 
nonsingular,  it can be identified with a k-open subset of a projective line D'. 
-: then extends to an everywhere  defined surjeetive map ":: D - *  D', and 
D' - -  G' (J -~(c~) or G' U ~:(0) U z(oo). The points ~(0) and ~(c~) are  dist inct  and 
rational over k, so by c h a n g i n g  coordinates on D' w e J g e t  ~(0)----0 and  
~(c~) - -oo ;  if G is a mult ipl icat ive group we can also take ~(1) - -1 .  One 
shows immediately that G' is ei ther  G a o r  Gin. Finally,  for a G of arbi t rary  
dimension, let  G - - G ( ° ~  G ~  ... be a normal  chain exhibit ing k as a field 
of definit ion for the solvability of G. Then ~G--~G(°*~ ~G (~ D ... is a normal  
chain for G' each member  of which is defined over k. Taking the na tura l  
homomorhism from ~G ~) to ":G")/~G c~+~ to be de f ined  over k~ we need only 
show that the lat ter  group is biregular ly  isomorphic over k t o  Ga, G~ or the 
trivial group. But we have a natura l  surjective rat ional  homomorphism defi- 
ned over k from G ~ to zG~/'~G(~+i~ and the kernel  of this homomorphism 
contains G ~+~). Hence  there is a na tura l  surjective rat ional  homomorphism 
defined over k from G(~/G ~+~ to zG")/'~G (~+~. Since dim G(~)/G ~+~-"  1, we 
are reduced to the first  part  of the proof. 

The following lemma and proposition give slight sharpenings of the cor- 
responding results  in [1, Ch. IV]. The proofs follow BOREL' S. 

LEPTA. - Let the connected solvable algebraic group G operate regularly 
on the complete variety V and let k be a field of  definition for the solvability 
of  G, for V, and  for the operation of  G on V. Then i f  V possesses a point  
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that is rational over k, it possesses a point that is rational over k and left 
fixed by all elements of G. 

This is trivial if dim G --  0, so suppose that dim G ~ 0 and use induction. 
Let G,. be a connected normal  algebraic subgroup of G having k as a field 
of definit ion for its solvability and such that, taking the na tura l  rat ional  
homomorphism from G to G/G~ to be defined over k, we have G/G l--- Ga 
or G,,. Then G, operates regular ly  on V, so by our induction assumption 
there exists a point p E V that  is rat ional  over k and such that gip ~ p for 
all gt E G~- Let g be a generic point of G over k. Then G operates regular ly  
on the locus of gp over k, so we may suppose that V is this  locus;  i. e. V 
is a prehomogeneous space for G. G~ opera tes  trivially on Gp, hence on V, 
so by [5, Th. 5] G/G, operates on V, and this operation is defined over k. It  
is clear that V is a prehomogeneous space for G/G~, but not at all clear 
that G/G~ operates regular ly  on V. So let V' be a variety birationally equi- 
valent to F that is a homogeneous space for G/G, (el. [8]}; then V' is also 
homogeneous for G, hence (by the unieity of homogeneous spaces) is biregu.  
larly equivalent to Gp C V. Thus Gp is a homogeneous space for G/G~. Embed 
G/G, in the usual way in the projective line D (D: (G/G~)U (~)  or 
(G/G,) U (0) U (~)). The rat ional  map ": : G/G~ ~ Gp defined by "c(gG~) ~- gp 
is defined over k and extends to an everywhere  defined surjective 
map I:: D - *  V. Hence (V- -Gp)C'c(D--G/G,)  consists of points that are 
rational over k. If V is a curve, it is a rational carve,  and any birational 
t ransformation on it admits at least one fixed point. Since G/G, is commu- 
tative, if V - - G p  we must have Gp---p. In the contrary case, V - - G p  con- 
sists of one or two points that are rational over k and arc permuted  among 
themselves by the elements of G. If q is one of them, the connectedness of G 
implies Gq --  q. 

PROPOSI~ro~ 7. - I f  the connected solvable algebraic group of matrices G 
has k as a field of definition for its solvability, then G is reducible to trian- 
gular form over k. 

Let S be the under lying vector space of G. _4. flag of S is a maximal  
sequence of vector subspaees of S each of which properly contains its sue. 
cessor. The flag manifold of S (i. e. the variety of all flags) is complete, 
defined over the prime field, a homogeneous space with respect  to the full 
l inear group, and contains a rational point. A flag that is rational over k 
and left fixed by G exists by the lemma. Taking a basis of S that is adapted 
to this flag reduces G to t r iangular  form. 

PROPOSI~m~ 8. - Let V be a homogeneous space with respect to the con. 
nected solvable algebraic group G, all defined over a field k which is a field 
of definition for the solvability of G. Then k(V} is a purely transcendental 
extension of k. 

By [5, Th. 10] there exists a point aE  V that is rational over k. If g is 
generic for G over k then ga is generic for F over k and klga) Ck(g). If  
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dim G----- 1 we get the proposit ion from LttaoT~' s theorem if dim V =  1 and 
from the triviali ty V ~ a  if dim V - - O .  Hence  suppose that dim G ~ 1 and 
use induction on dim G. Let  G~ be a connected normal algebraic  subgroup 
of G having k as a field of definition for its solvabili ty and such that, if 
the natural  homomorphism ~: G ~ GIG, is taken to be defined over k, G/G~ 
is b i regular ly  isomorphic over k to Ga or G,,. Let  W be the variety of 
Gl-orbits  on V, both W and the natura l  rational map z : V ~ W being taken 
to be defined over k. By [5, Th. 5], G/G t operates  on W, this operat ion is 
defined over k, and is such that if g, v are independent  generic points of G, 
V respect ively over k then ~g(~v)--~(gv). Since gv is generic for V over k(v), 
¢?g(zv} is generic for W over k(zv}, so W is a prehomogeneous space with 
respect  to G/Gj; without  any loss of general i ty we assume that W is homo- 
geneous for G/G~. Considering W as a homogeneous space with respect  to G, 
[5, Prop.  1] shows that the map ~:: V--~ W is everywhere  defined and 
surjective,  and we have ¢~T('c:c)--~{Ta) for any T E G, aE V. If  v4, v, are 
generic for V over k then :v~ -- ':v~ if and only if v~ E Gv~ ; hence, by transi- 
tivity, the same is true for all v~, v~ E V. Thus, if w is generic for W over k 
and if ~: W ~  V i s a  cross section ([5, Th. 10]) for the map : :  V ~  W, 
being taken to be defined over k, we have ":-' l w 1 ~ G~(arv). Since ~:-i {w I in. 
eludes a generic point Of V over k, we deduce that if gj is generic for G~ 
over k(w) then gi(arv)E G,(~w) is generic for V over k, so that k(V) is k-iso- 
morphic to k(g~(~w)). It  also follows that the closed subset  ~-~lwl - -G~(aw)  
of V is a homogeneous space with respect  to G4, defined over k(w) and having 
g~(aw) as a generic point  over k(w). By our induct ion assumption,  k(w, g~(aw}) 
is a purely t ranscendental  extension of k(w). Since w is generic over k for 
the (G/G~)-homogeneous space W and dim G/G~--1, k(w) is a pure ly  tran- 
scendental  extension of k. Since ~(g~(~w))----w, we have k(gt(~w))=k(w, g~(~w))---a 
purely  t ranscendental  extension of k. 

