Skip to main content
Log in

Tracheary-element differentiation in suspension-cultured cells ofZinnia requires uptake of extracellular Ca2+

Experiments with calcium-channel blockers and calmodulin inhibitors

  • Published:
Planta Aims and scope Submit manuscript

Abstract

Tracheary-element (TE) differentiation in suspension cultures ofZinnia elegans L. mesophyll cells was inhibited by blocking calcium uptake in three ways: 1) reducing the [Ca2+] of the culture medium, 2) blocking calcium channels with the non-permeant cation La3+, and 3) blocking calcium channels with permeant dihydropyridine calcium-channel blockers. Calcium-channel blockers were effective when added at any time between 0 and 48 h after culture initiation; after 48h, calcium sequestration and secondary cell-wall deposition began. In contrast, calmodulin antagonists inhibited TE differentiation when added at the beginning of culture, but not when added after 24h. These results indicate that TE differentiation involves at least two calcium-regulated events: one calmodulin-dependent and occurring shortly after exposure to inductive conditions, and the other calmodulin-independent and occurring just prior to secondary cell-wall deposition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Abbreviations

BA:

N6-benzylaminopurine

CPZ:

chlorpromazine

DIC:

differential interference contrast

DMSO:

dimethylsulfoxide

IC50 :

concentration resulting in 50% inhibition

TE:

tracheary element

TFP:

trifluoperazine

W-5:

N-(6-aminohexyl)-1-naphthylenesulfonamide

W-7:

N-(6-aminohexyl)-5-chloro-1-naphthylenesulfonamide

References

  • Asano, M., Hidaka, H. (1984) Biopharmacological properties of naphthalenesulfonamides as potent calmodulin antagonists. In: Calcium and cell function, vol. 5, pp. 123–164, Cheung, W.Y., ed. Academic Press, New York

    Google Scholar 

  • Church, D.L., Galston, A.W. (1988) Kinetics of determination in the differentiation of isolated mesophyll cells ofZinnia elegans to tracheary elements. Plant Physiol.88, 92–96

    CAS  PubMed  Google Scholar 

  • Dörrscheidt-Käfer, M. (1977) The action of D600 on frog skeletal muscle: facilitation of excitation-contraction coupling. Pflügers Arch.369, 259–267

    PubMed  Google Scholar 

  • dos Remedios, C.G. (1981) Lanthanide ion probes of calcium-binding sites on cellular membranes. Cell Calcium2, 29–51

    Article  Google Scholar 

  • Elliott, D.C. (1983) Inhibition of cytokinin-regulated responses by calmodulin binding compounds. Plant Physiol.72, 215–218

    Article  CAS  PubMed  Google Scholar 

  • Falconer, M.M., Seagull, R.W. (1985) Xylogenesis in tissue culture: taxol effects on microtubule reorientation and lateral association in differentiating cells. Protoplasma128, 157–166

    Article  Google Scholar 

  • Fukuda, H., Komamine, A. (1980a) Establishment of an experimental system for the study of tracheary element differentiation from single cells isolated from the mesophyll ofZinnia elegans. Plant Physiol.65, 57–60

    CAS  PubMed  Google Scholar 

  • Fukuda, H., Komamine, A. (1980b) Direct evidence for cytodifferentiation to tracheary elements without intervening mitosis in culture of single cells isolated from the mesophyll ofZinnia elegans. Plant Physiol.65, 61–64

    CAS  PubMed  Google Scholar 

  • Fukuda, H., Komamine, A. (1985) Cytodifferentiation. In: Cell culture and somatic cell genetics of plants, vol. 2. pp. 149–211, Vasil, I.K., ed., Academic Press, New York

    Google Scholar 

  • Haigler, C.H., Brown, R.M., Jr. (1986) Transport of rosettes from the Golgi apparatus to the plasma membrane in isolated mesophyll cells ofZinnia elegans during differentiation to tracheary elements in suspension culture. Protoplasma134, 111–120

    Article  Google Scholar 

  • Hepler, P.K. (1985) Calcium restriction prolongs metaphase in dividingTradescantia stamen hair cells. J. Cell Biol.100, 1363–1368

    Article  CAS  PubMed  Google Scholar 

  • Hepler, P.K., Wayne, R.O. (1985) Calcium and plant development. Annu. Rev. Plant Physiol.36, 397–439

    Article  CAS  Google Scholar 

  • Hescheler, J., Pelzer, D., Trube, B., Trautwein, W. (1982) Does the organic calcium channel blocker D600 act from inside or outside on the cardiac cell membrane? Pflugers Arch.393, 287–291

    Article  CAS  PubMed  Google Scholar 

  • Hille, B. (1984) Ionic channels of excitable membranes. Sinauer Associates, Inc., Sunderland, Mass., USA

    Google Scholar 

  • Hof, R.P., Ruegg, U.T., Hof, A., Vogel, A. (1985) Stereoselectivity at the calcium channel: opposite action of the enantiomers of a 1,4-dihydropyridine. J. Cardiovasc. Pharmacol.7, 689–693

    Article  CAS  PubMed  Google Scholar 

  • Hosey, M.M., Lazdunski, M. (1988) Calcium channels: molecular pharmacology, structure and regulation. J. Membr. Biol.104, 81–105

