Some rationality questions on algebraic groups (%).

Memoria di MaxwerL RosexvicaT (a Evanston, Ill., U.8.A)).

Sommarie. - E dato dall introduzione.

A theorem going back to MAURER asserts that a connected linear alge-
braic group over the field of complex numbers can-be rationally parametrized.
In its algebraic formulation this result says that if G is a connected linear
algebraic group defined over a field %k, then (under certain conditions on %)
the field E(G) of rational functions on G that are defined over &k is k-iso-
morphic to a subfield of a purely transcendental extension of k. CHEVALLEY
has recently given a proof of this when % is any field of characteristc zero,
and in addition he has shown that if k is also algebraically closed then k(G)
is itself a purely transcendental extension of %k [2]. The main result of the
present paper extends the first of these results to the case where k is an
arbitrary perfect field; as to the second, our information is incomplete.
Needless to say, our own methods do not depend on LIE algebras, as do the
proofs of CHEVALLEY, and are essentially elementary in nature.

Our paper also contains a number of other results on rationality questions,
mostly concerning solvable algebraic groups, and assorted counterexamples.
Among results of general interest in the theory of algebraic groups we may
call attention to our Propositions 2, 3, and 5, which give strong evidence that the
study of the type of field extension obtained by adjoining the characteristic
roots of a generic element of an algebraic group of matrices to the field of
the generic element will provide much information on the structure of the
group. Our final section cleans up some material on fields of definition of
generalized jacobian varieties of curves, and gives an example of a connected
algebraic group whose maximal connected linear algebraic subgroup is not
defined over the same field.

The basic references for this paper are [1] and [b], whose terminology
will be followed rather closely (that of [B] taking precedence in a few slight
conflicts) and whose results will usually be used without explicit reference.
For the general notions of algebraic geometry involved, we refer to [10].

{!) This research was supported by the United States Air Force through the Air Force
Office of Beientific Research of the Air Research and Development Command under contract
No. AF 18(600)-1571.
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1. Generalities.

A linear algebraic group is an algebraic group which is biregularly
isomorphic to an algebraic group of matrices. Note that a distinetion is made
between the two concepts. However, a linear algebraic group that is defined
over a field k is biregularly isomorphic to an algebraiec group of matrices
that is defined over %, the isomorphism also being defined over %k [, Th. 12,
Cor. 1], so that in the course of a proof we may without further ado replace
a linear algebraic group by a specific biregularly isomorphic matrix group.
In the same way we make a distinction between the concepts «rational
homomorphism » and « rational representation », the latter being a rational
homomorphism into an algebraic group of matrices.

The word « matrix » will always denofe a square matrix of some degree,
usually unspecified, whose elements lie in the universal domain. When con-
venient, a mafrix will be considered to operate in the usual way on an
underlying vector space (over the universal domain) having dimension equal
to the degree of the matrix, and the vector space will be identified with an
affine space defined over the prime field. A set of matrices S can be reduced
to a set of matrices S’ of the same degree if there exists a matrix a such
that S’ = aSa~*; if the elements of & are in a field &k, we say that S can
be reduced to S’ over k. A semisimple matrix is one which can be reduced
to a matrix in diagonal form, a unipotent matrix is one all of whose characte-
ristic roots equal 1. An invertible matrix o can be expressed in one aund
only one way as the product of a semisimple matrix @, and a unipotent
matrix o, which commute with each other; a, and a, are called the semi-
simple and unipotent parts respectively of a. Under a rational representation
of an algebraic group of matrices, semisimple matrices and unipotent matrices
are mapped respectively into semisimple and unipotent matrices. Hence it
makes sense to speak of semisimple and wunipotent elements of a linear
algebraic group. The semisimple and unipotent parts of a matrix @ are each
eontained in any algebraic group of matrices containing a. Hence if G is a
linear algebraic group and g€ @, we can write g—=g,g,, where g,, g, €@
commute and are respectively semisimple and unipotent, and this decompo-
sition is unique; g, and g, are called the semisimple and unipotent parts
respectively of g. Finally, a torus is an algebraic group that is biregularly
isomorphic to a direct product (G,,)’ of multiplicative groups in one variable.
An algebraic group of matrices @ that is defined over % is a torus if and
only if it is connected and can be reduced (over some extension field of %)
to diagonal form.

For future convenience we bring together in the following lemma and
in Prop. 1 a number of easy facts, for the most part well-known.

LeMMA. - Let g be a matriz and let K be a field conlaining the elemenls
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of g. Then the minimal polynomial of g over the field K 1is independent of
the choice of K.

Let k be the smallest field containing the elements of g; then % C K.
Let X be an indeterminate and suppose that F(X)€ K[X], with F(g)=0.
Write FF=2Xa,F;, where {«;} is a set of elements of K that are linearly
independent over k and each F;€Kk[X]. Then the equation X «,F,g)=10
implies that each F(g)=0.

ProrositioN 1. - If g a semisimple malrixz that is rational over the field
k then the characteristic roots of g are separably algebraic over k. If g is an
arbitrary invertible matrixz that is rational over k, then g, and g, are rational
over a purely inseparable algebraic extension of k; g, and g, are rational
over k if and only if the characleristic roots of g are separably algebraic over k.
If (g} is a set of malrices that commute with each other and are ralional
over k, and if any matric g<€ig} has all of ils characteristic roofs in k, then
the set {g} is reducible over k lo a sel of malrices that split uniformly into
square blocks situated on the main diagonal (with zeros outside the blocks) such
that each block matrix is in triangular form and has equal diagonal elements.

We first prove the last part. For any fixed g€{g} and ¢€k, if m is an
integer =0 then the range and null space of (g — cej (where e = unit matrix)
are each {g}-invariant subspaces of the nnderlying vector space V, and if m
is sufficiently large then V is the direct sum of these two subspaces. It suffices
to prove our contention if V is not the direct sum of two {g}-invariant
subspaces that are defined over %, and in this case, if ¢ is a characteristic
root of g, we must have (g — ce} nilpotent. Hence we may suppose that each
g€ig} is nilpotent, and it suffices to reduce {g} to triangular form over k;
this we do by noting that the null space of any g€{g} is {g|-invariant and
using induction on dim V. Applying this to the ocase of a single matrix g
that is rational over k, invertible, and has all of its characteristic roots in k,
we get that g, and g, are rational over k. If g is an arbitrary invertible
mafrix that is rational over & then the unicity of the decomposition g =g.g,
shows that g, and g, are purely inseparable over k. If the characteristic
roots of g are separably algebraic over k then g, and g,, by what we have
shown above, are also separably algebraic over k, and hence they are rational
over k. Noting that g and g, have the same characteristic roots, it remains
only to prove the first statement. What we have done shows that a matrix g
that is rational over % is semisimple if and only if its minimal polynomial
(over some extension field of k that contains the characteristic roots of g)
has no multiple roots, so the first statement follows from the lemma.

ProrosiTioN 2. - Let G, G' be algebraic groups of matrices, =: G — G a
rational homomorphisin, and let g€ G. Then the characteristic roots of t(g)
are power products of the characleristic rools of g.
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The characteristic roots of g are the same as those of g, and those of
7(g) the same as those of (t(g)), = tlg,); hence we may suppose that g is semi-
simple. Taking g to be in diagonal form and restricting @, if necessary, to
its intersection with the full diagonal group, we see that if is permissible
to suppose that G is a group of diagonal matrices. In this case, if X,,.., X,
denote coordinates for the diagonal elements of our matrices, G is defined
by a set of monomial equations { X[" ... X;"» =1}, where (m,, ..., m,) ranges
over a set of m-tuples of infegers. Since the set of all such n-tuples is a
subgroup of the free abelian group of rank n, we can find a basis | (@, ..., Gui} |,
¢=1,..., n, for the free abelian group (each @;; being an integer} and integers
d;y.., 4. =0 such that our subgroup is generated by the n-tuples
(Bilbiiy ooy Bitlny), 6=1, ..., n. The map (X, ..., X,)— (X715 Xpnty oy X0, Xgnn)
is a biregular automorphism of the full diagonal group, and clearly the mul-
tiplicative group generated by the characteristic roots of any diagonal matrix
is unaltered by the automorphism. We may thus assume that Xh =1, ..,
Xin=1 is a set of equations defining @ ; in particular G is biregularly iso-
morphic to the direet product of a certain number of multiplicative groups G,
and a number of finite cyclic groups. (Note that in the case of characteristic
p=0, no d; >0 is a multiple of p). Since @ is commutative and consists
of semisimple elements, the same is true of 1(@); taking G = 1(G), we can
assume that G is in diagonal form. Thus it suffices to take G C GL(1), so
that © is a numerical function v: G— Gy. If (2 ,.., 2,) € G, then (x , ..., z,.)=
=(2,, 1,0, 1)s(1, ®,, 1,..., 1)--+(1,..., 1, 2,), each of these factors is in G,
and t(x,,..., @) =1, 1,., 1)+eo1(l,... 1, 2,). We may thus assume that
n=1.1f d, >0, let « be a primitive d,-th root of unity ; then (2)€ G and
(c(a))ﬁ:t(a%): 1, so we can write t{a)=a”, for some integer ». If g€ @,
we have g = (&%), for some integer {, so 1(g) = «"* = («)". Finally, if d, =0
we have G = G,,. I x is a coordinate function on G, then t(x) is a rational
function of », everywhere defined and nowhere 0 or oo for « € Gy, so we
must have (x) = ca*, for some constant ¢ and some integer v. Since (1) =1,
we have t(x) = ¥, completing the proof.