PROPOSITm~ 9. - I f  G is a connected nilpotent algebraic group that is 
defined over k, then the max~imal fetus of G is also defined over k. 

Both Gu and the maximal  torus T of G are invariant  under  all k-auto- 
morphisms of the universal  domain, hence k-closed, hence defined over a 
purely  inseparable  algebraic extension k' of k. There is nothing to prove if 
the character is t ic  of k is zero, so suppose k has character is t ic  p :4= 0. Let  t, 
u be independent  generic points over k' of T, Gu respectively.  If  n is suffi- 
ciently large, u P " =  e and (tu)~'~= t ~" is a generic point  of T over k'. Since 
G is defined over k and tu is generic for G over k', tu is generic for G over 
k and k(tu} is a regular  extension of k. Hence  k((tu) ~'~) is a regular  extension 
of k, so T is defined over k. 

If  G is a connected ni lpotent  group defined over k then G~, need not be 
defined over k. In  the next paragraph we give a counterexample  in which G 
is commutative.  In order to do this in a reasonably wide sett ing we discuss 
a we l l -known procedure  for construct ing l inear algebraic groups from asso- 
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ciative a lgebras ;  a part icular  ease is the algebraic group associated with the 
mult ipl icative group of an algebraic extension field. 

A subset  R of the ring of all n X n  matrices (~vith coefficients in the 
universal  domain) that contains the unit  matrix and is closed under  matr ix 
mult ipl ication gives rise to a connected algebraic subgroup G of GL(n)  in an 
easy way :  namely G consists of all invertible matrices in the linear space 
of matrices spanned by R: It  is clear that if each matr ix of R is rational 
over k, then G is defined over k. If, in addition, R is an algebra over k then 
the points of G that are rat ional  over k are precisely the units of R, and if 
k .is infinite these points are dense in G. If  now A is any associative algebra 
with unit element of dimension n over k, the regular  representat ion of A 
gives rise to such a ring R and hence to a group G of dimension n. To be 
explicit, it ¢o,,..., ¢o. is a k-basis  of A,  to each ¢o E A we associate the matrix 
¢~(¢o) -~- (~¢~j) which is rational over k and satisfies (o(o, - -  Z7=1 aji¢ot, i ~ 1, ..., n ; 
the map ¢o--* ~0(o)) is then an isomorphism from A to an algebra of matrices 
from which we get oar  group G, and G does not depend essential ly on the 
basis (¢o). For  example, if A is an algebraic extension field K of k and [K: k] - -  n, 
then G is a connected commutat ive  group of dimension n ;  here G is the 
direct product  Of a torus and a group of unipotent  matrices,  whose dimen- 
sions we now calculate. For  any (o E K, t¢~(¢o) applied to the vector (~o~, ..., o0,,} 
gives the vector {Z i aisle 1, ... ~ Z i ~i,o~i) - -  (~o~ l , ..., o)o),1), so ~o is a characterist ic  
root of ~¢~(¢o), hence also of ¢p(¢o). If  a~,,..., w, are algebraical ly independent  
over k then ¢o,,..., (o, are still a basis for K(~) /k(x) ,  and if we extend ~o to 
this larger algebra we get that ~(Z ~ ,~o, ) -  Z x,¢~((o,) has Z ~¢o~ has a characte- 
ristic root. But  the matr ix  Z x~(o)~) is rational over k(x) so for any k-iso- 
morphism ¢~ of K ,  ~,~o/ is a characteris t ic  root of Z a~5~(~o,). The various 
charad~eristic roots we obtain this way as ~ ranges over the dist inct  k-iso- 
morphisms of K are algebraically independent  over k. Hence  G contains a 
torus of dimension ~ [K:  k]~. Now let ), be t ranscendental  over ]~(~c). Then 
the norm NK(~, z)/~(~, x)(Z ~,¢o~ - -  ),) equals  the determinant  [ ~o(Z xSol - -  )~) I - -  
] Za~,~(o),)--)~e t, so from the definition of the norm as a product  of conjuga. 
tes we deduce that the characterist ic  polynomial  of Z~,¢~(¢o~) has each root 
repeated at least [K!: k]~ times. Hence  the characteris t ic  roots of Y. w,~(o),) are 
precisely the distinct Z w,¢o~' s, each repeated [K:  k]~ times. Thus the maxi- 
real torus of G has dimension exact ly  [ K : k ] , ,  and Gu has dimension 
( n - -  [K:  k],) - -  [K:  k],([K: k][ - -  1). In the special ease where K ~  k(~), and 
a n - -  a ~ k is the irreducible equation for a, we can let ~oi - -  ~ -~  for i ---- 1, ..., n 
and the generic point Z~ci~(~o~) of G over k has the form 

~2 O~i 0.~,~ 6b~ 3 

~3 ~s  ~ "'" a x 4  . 
i " " " 

\ a ~  n Oe,~_ t X n _  s 0~ / 
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If  we take n --- p :4:0 the character is t ic  of k and ~ ~ k, ~ ----- a E k, the maxi- 
mal 'torus of G has dimension 1 and is merely  the group of scalar  matrices.  
The determinant  of the matr ix  above is simply (Z~,a ' - ' )P,  so Gu is given by 
the equation Z~=lx,o¢'-'---1, hence is not defined over k. 