    Article  CAS  PubMed  Google Scholar 

  • Ingold, E., Sugiyama, M., Komamine, A. (1988) Secondary cell wall formation: changes in cell wall constituents during the differentiation of isolated mesophyll cells ofZinnia elegans to tracheary elements. Plant Cell Physiol.29, 295–303

    CAS  Google Scholar 

  • Kass, R.S., Arena, J.P., (1989) Influence of pH0 on calcium channel block by amlodipine, a charged dihydropyridine compound. Implications for location of the dihydropyridine receptor. J. Gen. Physiol.93, 1109–1127

    Article  CAS  PubMed  Google Scholar 

  • Lehtonen, J. (1984) The significance of Ca2+ in the morphogenesis ofMicrasterias studied with EGTA, verapamil, LaCl3 and calcium ionophore A 23187. Plant Sci. Lett.33, 53–60

    Article  CAS  Google Scholar 

  • Moore, P.B., Dedman, J.R. (1982) Calcium-dependent protein binding to phenothiazine columns. J. Biol. Chem.257, 9663–9667

    CAS  PubMed  Google Scholar 

  • Morad, M., Goldman, Y.E., Trentham, D.R. (1983) Rapid photochemical inactivation of Ca2+-antagonist shows that Ca2+ entry directly activates contraction in frog heart. Nature304, 635–638

    Article  CAS  PubMed  Google Scholar 

  • Murashige, T., Skoog, F., (1962) A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol. Plant.15, 473–497

    Article  CAS  Google Scholar 

  • Phillips, R. (1987) Effects of sequential exposure to auxin and cytokinin on xylogenesis in cultured explants of Jerusalem artichoke (Helianthus tuberosus L.). Ann. Bot.59, 245–250

    CAS  Google Scholar 

  • Prozialek, W.C., Weiss, B. (1982) Inhibition of calmodulin by phenothiazines and related drugs: structure-activity relationships. J. Pharmacol. Exp. Ther.222, 509–516

    Google Scholar 

  • Roberts, A.W., Haigler, C.H. (1989) Rise in chlorotetracycline fluorescence accompanies tracheary element differentiation in suspension cultures ofZinnia. Protoplasma152, 37–45

    Article  Google Scholar 

  • Roberts, L.W., Baba, S. (1987) Evidence that auxin-induced xylogenesis inLactuca explants requires calmodulin. Environ. Exp. Bot.27, 289–295

    Article  CAS  Google Scholar 

  • Roufogalis, B.D. (1985) Calmodulin antagonism. In: Calcium and cell physiology, pp. 148–169, Marmé, D., ed. Springer, New York Heidelberg Berlin

    Google Scholar 

  • Ruth, J.B., Kotenko, J.L., Miller, J.H. (1988) Role of asymmetric cell division in pteridophyte differentiation. II. Effect of Ca2+ on asymmetric cell division, rhizoid elongation, and antheridium differentiation inVittaria gemmae. Am. J. Bot.75, 1755–1764

    Article  Google Scholar 

  • Saunders, M.J. (1986) Cytokinin activation and redistribution of plasma-membrane ion channels inFunaria. A vibrating-micro-electrode and cytoskeleton-inhibitor study. Planta167, 402–409

    Article  CAS  Google Scholar 

  • Saunders, M.J., Hepler, P.K. (1983) Calcium antagonists and calmodulin inhibitors block cytokinin-induced bud formation inFunaria. Dev. Biol.99, 41–49

    Article  CAS  PubMed  Google Scholar 

  • Steer, M.W. (1988) The role of calcium in exocytosis and endocytosis in plant cells. Physiol. Plant.72, 213–220

    Article  CAS  Google Scholar 

  • Tanimoto, S., Harada, H. (1986) Involvement of calcium in adventitious bud initiation inTorenia stem segments. Plant Cell Physiol.27, 1–10

    CAS  Google Scholar 

  • Thomson, W.W., Platt, K.A., Campbell, N. (1973) The use of lanthanum to delineate the apoplastic continuum in plants. Cytobios8, 57–62

    CAS  PubMed  Google Scholar 

  • Triggle, C.R. (1980) Site of action of D-600 in guinea-pig ileal longitudinal muscle. J. Physiol.305, 82P

    Google Scholar 

  • Tucker, W.Q.J., Wilson, J.W., Gresshoff, P.M. (1986) Determination of tracheary element differentiation in lettuce pith explants. Ann. Bot.57, 675–679

    Google Scholar 

  • Uehara, A., Hume, J.R. (1985) Interactions of organic calcium channel antagonists with calcium channels in single frog atrial cells. J. Gen. Physiol.85, 621–647

    Article  CAS  PubMed  Google Scholar 

  • Wolniak, S.M., Bart, K.M. (1985) Nifedipine reversibly arrests mitosis in stamen hair cells ofTradescantia. Eur. J. Cell Biol.39, 273–277

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Roberts, A.W., Haigler, C.H. Tracheary-element differentiation in suspension-cultured cells ofZinnia requires uptake of extracellular Ca2+ . Planta 180, 502–509 (1990). https://doi.org/10.1007/BF02411447

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02411447

Key words

Navigation