Prop. 2 shows that if G is any linear algebraic group and g € G, we may
speak of the « multiplicative group generated by the characteristic roots of g »;
this notion is independent of any matrix representation of G.

LEMMA. - Let V be a variety. Then the multiplicative group of rational
functions on V which are everywhere defined and nowhere 0 or oo, modulo
the group of nonzero constant functions, is a free abelian group with a finite
number of generators.

That we have a group is clear. If V' is a variety and ¢: V' — V an
everywhere defined generically surjective rational map, then there is a natural
isomorphism from our group into the corresponding group for V', so it suf-
fices to prove the lemma for V'. Hence we may suppose that V is an open
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subset of a normal projective variety V. If W,,..., W, are the various com-
ponents of ¥ — V of codimension one on V and f is a rational function on V,
then the map f — (ordw, f, ..., ordw, f) induces an isomorphism of the group
we are considering into the free abelian group with r generators.

PROPOSITION 3. - Let G be a connected olgebraic group, [ a rational
function on G which is everywhere defined, nowhere 0 or oo, and such thal
fley= 1. Then the map g — flg) is a rational homomorphism from G lo G.

By the lemma, the multiplicative group of all functions on G having the
same properties as f is finitely generated, so let f,,..., f,, be a set of gene:
rators for this group. Let k& be a field of definition for G, f, f,...., fun, and
let g,, g, be independent generic points of G over k. Considering g, as-a
fixed and g, as a variable point of G, f(g9,9,)/f(g,) becomes an everywhere
defined. function on G that is nowhere 0 or co and that takes on the value
I at e. Hence there exist integers s, ..., s, such that

flg.g.)/flg.) = (flg e - (Fulg)n -

This last equation holds for all g,, g,€ G, so f(9,9,)/f(g,) = [(g.e)/f(e). That
is, f19.9,) = £(9.)f(g.)-

PropositioN 4. - Let V be a variety defined over &k, { W,} (¢ € 4) a sel
of subvarieties of V each of which is defined over k. Then each component of
the smallest algebraic subset of V that contains U,g 4 W, is defined over k.

Let W be the smallest algebraic set containing U,z 4W,. If W&, ..., W
are the components of W then each W, is contained in some W. It follows
that W is the smallest algebraic set containing U,e A‘,Wa, for a certain
subset 4; of A. Thus we may suppose that W is irreducible. If V' is any
k-open subset of V, then W V' is the smallest algebraic subset of V' that
contains each W, N V. Thus we may suppose that V is embedded in an
affine space. Replacing each variety by its closure in the affine space, we
see that it suffices to assume that V is itself an affine space. Let X, ..., X,,
be coordinates for this affine space and suppose that F(X) is a polynomial
vanishing on W. Write F(X)=Zi_;c¢,F(X), where each F{X)€kX] and
€,y .. C, are quantities that are linearly independent over k. If p, is a generic
point of W, over kic,,.., ¢), we get 0= F(p,) = Z¢,F(p,), and the linear
disjointness of-k(p,) and k(c,...., 6,) over k implies that each Fi(p,)=0; i. e.
each F, vanishes on W. So the ideal of W has a basis in k[X]. Hence W is
defined over k.

COROLLARY. - Let @ be an algebraic group defined over k and let { W, }
(2 € 4) be a set of subvarieties of G each of which is defined over k. Then each
component of the smallest algebraic subgroup of G that contains U,z 4 W, is
defined over k. If the points of U,z 4 W, are closed under the group multipli-
cation, then this smallest algebraic subgroup is the smallest algebraic subset
of G containing U,e 4 W,.
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It «,, ,€4 and p,, p, are independent generic points of W, and W,
respectively over k, then any algebraic subgroup of G that contains W,
and W,, must contain the locus of p,p, over k, since W, W, is dense in
this locus. Thus, enlarging our set | W,! if necessary, we may assume
that the points of U, ¢ 4W, are closed under group multiplication. Let I' be the
smallest algebraic set containing U,s 4W,; we know that each component
of I is defined over k. If p,€ W,, then the algebraic set p;'I'D W, for
any o € 4, so p; T DI. Since the components of I' and those of p;'T are in
one-one biregular birational correspondence, p;'I'=T. For any fixed y€T,
the set of points p € G such that p—!y €I’ is an algebraic subset of G, so the
set of all points p € G such that p—*I' CT is an algebraic subset of G that
contains each W,. Thus I'"'I'CT, so ' is an algebraic subgroup of G.

~ There are a number of obvious extensions of the corollary. For example,
if | W, | (x € 4) are subvarieties of V that do not necessarily have a common
field of definition but whose points are closed under group mulfiplication,
thie smallest algebraic set containing U, 4 W, is still an algebraic subgroup
of @; the difficulty here is that the universal domain may not be of infinite
transcendence degree over the compositum of the fields of definition of the
various W,’'s, but this difficulty is eliminated by a temporary extension of
the universal domain. Also, if the W, s are all subvarieties of G that are
defined over % and pass through e, then the sets by which we augmented
{ W, 1} in the proof of the corollary are also subvarieties of G that are defined
over k, pass through e, and contain some of the original sets W,; since
algebraic subsets of G are of bounded dimension, it follows that the smallest
algebraic subgroup of G containing U,c W, must be the subvariety in our
augmented set of W,’s that has maximal dimension, and this has as generic
point 6ver k a point p,p,..p,, where the p/s are independent generic points
over k of various of the varieties W,. Finally, if { W, ! is an arbitrary set
of subvarieties of G that pass through e (but do not necessarily have a com-
mon field of definition), for any finite subset 4’ of 4 we can consider the
smallest algebraic subgroup of G containing U, 4+ W,, and the subgroup of
maximal dimension which can be obtained in this way is the smallest alge-
braic subgroup of G that contains U,z 4W,. Thus for any set | W,| (x€4)
of subvarieties of G that pass through e, the smallest algebraic subgroup I
of G that contains U,z 4W, is the same as that got from a finite subset of
{ W,1, and is connected. If & is a field of definition for G and enough of
the W, s, then k is also a field of definition for T, and a generic point of T
over k can be got as the group product of independent generic points over %
of certain of the W,' s that are defined over k. Since any generic point of T
over k must be of the same form, and since any point of I' is the product
of two of its generic points over k, we see that I' is simply the group gene.
rated by all the points of U,z W,.
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It may be worthwhile to indicate explicitly a slight extension of the
preceding paragraph: Let G be an algebraic group, let | W, ! («€4) be a set
of subvarieties of G that pass through e, and let W,, for each a€ 4, be a
nonempty open subset of W,. Then the subgroup generated by the points
of U, W, is the same as that generated by the points of U, W,, and hence
is a connected algebraic subgroup of G. (For suppose, as we may, that the
set A is finite, let k& be a field of definition for G and each W,, and let
each W, be k-open on W,. We have shown at the end of the last paragraph
that each point of the group generated by U,W, is the product of generic
points over k of various of the W, s. Since a generic point over k of W, is
in W,, we are done). An easy consequence in the following: Let G be an
algebraic group defined over % and let ¥V, W be subvarieties of G that are
defined over k such that at least one point of V commutes with a point of W,
Then [V, W] (i. e., the group generated by all commutators of points of T
with points of W) is a connected algebraic subgroup of G that is defined
over k. For [V, W] contains an open subset of the locus over k of vwv—'w—",
where v, # are independent generic points over k of V, W respectively.