PROPOSITIO~ 10. - Let G be a fe tus  defined over the field k. Then k(G) 
is k-isomorphic to a subfield o f  a purely  transcendegtal e~tension of  k. 

The proof we give is essential ly the same as that given by CHEVALL~Y 
in [2, § IV] for the case of characteris t ic  zero. Take G to be an algebraic 
group of matrices.  The points of G that are rational over k , ,  the  separable 
part  of the algebraic closure of k, are dense in G. By Prop. 1, these points 
have all of their  characteris t ic  roots in k,,  hence can be s imultaneously 
reduced to diagonal form over k,.  Thus G can be reduced to diagonal form 
over a finite separable normal  algebraic  extension K of k. Let  a be a mat r ix  
rat ional  over K such that aGa -~ is in diagonal form. The g roup  aGa - I  is 
defined by monomial  equations, hence is defined over the prime field, so if 

is any k-automorphism of K we have {aGa-~} ~ ' -  aGa -~, that is, a~G(a~) -~ 
- - a G a  -~. If dim G - - r ,  a generic point of aGa -~ over k is of the form 
f(u~, ..., u~}, where  u , ,  ..., u,. a re  quanti t ies that are algebraically independent  
over k, [(u~,. . . ,  u,.) is a diagonal matr ix  each of whose diagonal elements is 
a power product  of u~, . . . ,  u,., and k(f(u))--k(u).  For any automorphism 
of K over k, (a~)-~ftu~, .., u,)a ~E G. Let  co,,..., co,, be a basis of K over k 
and I t~il ( i - - 1 ,  .... r ;  j - - ] ,  ..., n) be quantit ies that are algebraical ly inde- 
pendent  over k, and define F(I t, i I) -"  II (ag-~/( t~co/  -~ ... + t~,~co, ~, ..., tr,co~ ÷ 

... ÷ tr,co,/)a ~, where  ¢~ ranges over all k-automorphisms of K and the 
product  is taken in G. Since the de terminant  ]coi~t=~: 0, the rn  various 
quanti t ies  Zi'=lt~ico f are algebraically independent  over k, so the n various 
points f ( t ~ / - ~ - . . .  -~- ti,co,/, ..., t , ,co/  ~ ... + t,.,~co, °) are independent  generic 
points of aGa -~ over k. Thus F(t t~ 1 t) is generic for G over k. But the GxLois 
group { ~ 1 of K over k is natural ly  isomorphic to the GALOIS group of K( tq I) 
over k(l t~ i }), each a extending to K(I tii l) by t~/~--~-tii for all i, j .  F(I t~ i ]) is 
rational over K(t t~ 1 I) and invariant  under  each a, hence rat ional  over k(I t~ i I). 
Q . E . D .  

An example  of CI~EV/~L~Y [2, § V] shows that if G is a t o r u s  defined 
over a field k of character is t ic  zero that is not algebraically closed, then k{G~ 
need not be a pure ly  t ranscendenta l  extension of k. 

3. The main  result .  
LE~fMA 1. - Let  G be a connected linear algebraic group that is defined 

over k, In the max ima l  ideal o f  the local r ing o f  the identity in  the function 
field of  G, and  "c the rational representation o f  G given by the action o f  its 
inner automorphisms on the vector space m / m  ~. Then the kernel o f  • is a 
k-closed nilpotent subgroup o f  G. 

We first recall  some of the facts and notations developed in the proof 
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of Theorem 13 of [5]. For  any gE G, let cog denote the automorphism of the 
funct ion field of G defined by (o%f)(p) --  f (g- ipg) .  Then for any integer v ~ 0, 
cog induces a l inear t ransformation 6)g on the vector space !11/111 ~ and the 
map 6): g-~6)g is a rational representation. If dim G - - n  and f~, . . . ,  f ,  E mNktG)  
are uniformizing parameters  at e, then nl/m '~ has as a basis the various elements 
~ l  ... f,~., where i~,. . . ,  i,, are integers ~ 0 of strictly positive sum ~ v and 
where f denotes the residue class of a function f e r n  in the natural  
map !11 ---- 111/11l ~. Fur thermore ,  6) is given by equations 

~i+...+~<~ 

where each c")~r..~ ~ E k(G) is an everywhere  finite rational function on G. The 
various functions c(~)~r..~ do not depend on v (as long as v ~ i~ + . . .  +i,~). 
We get 'z by taking v - - 2 ;  in part icular,  ~: is a rational representat ion of G 
defined over k, so that its kernel  A is k-closed. Now fix a sufficiently large 
integer v so that the kernel  of 6) is precisely the center  ~ of G. If  ), E A we 
have each dt)o...ol0...0(),) equal to 1 or 0, according as the nonzero lower index 
is or is not in the iea place, that is, we have 

6)~,~ - -  f-~ -t- (terms of  degree > 1 in f~, ..., f , ) .  

It  follows that if k E A then 

Cox(L i' ... fn ~'*) - -  f~" ... £~" -4- (terms of  total degree > (i, + ... + i , )  in  f-,, .... f,,), 

so 6)z is a unipotent  matrix.  Therefore 6)A is a nilpotent algebraic group. There  
is a rational isomorphism from G/C to 6)G, hence from A/~ to 6)A, so A/~ 
is nilpotent. Since ~ is central  in A, A is ni lpotent  as an abstract  group. 
Note that we have not yet used the l ineari ty of G. If G is l inear then clearly 
h is ;nilpotent as an algebraic group. 

L 1 ~ A  2. - Let  H be the subgrou29 of  GL(n) consisting of  all matrices 
in GL(n) all  o f  whose entries directly below the upper left hand element are 
zero. Then i f  a ranges over all  matrices in  GL(n) that are rat ional  over the 
pr ime field, A a l i a -  ~ is the group of scalar matrices. 

{$ 

Let V be the under lying vector space. Our intersection is characterized 
as the set of those invertible l inear  t ransformations on V which, when repre- 
sented as matr ices with respect to any basis of 1/ consisting of vectors that 
are rat ional  over the prime field, have only zeros below the first  element. 
Let  v , , . . . ,  v,  be such a basis of V and let (x~j) be in our intersection. Then 
xi~ ~ 0  for i ~ 2 , . . . ,  n. Replacing the basis v~,..., v, by the same vectors 
in different  order, and doing this in all possible ways, shows that x~j.~-O if 
i :4:j ,  so (xij) is a diagonal matrix.  Replacing the basis v~ ..., v,  by the same 
basis, except for the replacement  of vl by v~-~-v~ ( i ~  1), we get x~i-= ~,~. 
Thus (x~i) is scalar. It is clear that H is a group and that the group of 
scalar matr ices is in our intersection. 
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T~EOREM. - l /  the connected linear algebraic group G is defined over the 
perfect field k, then k(G) is k-isomorphic to a subfield of a purely transcen. 
dental ex, tension of k. 

First suppose that G is solvable. Then its unipotent part Gu is connected 
and k-closed. Since k is perfect. G~ is defined over k. By Prop. 5, Cor. 2, 
k is a field of definition for the solvability of Gu. Taking the natural rational 
homomorphism G ~ G / G u  to be defined over k. the cross section theorem 
tcf. [5, Th. 10, Cor. 1]) implies that G is birationally equivalent over k to 
G, X GIGs,. But k(G~,} is a purely transcendental extension of k by Prop. 8 and 
Prop. 10 is applicable to the torus G/Gu. This finishes the solvable case. 
Note that if G is solvable and k perfect and infinite then, since there exists a 
generically surjective rational map defined over k from an affine space to G, the 
points of G that are rational over k are dense in G. As a matter of fact, 
this last argument will apply to any connected linear algebraic group G 
defined over a perfect infinite field k, once the theorem has been proved; 
this will be stated explicitly as a corollary. 

The general case of the theorem will depend on the following contentions, 
which apply to any connected k-closed algebraic group of matrices G, k an 
arbitrary field : 

(h) Either G is solvable or it is generated by its K-closed connected 
proper subgroups, for some purely transcendental extension K of k. 

(B) G is generated by its K-closed connected solvable subgroups, for 
some purely transcendental extension K of k. 

(C) The K-closed points of G are dense in G, for some purely tran- 
scendental extension K of k. 

Before proceeding with the proofs of (A), (B}, and (C), we make a few 
preliminary remarks. First, since GL(n) (for any n) is defined over the prime 
field, it makes sense to speak of a <~ k-closed algebraic group of matrices >~; 
applied to a connected group, (~ k-closed ~ means ¢ defined over a purely 
inseparable algebraic extension of k >~. A point is k-closed if and only if it 
is rational over a purely inseparable algebraic extension of k. If G' C G are 
k-closed algebraic groups of matrices with G' normal in G, we may take the 
natural rational homomorphism G--* GIG' to be defined over a purely inse- 
parable algebraic extension of k; if GIG' is taken to be an algebraic group 
of matrices, it is then k-closed. Finally, for material on the generation of 
an algebraic group by subsets we refer to the end of § 1 of this paper. 

We shall now prove (A), (B), and (C} simultaneously by induction on 
dim G. If G it solvable then (A) and ~B} are clear;  (C) also holds since we 
may take K to be a simple transcendental extension of k, so that K ~-~ is 
infinite {p---characteristic of k if this is not zero, p ~ 1 if characteristic is 
zero) and our previous remarks on solvable groups obtain. In particular (A), 
(B), (C) hold if dim G <: 1. We now assume that G is a connected k-closed 
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algebraic group of matrices of dimension > 1 and that our three contentions 
hold for all groups of smaller dimension, with any field k. We prove that 
(A) holds for G by distinguishing several cases. 

First  suppose that G contains a connected k-closed normal solvable 
subgroup G' of 'dimension > 0. Take the natural  homomorphism ~: G--G/G' 
to be defined over a purely inseparable algebraic extension of k, and take 
G/G' to be a group of matrices. Then GIG' is k-closed and we may apply tB} 
to it to get a purely transcendental extension K of k and a family I FI of 
K-closed connected solvable subgro~ups of G/G' that generate G/G'. The 
family of groups I~-~r t  then consists of K-closed connected solvable sub. 
groups of G that generate G, so (B) holds for G. Hence (A) holds for G. 

Next suppose that G contains a connected k-closed nnrmal subgroup G' 
of d i m e n s i o n ' >  0 and such that GIG' is not solvable. Take the natural 
homomorphism x: G-* GIG' to be defined over a purely inseparable algebraic 
extension of k and apply (A) to G/G' to get a purely transcendental extension 
K of k and a family t r t  of K-closed connected proper subgroups of GIG' 
that generate G/G'. Then I~-~rl  is a family of K-closed connected proper 
subgroups of G that generate G, so (A) holds for G. 

Now suppose that G contains an arbitrary connected k-closed proper 
normal subgroup G' of dimension ~ 0. If the center C of G has dimension 
> 0 we can apply the first case treated above to the connected k-closed 
subgroup Co of G; hence we may suppose that C is finite. If G/G' is not 
solvable the second case applies, so we may suppose that G/G' is solvable. 
Hence [G/G', G/G'] :~= GIG'. Thus [G, G] :4= G. Since [G, G] is connected, k-eIo. 
sed, and normal in G, it is permissible to suppose that G/G' is commutative. 
Let U be the closed subset of G' consisting of all its unipotent  elements. ]f 
we had U - -  G' then G' would be solvable and a previous case would apply, 
so suppose U:4: 'G'. Since G' is connected and ~ is finite, G'cl= ~U. Applying 
(C) to G' we get a purely transcendental exteLsion K of k and a K-closed 
point PEG', Pq~U. Replacing P by its semisimple part if necessary, we 
can assume that P is K-closed and semisimple and PEG ' ,  P ~  ~. The con. 
net ted centralizer r of P in G is lherefore a connected K-closed proper 
subgroup of G that contains a C~n~A~ subgroup of G (cf. [1, Ch. V]). Since 
FG' is a normal algebraic subgroup of G that contains a C ~ R T ~  subgroup 
and the conjugates of any CAn~A~ subgroup are dense in G, we get rG' 
dense in G. Hence G------rG', proving (A) for the G of this paragraph. 