2. Solvable groups.

As in [5], the word «solvable» (and, a fortiori, the word « nilpotent »),
when applied to an algebraic group, presupposes that the group is linear.
The unipotent elements of a connected solvable algebraic group G are known
to form a connected normal algebraic subgroup @, of G such that G/G, is
a torus. If & is a field of definition of @, then G, is left fixed by all k-auto-
morphisms of the universal domain, hence is k-closed. If T is any maximal
torus of @, the map T G, — G defined by £Xg, — fg, is birational and
surjective; if G is nilpotent, then the maximal torus T is unique, consisting
precisely of all semisimple elements of G, and is central, and G is biregu-
larly isomorphie to the direct product 7> G, . (For all these maftters cf. [1]}.
By the theorem of Lie-KoLCHIN, a connected solvable algebraic group of
matrices @ can be reduced to triangular form; in fact if k£ is a field of
definition for @, then G can be reduced to triangular form by a matrix that
is rational over the algebraic closure k of k. (The simplest proof of the
latter modification is probably got by noting that if H,, H, are any k-closed
algebraic sets of matrices, then the invertible matrices a such that aH,a~* C H,
constitute a k-closed subset of the full linear group). One knows that if G
is a torus then G is reducible to diagonal form, so if G is a torus defined
over k, then G is reducible to diagonal form over %.

ProrosiTioN 5. - Let G be a connected algebraic group of maitrices defined
over k, with g a generic point of G over k. 1hen a necessary and sufficient
condition that G be reducible o triangular form over k is that all the characte-
ristic roots of g be conlained in k{g). If this condilion is verified, it also holds



32 M. Rosexvicar: Some rationality questions on algebraic groups

for any rational representation of G that is defined over k, the unipotent part
G, of G is also defined over k, and G can be reduced to triangular form
over k in such o way as to send any given torus of G that is defined over k
info diagonal form.

The necessity of the given condition is clear, so suppose that all the
characteristic roots of g are in k(g). If f(g) is one of these characteéristic
roots, then the deferminant | g— f(gje | is zero, so the rational function
f€k(G) is integrally dependent on the ring of everywhere finite rational
functions on @, hence is itself an everywhere finite rational function on G.
In particular, since G is a nonsingular variety f is everywhere defined on G.
It ¢ € @G, the equation | g — f(g')e | =0 shows that f(g') is a characteristic
root of g¢'; thus f is nowhere 0 or oo on G and assumes the value 1 at e.
By Prop. 3, the map g — f(g) gives a rational homomorphism defined over %
from G info @G, . Suppose G C GL(r), and that f(g),..., fu(g) are all the
characteristic roots of g, each repeated as many times as it occurs. Then
Iy (g — filgle) =0, so for any g’ € G we have iy (¢ — f.(g')e) = 0, implying
that the characteristic roots of g’ are to be found among f,(g), ..., fulg’). The
map g — (f(9), ..., f«(9)) gives a rational homomorphism defined over % from
G into a torus, and each element of the kernel H of this homomorphism is
unipotent. Since H is solvable and G/H is commutative, G is solvable. Now
let : @G — G be a surjective rational representation that is defined over k.
Then G is connected, solvable, and defined over k, hence reducible to trian-
gular form over k. Thus the characteristic roots of ¢(g) are all contained in
k(¢(g)). But by our assumptions and Prop. 2, these characteristic roots are
contained in %(g), hence in k(p(g) N klg). But k and k(g) are linearly disjoint
over k, so (by [6, § 2, Lemma 3)) this intersection is precisely %(¢(g)); hence
G algo satisfies the conditions of the proposition. We now prove the part
about the reducibility of G to triangular form over k by induction on the
dimension of the underlying vector space V on which G operates. If dim V=0
there is nothing to prove, so suppose dim V> 0. Since G is reducible to
triangular form over k, there exists a nonzero vector » € V that is rational
over k and is a characteristic vector for all y € G. Write v = 5., av;, where
each v, €V is nonzero and rational over k and a,,.., @, €k are linearly
independent over k. Then g(v) = f(g)v, where f(g) € k(g) is one of the characte-
ristic roots of g, so Zag(v,)— flgjv)= 0. By the linear disjointness of %
and k(g) over k, we get g(v) = f(g)v; for ¢=1,..., v. Thus there exists a
nonzero vector v, € V that is rational over k and is a characteristic vector
for each y € G. Application of our induction assumption to the natural repre-
sentation of G by a group of linear transformations on the vector space
V/(v,) shows that G is reducible to triangular form over k. If G is a torus,
then V is direct sum of invariant one-dimensional subspaces defined over %,
and the above proof shows that these subspaces may actnally be taken to be
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defined over k; thus if @G is a torus it is reducible to diagonal form over k.
Now suppose that the group G satisfies the condition of the proposition and
that T is a torus of @ that is defined over k. Since G is reducible to trian.
gular form over %k, T also satisfies the condition of the theorem. Let
V=V,DV,DV,D.. be G-invariant subspaces of -V, all defined over %, such
that for i =0, 1,..., dim V,/V,,, = 1. The natural representation of T by a
group of linear transformations on V; is reducible over k to diagonal form,
so there exists a vector v, € V,, v;¢ V,,, that is rational over %k and is a
characteristic vector for each {€ T. If we use the basis (v,, v,,..) of V, we
reduce G to triangular form over k in such a way that T goes into a diago-
nal group. It remains only to show that G, is defined over k. Let ©: G— /G,
be the natural rational homomorphism and supposé that the torus G/@G, is
taken to be an algebraic group of matrices in diagonal form. Suppose our
point g is generic for G over the compositum of k& and a field of definition
of ©. Each diagonal element of t(g) is a characteristic root of t(g), hence (by
Prop. 2 and our assumptions) is an element of k(g). Thus the separable ratio-
nal homomorphism <t is defined over k. The kernel G, of t is a rational
cycle over k [b, Prop. 1, Cor.]. Since G, is connecled, it is defined over k.
Q. E. D.

If G is any connected solvable algebraic group of matrices that is defi-
ned over %k, Prop. b shows that there is a smallest extension field %, D% over
which G can be reduced to triangular form (namely, %k, = the smallest over-
field of %k that is a field of definition for the various rational functions on G
got from the characteristic roots). If a certain matrix rational over % reduces
G to triangular form, so does any of its conjugates over k. Thus k, is a finite
normal algebraic extension of k. If @' is an algebraic group of matrices that
is biregularly isomorphic over k to @, then by Prop. 2 the two fields %,
and k' are equal. Thus a well-defined extension field k£, of k& can be asso-
ciated with any connected solvable algebraic group defined over k.

COROLLARY 1. - If G is an algebraic group of wmairices each of whose
components is defined over k and each of whose elements is unipotent, then G
i8 reducible to triangular form over k.

Even when G is not connected it can be reduced fo triangular form
(a result of KorLcHIN which appears in [1, Ch. IV]), so the only modification
which need be made in the pertinent part of the above proof is to replace
the single point g by a set of gemeric points over k of the various compo-
nents of G.

We recall that a connected solvable algebraic group G is said to have k
as a field of definition for its solvability if G possesses a normal chain of
connected algebraic subgroups (starting with G and going down to ie!), each
defined over k, whose successive factor groups (being taken, together with
the various canonical rational homomorphisms involved, to be defined over k)
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are each biregularly isomorphic over %k to either the additive group G, or
the multiplicative group G, [, § 4]

COROLLARY 2. - If the connecied algebraic group of malrices G, defined
over the perfect field k, satisfies the condition of Prop. 5 then k is a field of
definition for the solvability of G. Furlhermore, a normal chain of algebraic
subgroups of G exhibiting this fact can be found which consists entirely of
subgroups that are normal in G.

We may assume that G is in triangular form. If % is the full group of
triangular matrices, it is known that G has a normal chain T=%“ D> %D
such that each G is normal in G and defined over the prime field, the
unipotent part %, of T is T (if G C GL(n)), and the dimensions of the
groups in this chain go down one at each step. G, = G N G™, and the con-
nected k-closed groups G= G N T D{(G N %", D(G N T, D.. are each
normal in G and the dimensions of the groups in this chain go down by at
most one at each step. If we eliminate repetitions, we get a normal chain
of connected normal %k-closed subgroups of G, say G=G"DG"DE¥D ...,
going down in dimension by one at each step and such that @G, = G¥ for
some v =0. Since %k is perfect, each G, i=0, 1,..., is defined over k, so
we may take the various natural rational homomorphism G® — @®/GU*+ to
be defined over k. For any i < v, G¥/GY+Y is biregularly isomorphic over k
to a subgroup of the torus G/G'+V, If we take G/G'+" to be an algebraic
group of matrices, the proposition shows that it is reducible to diagonal
form over k, so G/@GY*" is biregularly isomorphic over k to a group of
mafrices in diagonal form, hence to G,,. On the other hand if i>v, then
GP/G*+ consists entirely of unipotent elements, so it remains only to show
that if H is an algebraic group defined over the perfect field % that is bire-
gularly isomorphic to G, over some extension field of k, then H is biregu.
larly isomorphic to @, over k. Since %k is perfect, the genus of the curve H
does not change upon ground field extensions, so k(H)/k is of genus zero;
since H has a rational point over k, k(H) is a simple transcendental exten-
sion of k, so we may take H to be a k-open subset of the projective line D.
(D — H) consists of only one point, which must be purely inseparable over k,
hence rational over k. If we take (0) to be the identity of H and (co) the
point (D— H), it is trivial to verify that the group operation on H is got
by the addition of coordinates,

Cor. 2 shows that if @ is a connected solvable algebraic group defined
over the field %, then k is a field of definition for the solvability of G; if @
contains only unipotent elements and % has characteristic p, then k#™ is a
field of definition for the solvability of G. The author does not know if
there exists a minimal overfield of % that is a field of definition for the
solvability of G.