To complete t h e  proof of tA) for G, it remains to consider the case of a 
nonsolvable group G whose only k-closed connected normal subgroups are G 
and t e l .  Let ": be the rational representation of G given by the action of 
its inner automorphisms on m/n1 ~, as in Lemma 1. By Lemma 1 the kernel 
of x is finite. Fur thermore  the proof of the lemma shows that the map ":: 
G--* ":G may be taken to be defined over a purely inseparable algebraic 
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extension of k, in which case -cG is also a k-closed matrix group. We claim 
that it is sufficient to prove (A) for ":G. For, since ~:G is not solvable, if {A) 
holds for ~G then there exists a purely transcendental  extension K of k such 
that zG is generated by its K-closed connected proper subgroups I F l .  Then 
the connected subgroups ~ (~-Ir)0 t of G are K-closed and proper and generate 
an algebraic subgroup of G which must be all of G, since its ~-image is all 
of ~G. Hence, replacing G by zG if necessary, we may assume that G CGL(n), 
where n - - d i m  G. Let H be the subgroup of GL(n) considered in Lemma 2; 
H is a connected algebraic group defined over the prime field and of dimen- 
sion (n * - n ÷ l ) .  If gEGL(n) then g - l G g C H  if and only if for each TEG 
that is algebraic over k we have g-iTg E H. Thus the total i ty  of g' s in GL(n) 
such that GCgHg -~ is k-closed; by Lemma 2 and our assumptions on G, 
this a k-closed proper subset of GL(n). Thus if u is generic f.or GL(n) over k, 
we have Gct:uHu -~. For any u that is generic for GL(n) over k we define 
Pu--(G • uHu-~)o ; this is a k(u)-elosed connected proper subgroup of G 
of dimension ~ n + ( n  * - n +  1 ) - - n  *---1. Let u i ,  us, . . ,  be independent  
generic points of GL(n) over k and let 'P be the subgroup of G generated by 
P,,,, Fu~ , .... F is generated by a finite subset of these groups, hence by 
I'~i, Fu2,..., ru~ for some finite v. Since Fu~+,CF , we deduce that P u C F  
whenever u is generic for GL(n) over k(u~, ..., u~). If v i , . . . ,  v~ are independent  
generic points of GL(n) over k(u~,..., u~) and r '  is the group generated by 
F~,  ..., Fv~, we have I ' C  F; since their dimensions are clearly equal~ F ' - - F .  
As a consequence P is k-closed. Hence I~ u C P for any u that is generic for 
GL(n) over k. If 1' E G is algebraic over k we have TFuT -~ --'~(G N uttu-')oT-' ---- 
(G (5 "fuHu-~y-~)o --  F 0 C F, since Tu is generic for GL(n) over k. Applying 
this to u - - u ~ , . . . ,  u~, we get TF'f - ~ C r ;  this holds for all T E G  that are 
algebraic over k, hence for all ~'E G. Since F is k-closed and normal in G 
we must have F--- G. Hence G is generated by its K-closed connected pro. 
per subgroups ru~,.. .  , Fu~ , where K is the purely transcendental  extension 
k(u,,..., u~) of k. This completes the proof of (A) for G. 

We now prove that (B) holds for G. This is trivial if G is solvable. 
Otherwise (A) gives us a purely transcendental  extension K of k such that G 
is generated by its K-closed connected proper subgroups. Therefore G is 
generated by a finite number  ] : , , . . . ,  F, of such K-closed connected proper 
subgroups. For each i :  1, ..., s, (B) applied to l~i and K shows that there 
exists a purely transcendental  extension K~ of K such that F~ is generated 
by its K~-elosed connected solvable subgroups. If K c K I  and K/  is K-iso- 
morphic to K~, then F~ is also generated by its K~'-elosed connected solvable 
subgroups. We may thus take K , , . . . ,  K~ to be free over K, in which case 
the compositum K~ ... K~ is a purely transcendental  extension of K, hence 
of k, and G is generated by its K~ ... K~-closed connected solvable subgroups. 
Hence (B) holds for G. 
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We prove that (C} holds for G: Using (B}, find a purely t ranscendental  
extension K of k such that G is generated by its K-closed connected solva- 
ble subgroups I F } and assume, as we may, that K is infinite. The set S of 
K-closed points of G is a subgroup of G, hence the smallest algebraic 
subset X of G containing S is an algebraic subgroup of G. For each 11 6 { F t 
we already know that S N F is dense in F. Hence F C X. Therefore X con- 
tains the subgroup generated by 11~ I, i. e. X 3 G. Thus S is dense in G. This 
proves (C), completing 'the induction process that proves the general  validity 
of (A), (B), (C). 

We shall now use (B) to prove the theorem. Let  G, k be as given, and 
let K--k( ix ,~ l )  (where the x~'s are algebraical ly independent  over k) be 
such that G is generated by  its K-c losed  connected solvable subgroups 1]:I. 
The field K p-~° (where, as usual, p is the field characteris t ic  if this is not 
zero, and otherwise p - - - 1 )  is perfect  and is a field of definition for each 
group in 1]:1. We know the theorem to hold for solvable groups. Since a 
suitable product of independent  generic points over K ~-:~ of various groups 
in I r l  is generic for G over the same field, we can find a set i y~l of alge- 
braically independent  quanti t ies over K ~-~° and a point P rational over 
K ~-~  (} y~ I) that is generic for G ever K ~-~.  But P is rational over K p-~ (I Y~ I) 
for a suitable integer  v ~ 0 ,  that is, since k is perfect, over the purely  
t ranscendental  extension k(i cca ~-~, y~ I) of k. Since P is generic for G over k, 
the proof of the theorem is complete. 

GOnOLLARY. - I f  the connected linear algebraic group G is defined over the 
infinite perfect field k, then the points of G that are rational over k are dense in G. 