We may make the following comment relative to the latter part of the
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above proof: If G is an algebraic group defined over k, biregularly isomor-
phic to @, (over some extension field of %), and if G is a rational curve
over k, then G is biregularly isomorphic to G, over k, except possibly when
Lk has characteristic two. For we may take G to be the projective line D
minus a point (P) that is purely inseparable over k. If ,, », are independent
variables over k and «, owx, denotes the coordinate function of the group
product of the points (z,) and (x,), then the relations k(x,, x,) = k(x,, ©, o x,) =
k(x,, x, ox,) show that x, oz, = (& + bx, + cx, + dx,%,)/(e + fx, + gx, + he,x,),
for certain a,..., h €k, and since P=wx, 0 P we get that P is quadratic over %.
If & has characteristic §=2, P must be rational over %k and the proof given
above obtains. A counterexample in the case of a field k& of characteristic
two is given by », oz, = (x, +x,)/(1 + axx,), where a €k, a¢k’. Here an
additive parameter for the group is x/(x — a=*/).

The next two propositions will tie together more closely the notfion of a
tield of definition for the solvability of a group and the content of Prop. 5.

PROPOSITION 6. - Let G be a connected solvable algebraic group, k a field
of definition for its solvability, and ©: G— G a surjective rational homomorphism
defined over k. Then G also has k as-a field of definition for ils solvability.

If dim @=1, embed G in the usual way in the projective line D
(D= G U (o0} or G U (0) U (o0} according as G is a G, or G,). If we exclude
the trivial case dim @ =0, G' is a curve that is rational over k; since G’ is
nonsingular, it can be identified with a k-open subset of a projective line D'
v then extends to an everywhere defined surjective map t: D — I/, and
D' =G U tfoo) or G U 1(0) U t(oo). The points 7{0) and t(oo) are distinet and
rational over %, so by changing coordinates on D' wejget 1(0)=0 and
T(oo) = oo; if G is a maultiplicative group we can also take t(1)=1. One
shows immediately that G’ is either G, or G,. Finally, for a @ of arbitrary
dimension, let G=G% D G*D.. be a normal chain exhibiting k& as a field
of definition for the solvability of G. Then tG =G D 1G® D.. is a normal
chain for @ each member of which is defined over k. Taking the natural
homomorhism from tG*Y to TG¥/tG'**+" to be defined over %, we need only
show that the latter group is biregularly isomorphic over %k to G,, G, or the
trivial group. But we have a natural surjective rational homomorphism defi-
ned over k from G¥ to tG¥/tG**Y and the kernel of this homomorphism
contains G“+". Hence there is a natural surjective rational homomorphism
defined over %k from G/G“+? to tG¥/tGY*+Y, Since dim G¥/G*HY =1, we
are reduced to the first part of the proof.

The following lemma and proposition give slight sharpenings of the cor-
responding results in [1, Ch. IV]. The proofs follow BOREL’ s.

LeMMA. - Let the connected solvable algebraic group G operale regularly
on the complete variety V and let k be a field of definition for the solvability
of G, for V, and for the operation of G on V. Then if V possesses o poinit
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that is rational over k, it possesses o point that is rational over k and left
fixed by all elements of G.

This is trivial if dim G = 0, so suppose that dim G > 0 and use induction.
Let G, be a connected normal algebraic subgroup of G having % as a field
of definition for its solvability and such that, taking the natural rational
bhomomorphism from G to G/G, to be defined over k, we have G/G, =G,
or G,. Then @, operates regularly on V, so by our induction assumption
there exists a point p € V that is rational over k¥ and such that g,p=p for
all g € G,- Let g be a generic point of G over k. Then G operates regularly
on the locus of gp over k, so we may suppose that V is this locus; i. e. V
is a prehomogeneous space for G. @, operates frivially on Gp, hence on V,
so by [5, Th. b] G/@G, operates on V, and this operation is defined over %. It
is clear that V is a prehomogeneous space for G/G,, but not at all clear
that G/G, operates regularly on V. So let V' be a variety birationally equi-
valent to V that is a homogeneous space for G/@, (cf. [8)); then V' is also
homogeneous for G, hence (by the unicity of homogeneous spaces} is biregu-
larly equivalent to Gp C V. Thus Gp is a homogeneous space for G/G@,. Embed
@/@, in the usual way in the projective line D (D =(G/G,) U (oo} or
(G/G) U (0) U (e<)). The rational map t: G/G, — Gp defined by <(g@,) = gp
is defined over k and extends to an everywhere defined surjective
map t: D — V. Hence (V— Gp)C<(D— G/G,) consists of points that are
rational over k. If V is a curve, it is a rational eurve, and any birational
transformation on it admits at least one fixed point. Since G/G, is commu-
tative, if V= Gp we must have Gp=p. In the contrary case, V— Gp con-
sists of one or two poinfs that are rational over ¥ and are permuted among
themselves by the elements of G. If ¢ is one of them, the connectedness of G
implies Gg =gq.

ProprosirioNn 7. - If the connected solvable algebraic group of matrices G
has k as a field of definition for its solvability, then G is reducible fo trian-
gular form over k.

Let § be the underlying vector space of G. A flag of § is a maximal
sequence of vector subspaces of S each of which properly contains its sue-
cessor. The flag manifold of § (i. e. the variety of all flags) is complete,
defined over the prime field, a homogeneous space with respect to the full
linear group, and contains a rational point. A flag that is rational over %
and left fixed by G exists by the lemma. Taking a basis of § that is adapted
to this flag reduces G to triangular form.

Proprosirion 8, - Let V be a homogeneous space with respect to the con-
nected solvable algebraic group @, all defined over a field k which is a field
of definition for the solvability of G. Then K(V) is a purely transcendental
extension of k.

By [5, Th. 10] there exists a point a € V that is rational over k. If g is
generic for @ over k then ga is generic for V over k and klga) C klg). If
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dim @ =1 we get the proposifion from LiiroTH’ s theorem if dim V=1 and
from the triviality V=0 if dim V=0. Hence suppose that dim G > 1 and
use induction on dim G. Let G, be a connected normal algebraic subgroup
of @G having k as a field of definition for its solvability and such that, if
the natural homomorphism ¢: G — G/G, is taken to be defined over k, G/G,
is biregularly isomorphic over k to G, or G,. Liet W be the variety of
G -orbits on V, both W and the natural rational map ©: V — W being taken
to be defined over k. By [5, Th. 5], G/G, operates on W, this operation is
defined over k, and is such that if g, v are independent generic points of G,
V respuctively over k then ¢g(tv) =t(gv). Since gv is generic for V over k(v),
¢gltv) is generic for W over kftv), so W is a prehomogeneous space with
respect to G/G,; without any loss of generality we assume that W is homo-
geneous for G/G,. Considering W as a homogeneous space with respect to G,
[5, Prop. 1] shows that the map <: V-— W is everywhere defined and
surjective, and we have ¢y(ta)=1(ya) for any yv€ @G, a€ V. If v,, v, are
generic for V over k then tww, = 1w, if and only if v, € Gv, ; hence, by transi-
tivity, the same is true for all »,, v, € V. Thus, if w is generic for Wover k
and if o: W— V is a cross section ([, Th. 10)} for the map ¢c: V— W, o
being taken to be defined over k, we have t~'|w|= G (ow). Since 1~*|{w! in.
cludes a generic point of V over k, we deduce that if g, is generic for G,
over k(w) then g (ow)€ G (ow) is generic for V over k, so that (V) is k-iso-
morphic to k(g,(ow)). It also follows that the closed subset t=*!|w | = G (ow)
of V is a homogeneous space with respect to G,, defined over k(w) and having
g.(ow) as a generic point over k(w). By our induction assumption, kiw, g (ow))
is a purely transcendental extension of k(w). Since w is generic over k for
the (G/G)-homogeneous space W and dim G/G, =1, k(w) is a purely tran-
scendental extension of k. Since 1(g,(ow)) =mw, we have k(g (ow)) =k(w, g,(ow))=a
purely transcendental extension of k.

ProrosmrioN 9. - If G is a connected nilpotent algebraic group thatl is
defined over k, then the maximal torus of G is also defined over k.