The proof of this has been indicated in the first paragraph of the proof 
of the theorem. Note that  if the connected l inear algebraic group G is defi- 
ned ,over a field k which is not perfect, the theorem shows that there exists 
a finite purely  inseparable algebraic extension k' of k such that k'(G) is 
k '- isomorphic to a subfield of a pure ly  t ranscendental  extension of k ' ;  since 
k is infinite in this ease, we deduce that the points of G that are rational 
over k' are  dense in G. 

The purely t ranscendental  extension of k in which we embed the function 
field k(G) of the theorem may, a priori, be of very large t ranscendence degree 
over k. Since k(G) is a finite extension of k, this t ranscendence degree may 
of course be taken to be finite. In fact, a result in C~EVALLEY' S paper [2] 
shows that k(G) is k-isomorphic to a subfield of a purely t ranscendental  
extension of k whose t ranscendence degree over k is dim G (or (dim G + 1) 
if k is finite). For  the convenience of the reader  we include this result  as a 
proposition, giving a proof that is more geometric, and therefore, perhaps, 
somewhat more transparent ,  than the proof of SHIMUR~ given in [2]. 

PROPOSI~IO~ 11. - I f  k C K c k ( x , , , . . . ,  x,) are fields, with k infinite, 
x , , . . . ,  ~,, algebraically independent over k, and K of transcendence degree r 
over k, then K is k-isomorphic to a subfield of k{x~,..., x,.). 
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It clearly suffices to show that if r ~ n ,  then K is k-isomorphic to a 
subfield of k(x~,..., ~,,_~). Considering (1, x~,. . . ,  ~,,) as a generic point  over k 
of a project ive space P ,  and let t ing V be a p ro jec t ive  variety defined over k 
such that k(V) is k-isomorphic to K, we get a generical ly  sur ject ive rat ional  
map z : P . ~  V that is defined over k. W e  have only to show that if dim V<: n 
then there exists a hyperplane H of P ,  that is defined over k and such that "~ 
induces a generical ly  surject ive map from H to V. Let  ~ be a generic point  
of P ,  over k, T the graph of "~ on P , , X V ,  and let X be a component  of 
prp,, ((P. X ~x) N T) that contains x ; then dim X ~ 1. Let  W be the k-closed 
proper  subset  of P,, consisting of the points at which : is not defined and 
let p~, . . . ,  p~ be a finite set of points of P , ,  one chosen from each component  
of X (5 W. Since k is infinite, we can find a hyperplane H of P,, that has 
coefficients in k and contains no p~, i ~ 1, ..., s. Since ": is defined at w, we 
h:lve XcI=W; since dim X(SH----=- dim X - - l ,  we conclude that X(SHcI=X(5 W. 
If  y E X ( S H ,  yq W, we have ~y--zx,  which is generic for V over k;  in 
part icular ,  z induces a generical ly sur ject ive map from H to V. 

Let  G be a connected l inear  algebraic group defined over the infinite 
perfect  field 'k. The regular  elements of G [1, Ch. V] include a nonempty  
open subse¢ of G, so the points of G that are rational over k and regu la r  
are dense in G. I f  g E G is regular,  then the connected central izer  of g, is a 
CARTA~ subgroup of G containing g;  if g is rat ional  over k, so is g~, hence 
also the connected centralizer of g~. Hence  G has CARTA~ subgroups  that 
are defined over k, and G is generated by the set of such CARMAN subgroups.  
The author does not know whether these same facts are t rue if k is a finite 
field (~). 

Another consequence of the corollary is the following : In [3, pp. 117.119], 
CHEV~kLLEY discusses rational representa t ions  of his ¢ groupes alg~briques ~) 
(which are not quite  the same as our algebraic groups} and shows that the 
kernel  of such a representa t ion has dimension less than or equal  to what 
one would expect. He shows that equal i ty  holds when the base field is alge- 
braically closed or of characteris t ic  zero, but  need not hold for a nonperfect  
base field. If  one takes into account  the dif ferences  in terminology, our 
corollary implies the equal i ty  in quest ion whenever  the base field is perfect.  

(2) A f t e r  the complet ion of this paper,  S~aRv, communica ted  to the author  the fo l lowing  
proof  that  a connected l inear  a lgebra ic  group G that  is def ined  ove r  a f in i te  f ie ld  k has at 
lehst  one CARTAN subgroup that  is de f ined  o v e r  k :  Le t t i ng  q be  the n u m b e r  of e lements  
of k, eoord ina tewise  appl icat ion of the ]~ROB~NIUS au tomorphism ~ --+ xq def ines  a su r j ec t ive  
ra t ional  i somorphism g --~ g(q~ from G to itself.  I f  C is a CARTAN subgroup of ~ then so 
is C(q ), so we  can wr i t e  C(q ) ~ a C a  - l ,  for  some a E G .  Bu t  a resul t  of LANG says  that  the 
ra t ional  map from G to i tself  g i v e n  by g --~ g(q)g-.l is sur jee t ive ,  so there  exists  b E.G such 
that  a~b~q)b  - l .  Set t in~  C l ~ - b - i C b ,  we get  {Cl)(q)--- ~ C I .  H e n c e  the CARTA~ subgroup 0 i 
of G is def ined  o v e r  k. The  same a rgumen t  shows that  G possesses at least  one max ima l  
connected solvable  a lgebra ic  subgroup that  is de f ined  ove r  k. 
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The corol lary is false if any of the condit ions on the algebraic group G 
and the field k is dropped.  For  if we drop the condit ion that k be infinite,  
then G has only a finite number  of r a t i ona l  points.  If  we drop the condit ion 
that G be linear,  an abelian variety with a finite number  of rat ional  points 
gives a eoun te rexample :  for example  let k be the field of ra t ional  numbers  
and G the ell iptic curve ~ 3 + y 3 ~  I. A coun te rexample  when G is not con- 
nected is got by taking k to be the real  numbers  and G the group of all matr ices  

with a ~ -t-- b ~ ~ ::i:: 1. For  an example  of a connected l inear  algebraic group G 
that is def ined over a nonperfect  field k and does not have a dense set of 
rat ional  points  we proceed as fol lows:  Let  ko be any field of characteris t ic  
p ~. 2, let the quant i ty  t be t ranscendenta l  over ko and let k - -ko( t  ). Let  G 
be the subgroup  of the plane G a X G a defined by the equat ion  y ~ - - y - - t x  p. 
G is def ined over k and is biregular ly  isomorphic to Ga over the field k(ti/~), 
having as an addit ive pa ramete r  the funct ion  (y--t'/Px.), but  we claim that G 
has only a f inite n u m b e r  of points  that are rat ional  over k. For  suppose 
(~, ~)E G, with ~, ~ E k - -b0 ( t  ). Then the equat ion  lq p - - ~ - - t ~  ~ implies  

1((-1t~- '--  1) E ko(t'). 
t \\~] 

Different ia t ing ,with respect  to t gives 

1 ~-~ 1 
1 = ( ~ )  ((~) -+- t (~) ') .  

Writin'-g ~q--'u[t)/v(t), where u, v E k0[t ] are relat ively pr ime polynomials ,  we 
see that any pr ime factor of v(t) must  divide 1, so v(t) Ek o. Thus  ~ Eko[t]. 
Hence  t~Ek0[/], so ~Eko[t ]. Compar ing  terms of highest degree in the polyno- 
mial  equat ion ~ - -  ~ - -  t~ p gives ~ - -  O. Thus  the points  of G that  are rational 
over k are precisely the points  (0~ i), i - - O ,  1,..., p - - 1 .  

It  is almost cer tainly true that if G is a connected l inear  algebraic group 
(ilefined over an algebraical ly closed field k, then k(G) is a pure ly  transcen- 
dental  extension of k. In  [2], CHEVALLEY proves this if k has characteris t ic  
zero. We can reduce the proof of this for the case of arbi t rary characteris t ic  
to either of the fol lowing equivalent  s ta tements ,  which are proved in the 
classical case by use of the theory of roots :  

(S) I f  R is a maximal  connected solvable algebraic subgroup of the 
connected l inear  algebraic group G, then the G-homogeneous  space of left 
cosets G/R is p rehomogeneous  with respect  to R. 

(S'} I f  R is a max imal  connected solvable algebraic subgroup of the 
connected l inear algebraic group G, if K is a field of def ini t ion for G and R, 
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and g, r~, r~ are independent  generic points over K of G, R, R respectively, 
then %gr~ is a generic point of G over K(g). 

Grant ing  these, we can proceed as follows: Take  a maximal  connected 
solvable algebraic subgroup R of G that is defined over k (this can be done 
since k is algebraical ly closed) and take G/R and the natura l  ~nap G ~ G/R 
also to be defined over k. Since k is a field of definit ion for the solvability 
of R, we know [5, Th. 10, Cor. 1] that G is birat ionally equivalent  Over k to 
R X  G/R. Prop. 8 shows that k(R) is a purely  t ranscendental  extension of k, 
and Prop. 8 together with (S) shows the same for G/R. The same type of 
a rgument  gives a very easy proof of the following fact, which is known only 
in the case of characteris t ic  zero:  if G is a connected l inear  algebraic group 
and V is a complete homogeneous space for G, all defined over the a]ge- 
braically closed field k, then k(V) is a pure ly  t ranscendental  extension of k. 
For  if R is a maximal  connected solvable algebraic subgroup of G that is 
defined over k, there exists a point of V that is rational over k and left 
fixed by R, hence V is a rational image of the left eoset space G/R, therefore 
prehomogeneous with respect  to R, so PIop. 8 applies. 

4. On generalized jaeobian varieties. 
]n  this section we shall discuss generalized jacobian varieties with spe- 

cific reference  to fields of definition. This has also been done by IGUSA in [4], 
where the method of C~ow is used to construet  generalized jacobians as 
projective varieties defined over the ~mallest field to be expected. Here  we 
shall use lhe method W~]L has applied in [9] to the construct ion of the 
ordinary jacobian variety of a curve and, except for the question of projective 
embedding, shall derive some more specific results. 

We assume, to avoid too long-winded an account, that the reader  has at 
hand [6], [7], and [9], and mere ly  indicate the necessary modifications in the 
various arguments  used. A major  diff icul ty is that some change in [7] is 
necessary  lo be able to handle the case of a curve having points that are 
simple with respect  to some ground field, but not absolutely simple. The 
necessary modification is in Theorem 11 of [7]: one must  add the s tatement  
that, under  all the conditions of Theorem 11, if ~t is a divisor of K/k that 
is pr ime to the places of O, then r(~) and i(~) remain unchanged when we 
extend the ground field from k to k' (i. e., we have to move par t  of the 
s ta tement  of Theorem 12 5f [7] back to Theorem 11 and its weaker  hypo- 
theses). To prove this we use precisely the proof given for the corresponding 
part  of Theorem 12 [7, p. 182], except that on line 20 of p. 182 the part  
¢ each f~ EK is a mult iple of ~ - ~ )  must  be replaced by (<each f~EK is a 
mult iple of ~ -~ ,  except  possibly that f~ may l ave  poles at the places of 0)). 
We remark  that in I6USA' s paper  [4, Lemma 2~ p. 182] this point is seemingly 
bypassed, but  this is an omission. 
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We now construct  the generalized jacobian group of a curve. Let  C be 
a complete curve defined over the field k and let 0 be a semilocal subring 
of k(C) which is the intersection of the local rings in k(C) of a finite number  
of points of C, including all the singular points of C. Under  these circum- 
stances we say that our equivalence relation on C is defined over k ; [7, Th. 11] 
and its modification in the preceding paragraph enable us to extend the 
ground field k in an arbi t rary  manner  without destroying any of the basic 
properties of the equivalence relation on C associated with 0, Lemmas 1, 2, 3 
of [6, p. 515] go though without change. We can now apply the method of 
[9, § 7] to our equivalence relat ion on C; with a few trivial changes {such 
as replacing the genus g of C by its O-genus re) everything there applies 
direct ly to the present  case, up through the end of the first paragraph on 
p. 510 of [9]. Thus we get a commutat ive connected algebraic group J that 
is defined over k~ is a rational image over k of the d i r e c t  product C ~, 
and has certain other properties. ~ow let J '  be the (< generalized jacobian >> 
of 0, ¢p: C ~ J '  the <~ canonical map >>, both as constructed in [6] and both 
defined over some extension field k' of k. One shows immediately that the 
characterist ic properties of J '  [6, pp.  518.519] are satisfied by J, so that J 
and J '  are birationally equivalent  over k', and in such a way that their group 
laws correspond. Thus J and J '  are biregularly isomorphic, and hence we 
may ident ify J '  with J.  We  then have a map ¢p: C--* J,  but ~ is defined 
over k', and not necessari ly over k. If  M~, ..., M~., N are  independent  generic 
points of C over k' and ~ is the map defined over k from C ~" to J (~ is 
denoted by ¢~ on p. 509 of [9]), then 
,~(N, M~,..., M2,). Since ¢~{M,)--¢~(N} 
get that for independent  generic points 