Both G, and the maximal torus T of G are ipvariant under all k-auto-
morphisms of the universal domain, hence k-closed, hence defined over a
purely inseparable algebraic extension k' of k. There is nothing to prove if
the characteristic of k is zero, so suppose % has characteristic p == 0. Let I,
# be independent generic points over k¥ of T, @, respectively. If »n is suffi-
ciently large, #?" =¢ and (fu)*" = {*" is a generic point of T over k. Since
G is defined over k and fu is generic for G over ¥/, tu is generic for G over
k and k(fu) is a regular extension of k. Hence k((fu)?") is a regular extension
of k, so T is defined over k.

If G is a connected nilpotent group defined over k then G, need not be
defined over k. In the next paragraph we give a counterexample in which G
is commutative. In order to do this in a reasonably wide setting we discuss
a well-known procedure for constructing linear algebraic groups from asso-
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ciative algebras; a particular case is the algebraic group associated with the
multiplicative group of an algebraic extension field.

A subset B of the ring of all # > % matrices (with coefficients in the
universal domain) that contains fhe unit matrix and is closed under matrix
multiplication gives rise to a connected algebraic subgroup G of GL{xn) in an
easy way: namely G consists of all invertible matrices in the linear space
of matrices spanned by E. It is clear that if each matrix of R is rational
over k, then G is defined over k. If, in addifion, R is an algebra over %k then
the points of G fthat are rational over k are precisely the units of R, and if
k is infinite these points are demse in G. If now 4 is any associative algebra
with unit element of dimension n over %, the regular representation of 4
gives rise to such a ring K and hence to a group G of dimension n. To be
explicit, if ©,,..., w, i8 a k-basis of 4, to each ©w € 4 we associate the matrix
¢(w) = (@;;) which is rational over % and satisfies wo; =2/ a;0;,i=1,..., n;
the map w — ¢(w) is then an isomorphism from A4 to an algebra of matrices
from which we get our gronp G, and G does not depend essentially on the
basis (v}, For example, if 4 is an algebraic extension field K of % and [K: k] =m,
then G is a connected commutative group of dimension #; here G is the
direct product of a torus and a group of unipotent matrices, whose dimen-
sions we now calculate. For any v € K, *¢(w) applied to the vector (v,,..., ©.)
gives the vector (Z; ;,0;, .., &ja;,0;) = (W, .., ©®,), 80 © is a characteristic
root of ‘p(w), hence also of ¢(w). If «,,..., @, are algebraically independent
over k then w,,.., o, are still a basis for K(x)/k(x), and if we extend ¢ to
this larger algebra we get that ¢(Z 2,0;) = Z x,9(w,) has Zx,», has a characte-
ristic root. But the matrix Zw¢(w;) is rational over k(x) so for any k-iso-
morphism ¢ of K, x»/° is a characteristic root of Zx,p(w,). The various
characteristic roots we obtain this way as ¢ ranges over the distinct k-iso-
morphisms of K are algebraically independent over k. Hence G contains a
torus of dimension =[K:%],. Now let X be transcendental over k{x). Then
the norm Nk, iy, »(Z #0; — X) equals the determinant | ¢(Sa,w, —2) | =
| Zap(w)— Ae|, so from the definition of the norm as a product of conjuga-
tes we deduce that the characteristic polynomial of Zux,p(w,) has each root
repeated at least [Ki: k], times. Hence the characteristic roots of X w;p(w,) are
precisely the distinet X @02’ s, each repeated [K:k]; times. Thus the maxi-
mal torus of G has dimension exactly [K:k],, and @, has dimension
(n —[K:kl)=[K:K],(K:k],—1). In the special case where K == k(«), and
a” =@ €k is the irreducible equation for «, we can let w; = a**for ¢ = 1,..., n
and the generic point Za;9(w,) of G over k has the form

x, ALy Oy ... OF,

x, x, AL, .. AT,
%, z, x, - Qi
Xymy Tp—g Lyg o ALy

B Ty Lpeg e B,
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If we take n=p =0 the characteristic of k£ and « ¢k, of = €k, the maxi-
mal ‘torus of G has dimension 1 and is merely the group of scalar matrices.
The determinant of the matrix above is simply (Zx,a**)*, so G, is given by
the equation Zf_ixaf~! = 1, hence is not defined over k.

ProposiTiON 10. — Let G be a lorus defined over the field k. Then k(G)
is k-isomorphic to a subfield of a purely transcendewial extension of k.

The proof we give is essentially the same as that given by CHEVALLEY
in [2, § IV] for the case of characteristic zero. Take G to be an algebraic
group of matrices. The points of G that are rational over k,, the separable
part of the algebraic closure of %, are dense in G. By Prop. 1, these points
have all of their characteristic roots in k,, hence can be simultaneously
reduced to diagonal form over k,. Thus G can be reduced to diagonal form
over a finite separable normal algebraic extension K of k. Let ¢ be a matrix
rational over K such that aGa—' is in diagonal form. The group aGa~*' is
defined by monomial equations, hence is defined over the prime field, so if
¢ is any k-automorphism of K we have (aGa—')° = aGa~*, that is, a°G{a?)™' =
=aGa~*'. If dim G=1r, a generic point of aGa~' over k is of the form

f(#,,.., u,), where u,,.., u, are quantities that are algebraically independent
over k, f(u,,.., u,) is a diagonal matrix each of whose diagonal elements is
a power product of u,,.., u,, and K(f(#)) = k(u). For any automorphism o
of K over k, (a°y'f(u,,.., u,)Ja°€ @G. Let v, .., 0, be a basis of K over &
aod {#;1 (i=1,.., r; j=1,.., n) be quantities that are algebraically inde-

pendent over k, and define F(l{;1) = Il (a%)™'f(,,0,° + ... + {;,00,,% .0y 10, +

v + Lpuw,%)a’, where ¢ ranges evercall k-automorphisms of K and the
product is taken in G. Since the determinant | w;|==0, the rn various
quantities X7 1#,0° are algebraically independent over k, so the n various
points f(f,, 0,9+ ... + £,,0,% ..., §,,0,7 + ... + {,,0,9 are independent generic
points of aGa—' over k. Thus F( #;1) is generic for @ over k. But the GALois
group {o! of K over k is naturally isomorphic to the GaLols group of K(i ¢;1)
over k(i #;1), each ¢ extending to K(i ;1) by £;°=14; for all 4, j. F(i#;]) is
rational over K{(! ;1) and invariant under each o, hence rational over k(i ¢;}).
Q. E. D.

An example of CHEVALLEY [2, § V] shows that if G is a torus defined
over a field &k of characteristic zero that is not algebraically closed, then %(G)
need not be a purely transcendental extension of k.

3. The main result.

LeMMA 1. - Let G be a connected linear algebraic group that is defined
over k, m the maximal ideal of the local ring of the identily in the funclion
field of @G, and =t the rational representation of G given by the action of ils
inner aulomorphisms on the wector space m/m®. Then the kernel of 1 is a
k-closed mnilpotent subgroup of G.

We first recall some of the facts and notations developed in the proof
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of Theorem 13 of [5]. For any g€ G, let v, denote the automorphism of the
function field of G defined by (w,f)(p) = flg—'pg). Then for any integer v > 0,
w, induces a linear transformation ®, on the vector space m/m’ and the
map ®: g—®, is a rational representation. If dim G=mn and f,, ..., f, EMNEG)
are uniformizing parameters at e, then n/m* has as a basis the various elements
fh..fu'n, where i,,..., i, are integers =0 of strictly positive sum < v and
where f denotes the residue class of a function f€m in the natural

map m — m/m’. Furthermore, ® is given by equations

Ofi= 5 o (@ i,

et <y

where each G“)"r-"}z €k(G) is an everywhere finite rational function on G. The
various functions cm‘r""n do not depend on v (as long as v > é, 4 ...+ 4,).
We get © by taking v=2; in particular, v is a rational representation of G
defined over k, so that its kernel A is k-closed. Now fix a sufficiently large
integer v so that the kernel of ® is precisely the center C of G. If X €A we
have each ¢ _o10..0(2) equal to 1 or O, according as the nonzero lower index

is or is not in the é** place, that is, we have
®f; = fi -+ (terms of degree > 1 in f,, ..., fu).
It follows that if A€ A then

T e fun) == [, o Fu'n + (terms of total degree > (i, 4 w4 iy) 00 [,y s f),

80 @, is a unipotent matrix. Therefore ®A is a nilpotent algebraic group. There
is a rational isomorphism from G/C to ®@G, hence from A/C to ®A, so A/C
is nilpotent. Since € is central in A, A is nilpotent as an abstract group.
Note that we have not yet used the linearity of G. If @ is linear then clearly
A is nilpotent as an algebraic group.

LeMma 2. - Let H be the subgroup of GL(n) consisting of all malrices
in GL(n) all of whose eniries directly below the upper left hand element are
zero. Then if a ranges over all malrices in GL(n) that are rational over the
prime field, N aHa~* is the group of scalar malrices.