is independent  of Ms,. . .  , M~n we 
21I, IV of C over k, ~¢(M) -- ~(N} EJ is 

rat ional  over k(M, ~). ~ o w  apply [9, :Prop. 4, p. 502] to the case G---J ,  
V--- W--- C, /7'(M, N) = ¢p(M) - -  ~(N). We obtain a principal homogeneous 
space U with respect to J and rat ional  mappings f, g of C into U, all defined 
over k, such that f (M)= F(M, N)g(N). Since ~ is defined everywhere except  
at the s ingular  points of C, we have f (M)=F(M,  M)g(M)=g(M); thus 
f(M)~--(~iM)--~(2~})f[N}. We now follow the procedure  of the bottom of 
p. 511 and p. 512 of [9] to get a commutat ive group ~ consisting of disjoint 
principal  homogeneous spaces with respect to 3 such that J, U C~, ~/J is 
infinite cyclic, and each component of ~ and all the group operations are 
defined over k. It now makes sense to wri te  f ( M ) -  f(N)--¢~(.M)~ ¢~(N) and, 
if we also denote by f its l inear  extension to divisors on C that are inde- 
pendent  of the places of O, then the map ~ - +  f (~ )  is a surjective isomor- 
phism from divisor classes on C that are independent  of the places of 0 
into ~. Each component of ~ represents  divisor classes on C of a given degree 
(degree 0 for J and degree 1 for U), and we can write ~o(M)= f (M)--a,  
where a is a fixed point of U. This group ~, with all its s tructure,  is the 
generalized jacobian group of C, and f :  C - ~  ~ is the canonical  map. 
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We now indicate briefly how these results  affect  the resul ts  of our 
paper  [61. Things being as in the preceding paragraph, we first note that the 
original <(canonical map)) q~ could have been taken to be def ined over k if 
and only if U has a point that is rat ional  over k; if this is the case we say 
that k is complete for O. (This is in accord with the definition given on p. 519 
of [6], except  that we have dropped the requiremen~ that C have a complete 
nonsingular  birational model over k). Theorem 7 of [61 a n d  all its corollaries 
now hold under  weaker  conditions, namely that C carry a divisor of degree 1 
that is rational over k (for in this case the independence of places gives a 
s imilar  divisor that is independent  of the places of O, and hence we get a 
rational point on U). Theorem 8, its corollaries, and Theorem 9 remain unal- 
tered. {As a matter  of fact, Theorem 8 can be streIigthened as fol lows:  If  
0 C 0' are semilocal  subrings of k(C) such that the corresponding equivalence 
relations are defined over k, but  k is not necessar i ly  complete for 0 or 0', if 
-¢~, 9' are the corresponding generalized jacobian  groups and f, f ' the corre- 
sponding canonical  maps, all defined over k, then there exist  a natural  surje- 
ctive homomorphism z: ~ '  such that f ' - - z f ,  and "c is rational and defined 
over k on each component  of ~. Here  "c is the extension of the natural  map 
f(C) --* f'(C). The z of [6, § 4] is the restriction of the present  ": to the com- 
ponent  of the identi ty J of 9). The author does not know whether Theorem 10 
is true under  our more general  condi t ions;  however, the argument  of the top 
of p. 524 shows that the first s ta tement  of Theorem 10, and also Corollary 1 
of T h e o r e m 1 0 ,  hold if C has an infinity of points that are rational over k. 
But  no change at all is necessary  in Theorems 11 through 13. 

If  G is a connected algebraic group defined over the field k then there 
exists a unique maximal  connected l inear algebraic subgroup L of G, and L 
is k-closed.  W e  can now give an easy example in which L is not defined 
over k :  Let  k be a nonperfect  field of characterist ic  p=~=0. Let  C be a com- 
plete curve that is defined over k, of genus g > 0, is everywhere  relat ively 
simple with reference to k, bu t  has s ingular  points. (For example,  if p =I:: 2 
we can take C to be a projective model that is re lat ively normal with refe. 
renee to k of the field k(a~, y), where y~ = x(x - -  1)(a;~ - -  a), a being an element  
of k that is not a ptn power. The genus of C is c lear ly 1, while the funct ion 
field k(x, y)/k has genus (p q-1)/2). Consider the natural  equivalence relation 
on C (got from the intersection of the local r ings of its s ingular  points) and 
let J be the generalized jacobian  variety of C, J being taken to be defined 
over k. We  claim that the maximal  connected linear algebraic subgroup L of 
J is not defined over k. To show this, we may assume that C has a point 
that is rational over k, for otherwise we can replace k by a separable  alge- 
bra ic  extension field, and this doesn ~ t al ter  the situation. Thus we may 
assume that there exists a << canonical map >> q~: C--r. J, ~ also being defined 
over k. If L is defined over k, then the natural  rational homomorphism 
"c: J .---J/L can also be taken to be def ined over k. By  the resul ts  of [6, § 4], 
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J/L is the ordinary jaeobian variety of C and ~ :  C ~ J/L the ordinary 
¢ canonical  map >> of C into its jaeobian  variety. ~ is then a birational map 
defined over k from C to a complete non-s ingular  curve. This contradiction 
shows that L cannot be defined over k. 
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