Let V b% the underlying vector space. Our intersection is characterized
as the set of those invertible linear transformations on V which, when repre-
sented as matrices with respect to any basis of V consisting of vectors that
are rational over the prime field, have only zeros below the first element.
Let v, ..., v, be such a basis of V and let {x;j) be in our intersection. Then
x5, =0 for ¢=2,..., n. Replacing the basis v,,.., v, by the same vectors
in different order, and doing this in all possible ways, shows that w; =0 if
i==j, 80 (i) is a diagonal matrix. Replacing the basis v,,.., v, by the same
basis, except for the replacement of v; by wi4-v, (i >1), we get xy=wx,,.
Thus (x;;) is scalar. It is clear that H is a group and that the group of
scalar matrices is in our intersection.
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THEEOREM. — If the connecled linear algebraic group G is defined over the
perfect field k, then K(G) is k-isomorphic to a subfield of a purely transcen-
dental extension of k.

First suppose that G is solvable. Then its unipotent part @, is connected
and %-closed. Since % is perfect, G, is defined over k. By Prop. 5, Cor. 2,
k is a field of definition for the solvability of G, . Taking the natural rational
homomorphism G — G/G, to be defined over k, the cross section theorem
(cf. {6, Th. 10, Cor. 1]} implies that G is birationally equivalent over k fo
G, < G/@,. But k(G,) is a purely transcendental extension of k& by Prop. 8 and
Prop. 10 is applicable to the torus G/G,. This finishes the solvable case.
Note that if G is solvable and %k perfect and infinite then, since there exists a
generically surjective rational map defined over & from an affine space to G, the
points of G that are rational over k¥ are dense in G. As a mafter of fact,
this last argument will apply to any connected linear algebraic group G
defined over a perfect infinite field %k, once the theorem has been proved;
this will be stated explicitly as a corollary.

The general case of the theorem will depend on the following contentions,
which apply to any connected k-closed algebraic group of matrices G, k& an
arbitrary field:

(A) Either @ is solvable or it is generated by its K-closed connected
proper subgroups, for some purely transcendental extension K of k.

(B} G is generated by its K-closed connected solvable subgroups, for
some purely transcendental extension K of k.

(C) The K-closed points of G are dense in G, for some purely tran-
scendental extension K of .

Before proceeding with the proofs of (A), (B}, and (C), we make a few
preliminary remarks. First, since GL{n) (for any nj is defined over the prime
field, it makes sense to speak of a «k-closed algebraic group of matrices »;
applied to a connected group, «Zk-closed» means «defined over a purely
inseparable algebraic extension of %k ». A point is k-closed if and only if it
is rational over a purely inseparable algebraic extension of k. If G' C G are
k-closed algebraie groups of matrices with G' normal in G, we may take the
natural rational homomorphism G — G/G' to be defined over a purely inse-
parable algebraic extension of k; if G/G is taken to be an algebraic group
of matrices, it is then k-closed. Finally, for material on the generation of
an algebraic group by subsets we refer to the end of § 1 of this paper.

We shall now prove (A), (B), and (C) simultaneously by induction on
dim @G. If G it solvable then (A) and (B) are clear; (C) also holds since we
may take K to be a simple transcendental extension of %, so that K#™™ is
infinite (p = characteristic of k if this is not zero, p =1 if characteristic is
zero) and our previous remarks on solvable groups obtain. In particular (A},
{B), (C) hold if dim G< 1. We now assume that @ is a connected k-closed
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algebraic group of matrices of dimension >> 1 and that our thrve contentions
hold for all groups of smaller dimension, with any field 2. We prove that
(A) holds for G by distinguishing several cases.

First suppose that G contains a connected %-closed normal solvable
subgroup @ of 'dimension > 0. Take the natural homomorphism t: G— G/G'
to be defined over a purely inseparable algebraic extension of %, and take
G/G to be a group of maftrices. Then G/G is k-closed and we may apply (B)
to it to get a purely transcendental extension K of %k and a family 1T of
K-closed connected solvable subgroups of G/G' that generate G/G'. The
family of groups {t—'I'{ then consists of K-closed connected solvable sub-
groups of G that generate @G, so (B) holds for G. Hence (A) holds for G.

Next suppose that G contains a connected k-closed normal subgroup @
of dimension >0 and such that G/G' is not solvable. Take the natural
homomorphism t©: G— G/G' to be defined over a purely inseparable algebraic
extension of & and apply (A) to G/G' to get a purely transcendental extension
K of k and a family {T'| of K-closed connected proper subgroups of G/G
that generate G/G'. Then |t 'I'} is a family of K-closed connected proper
subgroups of G that generate G, so (A) holds for G.

Now suppose that G contains ap arbitrary connected k-closed proper
normal subgroup G’ of dimension > 0. If the center € of G has dimension
> 0 we can apply the first case treated above to the connected k-closed
subgroup @, of G; hence we may suppose that € is finite. If G/G' is not
solvable the second case applies, so we may suppose that G/G is solvable.
Hence [G/@, G/G'|3= G/G. Thus [G, Gl G. Since [G, G] is connected, k-clo-
sed, and normal in G, it is permissible to suppose that G/G' is commutative.
Let U be the closed subset of G’ consisting of all its unipotent elements. If
we had U= G then &' would be solvable and a previous case would apply,
so suppose U=k G. Since & is connected and @ is finite, G'c|= CU. Applying
(C) to G we get a purely transcendental extension K of k and a K-closed
point P€ G, P¢CU. Replacing P by its semisimple part if necessary, we
can assume that P is K-closed and semisimple and P€ @, P¢ Q. The con-
nected centralizer I' of P in G is therefore a connected K-closed proper
subgroup of G that contains a CarRTaN subgroup of G (cf. {1, Ch. V]). Since
I'G is a normal algebraic subgroup of G that contains a CARTAN subgroup
and the conjugates of any CARTAN subgroup are demse in @, we get I'F
dense in G. Hence G =T, proving (A) for the @ of this paragraph.

To complete the proof of (A} for G, it remains to consider the case of a
nonsolvable group G whose only k-closed connected normal subgroups are G
and je!. Let t be the rational representation of G given by the action of
its inner auntomorphisms on m/m? as in Lemma 1. By Lemma 1 the kernel
of © is finite. Furthermore the proof of the lemma shows that the map 1:
G ~— 1G may be taken to be defined over a purely inseparable algebraic
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extension of %, in which case tG is also a k-closed matrix group. We claim
that it is sufficient to prove (A} for tG. For, since tG is not solvable, if (A)
holds for tG then there exists a purely transcendental extension K of k such
that tG is generated by its K-closed connected proper subgroups {I'|. Then
the connected subgroups | (t~'I),| of G are K-closed and proper and generate
an algebraic subgroup of G which must be all of G, since its t-image is all
of tG. Hence, replacing G by tG if necessary, we may assume that G CGL(n),
where n =dim G. Let H be the subgroup of GL{n) considered in Lemma 2;
H is a connected algebraic group defined over the prime field and of dimen-
sion (n* —n +1). If g € GL(n) then g—'Gg C H if and only if for each Y€ @
that is algebraic over £ we have g—'yg € H. Thus the totality of ¢’ s in GL(n)
such that G CgHg~* is k-closed; by Lemma 2 and our assumptions on G,
this a k-closed proper subset of GL(n). Thus if u is generic for GL(n) over k,
we have GclzuHu—*. For any u that is generic for GL(n) over & we define
', =(G N uHu'),; this is a k(u)~closed connected proper subgroup of @G
of dimension =#n + ® —n + 1) —n*=1. Let wu,, u,,.. be independent
generic points of GL(n) over k and let T' be the subgroup of G generated by
Ty Lupyonee I' is generated by a finite subset of these groups, hence by
Puys Tups ooy Ty, for some finite v. Since Pu,HCF; we deduce that ', C T
whenever u is generic for GL(n) over k{u,, .., u,). If v, ..., v, are independent
generic points of GL(n) over k(u .., ) and I' is the group generated by
Ly, Tp,, we have I"CT'; since their dimensions are clearly equal, I'=1I"
As a consequence I' is k-closed. Hence I, CT for any u that is generic for
GL(n) over k. If y € G is algebraic over k we have yI',y~' =v(G NuHu ),y ' =
(G N yuHuw'y—), =TI, CT, since yu is generic for GL(n) over k. Applying
this to u=wu,,.., u,, we get yIy=*CT; this holds for all y€ G that are
algebraic over %, hence for all y € @. Since I' is k-closed and normal in G
we must have I'= G. Hence G is generated by its K-closed connected pro-
per subgroups Ty ,.., T, , where K is the purely transcendental extension
kEwu,,.., w) of k. This completes the proof of (A) for G.

We now prove that (B) holds for G. This is trivial if G is solvable.
Otherwise (A) gives us a purely transcendental extension K of k such that G
is generated by its K-closed connected proper subgroups. Therefore G is
generated by a finite number T,,.., I'; of such K-closed connected proper
subgroups. For each ¢=1,.., s, (B) applied to I'; and K shows that there
exists a purely transcendental extension K; of K such that I'; is generated
by its Ki-closed connected solvable subgroups. If KC K{ and K, is K-iso-
morphic to K;, then I'; is also generated by iis K;-closed connected solvable
subgroups. We may thus take K,,..., K, to be free over K, in which case
the compositum K, .. K, is a purely transcendental extension of K, hence
of k, and G is generated by its K, ... K,-closed connected solvable subgroups.
Hence (B) holds for G.
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We prove that (C) holds for G: Using (B), find a purely transcendental
extension K of & such that G is generated by its K-closed connected solva-
ble subgroups {I'{ and assume, as we may, that K is infinite. The sef S of
K-closed points of G is a subgroup of G, hence the smallest algebraic
subset X of G containing S is an algebraic subgroup of G. For each '€ {T'}
we already know that SN [ is dense in I Hence I' C X. Therefore X con-
tains the subgroup generated by | I'|, i. e. XD G. Thus § is dense in G. This
proves (C), completing ‘the induction process that proves the general validity
of (A), (B), (0)

We shall now use (B) to prove the theorem. Let G, k be as given, and
let K =UF(i®,!) (where the »,’ s are algebraically independent over %) be
snch that G is generated by its K-closed connected solvable subgroups {I'!.
The field K?™™ (where, as usual, p is the field characteristic if this is not
zero, and otherwise p =1) is perfect and is a tield of definition for each
group in {I'{. We know the theorem to hold for solvable groups. Since a
suitable product of independent generic points over K~ of various groups
in {I'f is generic for @ over the same field, we can find a set |y | of alge-
braically independent quantities over A?~™ and a point P rational over
K7 (1yg1) that is generic for G over K»~~, But P is rational over K™ (j y; )
for a suitable integer v=>0, that is, since & is perfect, over the purely
transcendental extension k(i x,? ", ys |} of k. Since P is generic for G over k,
the proof of the theorem is complete.

COROLLARY. - If the connecled linear algebraic group G is defined over the
infinite perfect field k, then the poinis of G that are rational over k are dense in G.

The proof of this has been indicated in the first paragraph of the proof
of the theorem. Note that if the connected linear algebraic group G is defi-
ned ©over a field £ which is not perfect, the theorem shows that there exists
a finite purely inseparable algebraic extension %' of k such that k(G) is
k'~isomorphic to a subfield of a purely transcendental extension of %'; since
k is infinite in this case, we deduce that the points of G that are rational
over k' are dense in G.

The purely transcendental extension of % in which we embed the function
field k(@) of the theorem may, a priori, be of very large transcendence degree
over k. Since k(@) is a finite extension of %, this transcendence degree may
of course be taken to be finite. In fact, a result in CHEVALLEY’ s paper [2]
shows that %(G) is k-isomorphic to a subfield of a purely transcendental
extension of k whose transcendence degree over %k is dim G (or (dim G 4- 1)
if k is finite). For the convenience of the reader we include this result as a
proposition, giving a proof that is more geometric, and therefore, perhaps,
somewhat more transparent, than the proof of SHIMURA given in [2].

Prorosirion 11. - If kC K Ckiw,, ..., x,) are fields, with k infinite,
Xy, X, algebraically independent over k, and K of transcendence degree r
over k, then K is k-isomorphic fo a subfield of klx,, ..., ®,).
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It clearly suffices to show that if r <mn, then K is k-isomorphic to a
subfield of k(x,, ..., #,_,). Considering (1, «,,.., ®,) as a generic point over k
of a projective space P, and letting V be a projective variety defined over %
such that k(V) is k-isomorphic to K, we get a generically surjecfive rational
map t: P,— V that is defined over 2. We have only to show that if dim V< n
then there exists a hyperplane H of P, that is defined over k£ and such that <
induces a generically surjective map from H to V. Let # be a generic point
of P, over k, T the graph of v on P,>X V, and let X be a component of
prp. ((P, > tx) N T) that contains x; then dim X > 1. Let W be the k-closed
pro’f)er subset of P, consisting of the points at which t is not defined and
let p,, ..., p; be a finite set of points of P,, one chosen from each component
of XN W. Since %k is infinite, we can find a hyperplane H of P, that has
coefficients in & and contains no p;, ¢ =1, ..., 8. Since < is defined at x, we
have Xc|=W; since dim XMNH = dim X—1, we conclude that XNHc= XN W.
It yeXNH y¢ W, we have ty —tx, which is generic for V over k; in
particular, t induces a generically surjective map from H to V.

Let G be a connected linear algebraic group defined over the infinite
perfect field %. The regular elements of G [1, Ch. V] include a nonempty
open subset of G, so the points of G that are rational over £ and regular
are dense in G. If g€ G is regular, then the connected centralizer of g, is a
CARTAN subgroup of (F containing g; if g is rational over %, so is g,, hence
also the connected centralizer of g,. Hence G has CARTAN subgroups that
are defined over %k, and G is generated by the set of such CaARTAN subgroups.
The author does not know whether these same facts are true if k¥ is a finite
field (%).

Another consequence of the corollary is the following: In [3, pp. 117-119],
OuEvALLEY discusses raftional representations of his « groupes algébriques »
(which are not quite the same as our algebraic groups] and shows that the
kernel of such a representation has dimension less than or equal to what
one would expect. He shows that equality holds when the base field is alge-
braically closed or of characteristic zero, but need not hold for a nonperfect
base field. If one fakes into account the differences in terminology, our
corollary implies the equality in question whenever the base field is perfect.

(?) After the completion of this paper, SurRE communicated to the author the following
proof that a connected linear algebraic group G that is defined over a finite field % has at
least one CARTAN subgroup that is defined over k: Letting g be the number of elements
of k, coordinatewise application of the FRoBEN1US automorphism o ~+ x? defines a surjective
rational isomorphism g — g‘¢ from G to itself. If C is a Carran subgroup of G, then so
is C'?, so we can write C‘© = aCa—{, for some a € G. But a result of LANG says that the
rational map from G to itself given by g —» g'@g—! is surjective, so there exists b £.G such
that a=>50b~1t Setting C,="5b—1Ch, we get {C,})? = C,. Hence the CARTAN subgroup U,
of G is defined over k. The same argument shows that G possesses at least one maximal
connected solvable algebraic subgroup that is defined over k.
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The corollary is false if any of the conditions on the algebraic group G
and the field % is dropped. For if we drop the condiftion that % be infinite,
then G has only a finite number of rational points. If we drop the condition
that G be linear, an abelian variety with a finite number of rational points
gives a counterexample: for example let ¥ be the field of rational numbers
and G the elliptic curve @® +y°=1. A counterexample when G is not con-
nected is got by taking % to be the real numbers and G the group of all matrices

a b
-2
with a® + b* === 1. For an example of a connecied linear algebraic group G
that is defined over a nonperfect field £ and does not have a dense set of
rational points we proceed as follows: Let %, be any field of characteristic
p > 2, let the quaniity { be transcendental over k, and let k =Fk,f). Let G
be the subgroup of the plane G, G, defined by the equation y? — y = fx”.
@ is defined over &k and is biregularly isomorphic to G, over the field Kk(#'/7),
having as an additive parameter the function (y — #'/Px), but we claim that G
has only a finite number of points that are rational over k. For suppose
€ m)€ G, with &, €k =Fj(f). Then the equation %n? — % = {&? implies

(g

Differentiating with respect to ¢ gives

= (G )

Writing ) == u(l)/v(f), where wu, v €L[t] are relatively prime polynomials, we
see that any prime factor of v(f) must divide 1, so o(f)€k,. Thus 7 €k,
Hence 7€k (], so £€k[{]. Comparing terms of highest degree in the polyno-
mial equation n? — v = #&? gives £ == 0. Thus the points of G that are rational
over k are precisely the points (0, ¢), =0, 1,..., p— 1.

It is almost certainly true that if G is a connected linear algebraic group
defined over an algebraically closed field %, then k(G) is a purely transcen-
dental extension of k. In [2], CHEVALLEY proves this if £ has characteristic
zero. We can reduce the proof of this for the case of arbitrary characteristic
to either of the following equivalent statements, which are proved in the
classical case by use of the theory of roots:

(8) If R is a maximal connected solvable algebraic subgroup of the
connected linear algebraic group @, then the G-homogeneous space of left
cosets (/B is prehomogeneous with respect to R.

() If B is a maximal connected solvable algebraic subgroup of the
connected linear algebraic group G, if K is a field of definition for G and R,
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and g, r,, r, are independent generic points over K of G, R, R respectively,
then r,gr, is a generic point of G over K(g).

Granting these, we can proceed as follows: Take a maximal connected
solvable algebraic subgroup B of G that is defined over k (this can be done
since k is algebraically closed) and take G/R and the natural map G — G/R
also to be defined over k. Since % is a field of definition for the solvability
of R, we know [, Th. 10, Cor. 1] that G is birationally equivalent over %k to
B> G/R. Prop. 8 shows that k{R) is a purely transcendental extension of %,
and Prop. 8 together with (S) shows the same for G/E. The same type of
argument gives a very easy proof of the following fact, which is known only
in the case of characteristic zero: if G is a connected linear algebraic group
and V is a complete homogeneous space for G, all defined over the alge-
braically closed field %, then k(V) is a purely transcendental extension of .
For if B is a maximal connected solvable algebraic subgroup of G that is
defined over k, there exists a point of V that is rational over & and left
fixed by R, hence V is a rational image of the left coset space G/R, therefore
prehomogeneous with respect to B, so Prop. 8 applies.

4. On generalized jacobian varieties.

In this section we shall discuss generalized jacobian varieties with spe-
cific reference to fields of definition. This has also been done by Ieusa in [4],
where the method of CHow is used to construct generalized jacobians as
projective varieties defined over the smallest field to be expected. Here we
shall use the method WEIL has applied in [9] to the construction of the
ordinary jacobian variety of a curve and, except for the question of projective
embedding, shall derive some more specific results,

We assume, to avoid too long-winded an account, that the reader has at
hand [6], {7], and [9], and merely indicate the necessary modifications in the
various arguments used. A major difficulty is that some change in [7] is
necessary to be able to handle the case of a curve having points that are
simple with respect to some ground field, but not absolutely simple. The
necessary modification is in Theorem 11 of [7]: one must add the statement
that, under all the conditions of Theorem 11, if & is a divisor of K/k that
is prime to the places of 0, then #(d) and (&) remain unchanged when we
extend the ground field from % to %' (i. e., we have to move part of the
statement of Theorem 12 of (7] back to Theorem 11 and its weaker hypo-
theses). To prove this we use precisely the proof given for the corresponding
part of Theorem 12 [7, p. 182], except that on line 20 of p. 182 the part
«each f, €K is a multiple of 4-*> must be replaced by «each f;€K is a
multiple of d~* except possibly that f; may fave poles at the places of 0 ».
We remark that in Icusa’s paper (4, Lemma 2, p. 182] this point is seemingly
bypassed, but this is an omission.
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We now construct the generalized jacobian group of a curve. Let C be
a complete curve defined over the field ¥ and let 0 be a semilocal subring
of k(C) which is the infersection of the local rings in %(C) of a finite number
of points of O, including all the singular points of C. Under these circum-
stances we say that our equivalence relation on C is defined over k; [7, Th. 11}
and its modification in the preceding paragraph enable us to extend the
ground field % in an arbitrary manner without destroying any of the basic
properties of the equivalence relation on C associated with 0, Lemmas 1, 2, 3
of [6, p. B15] go though without change. We can now apply the method of
{9, § 7] to our equivalence relation on C; with a few trivial changes (such
as replacing the genus g of C by its O-genus 7} everything there applies
directly to the present case, up through the end of the first paragraph on
p- 510 of [9]. Thus we get a commutative connected algebraic group J that
is defined over %, is a rational image over k of the direct prodmet C-,
and has certain other properties. Now let J' be the « generalized jacobian »
of 0, 9: C — J' the «canonical map », both as constructed in [6] and both
defined over some extension field & of k. One shows immediately that the
characteristic properties of J' [6, pp. B18.519] are satisfied by J, so that J
and J' are birationally equivalent over ¥, and in such a way that their group
laws correspond. Thus J and J' are biregularly isomorphic, and hence we
may identify J' with J. We then have a map ¢: C — J, but ¢ is defined
over k', and not necessarily over k. If M,,..., M,., N are independent generic
points of C over k' and ¢ is the map defined over k from C2" to J (¢ is
denoted by ¢ on p. 509 of [9]), then ¢(M,)— o(N)= (M,, M,,.., My,)—
(N, M,,.., My,). Since ¢(M,)— ¢(N) is independent of M,,.., M,, we
get that for independent generic points M, N of C over k, ¢(M)— ¢(IN)€J is
ratiogal over k(M, N). Now apply [9, Prop. 4, p. 502] to the case G =1,
V=W=0, F(M, N)= ¢(M)— ¢(N). We obtain a principal homogeneous
space U with respect to J and rational mappings 7, g of C into U, all defined
over k, such that f(M)= F(M, N)g(N). Since ¢ is defined everywhere except
at the singular points of O, we have f(M)= F(M, M)g(M)=g(M); thus
f(M)=(¢(M) — o(N))f(N). We now follow the procedure of the bottom of
p. 511 and p. 512 of [9] to get a commutative group & consisting of disjoint
principal homogeneous spaces with respect to J such that J, UCG, 8/J is
infinite cyclic, and each component of § and all the group operations are
defined over k. It now makes sense to write f(M)— f(N)= ¢(M)— ¢(N) and,
if we also denote by f its linear extension to divisors on C that are inde-
pendent of the places of 0, then the map & — f(&) is a surjective isomor-
phism from divisor classes on C that are independent of the places of 0
into §. Each component of G represents divisor classes on C of a given degree
(degree O for J and degree 1 for U), and we can write o(M)= f(M)— a,
where a is a fixed point of U. This group §, with all its structure, is the
generalized jacobian group of C, and f: C — G is the canonical map.
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We now indicate briefly how these results affect the results of our
paper [6]. Things being as in the preceding paragraph, we first note that the
original «canonical map» ¢ could have been taken to be defined over % it
and only if U has a point that is rational over k; if this is the case we say
that k is complete for 0. (This is in accord with the definition given on p. 519
of [6], except that we have dropped the requirement that ¢ have a complete
nonsingular birational model over k). Theorem 7 of [6] and all its corollaries
now hold under weaker conditions, namely that C carry a divisor of degree 1
that is rational over % (for in this case the independence of places gives a
similar divisor that is independent of the places of 0, and hence we get a
rational point on U). Theorem 8, its corollaries, and Theorem 9 remain unal-
tered. (As a matter of fact, Theorem 8 can be strengthened as follows: If
0 C ¢’ are semilocal subrings of k(C) such that the corresponding equivalence
relations are defined over k, but k is not necessarily complete for 0 or ¢’ if
g, & are the corresponding generalized jacobian groups and f, f' the corre-
sponding canonical maps, all defined over %, then there exist a natural surje-
ctive homomorphism t: §— & such that "= 1f, and t is rational and defined
over k on each component of G. Here 1 is the extension of the natural map
f(C) — f(C). The = of [6, § 4] is the restriction of the present t to the com-
ponent of the identity J of §). The author does not know whether Theorem 10
is true under our more general conditions; however, the argument of the top
of p. 524 shows that the first statement of Theorem 10, and also Corollary 1
of Theorem 10, hold if C has an infinity of points that are rational over k.
But no change at all is necessary in Theorems 11 through 13.

If @ is a connected algebraic group defined over the field k then there
exists a unique maximal connected linear algebraic subgrounp L of G, and L
is k-closed. We can now give an easy example in which L is not defined
over k: Let k& be a nonperfect field of characteristic p == 0. Let C be a com-
plete curve that is defined over %, of genus g > 0, is everywhere relatively
simple with reference to %k, but has singular peints. (For example, if p==2
we can take C to be a projective model that is relatively normal with refe-
rence to k of the field E{x, y), where %* = x{x — 1}{x? — a), a being an element
of k that is not a p** power. The genus of C is clearly 1, while the function
tield k(x, y)/k has genus (p —+ 1)/2). Consider the natural equivalence relation
on C (got from the intersection of the local rings of its singular points) and
let J be the generalized jacobian variety of C, J being taken to be defined
over k. We claim that the maximal connected linear algebraic subgroup L of
J is not defined over k. To show this, we may assume that C has a point
that is rational over %, for otherwise we can replace k£ by a separable alge-
braic extension field, and this doesn’t alter the situation. Thus we may
assume that there exists a «canonical map>» ¢: C— J, ¢ also being defined
over k. If L is defined over k, then the natural rational homomorphism
t: J — J/L can also be taken to be defined over k. By the results of [6, § 4],
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J/L is the ordinary jacobian variety of C and t9: C — J/L the ordinary
« canonical map » of C into ifts jacobian variety. t¢ is then a birational map
defined over k from C to a complete non-singular curve. This contradiction
shows that L cannot be defined over k.
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