Skip to main content
Log in

An activated rate theory approach to the hydrostatic extrusion of polymers

  • Papers
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

An analysis of the mechanics of the hydrostatic extrusion process for polymers is presented, in which the predicted extrusion pressure is considered to be influenced by the effects of strain, strain rate and pressure on the material flow stress, as well as by the billet—die friction. The extrusion behaviour of both crystalline and amorphous polymers is discussed with reference to experimental results for linear polyethylene, polyoxymethylene and polymethylmethacrylate. Particular attention is paid to the method of incorporating the flow behaviour of the polymer into the analysis. A modified form of the Eyring equation for an activated rate process is proposed, in which the effects of strain rate and pressure on the flow stress are assumed to be separable, but related to strain by the large strain dependence of the stress activation volume. Moreover, a direct equivalence between the pressure effect and the friction between the polymer and the die is proposed for hydrostatic extrusion, following previous work on the adhesive mechanism for friction in polymers. This results in a formally identical analysis for both crystalline and amorphous polymers, in which the strain rate sensitivity, pressure sensitivity and friction coefficients all increase markedly with material strain during the process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. W. Bridgman, “Studies in Large Plastic Flow and Fracture”, (McGraw-Hill, New York, 1952).

    Google Scholar 

  2. H. Li, D. Pugh andA. H. Low,J. Inst. Metals 93 (1964–65) 201.

    Google Scholar 

  3. A. Buckley andH. A. Long,Polymer Eng. Sci. 9 (1969) 115.

    Article  CAS  Google Scholar 

  4. K. Nakayama andH. Kanetsuna,Kobunshi Kagaku 30 (1973) 713.

    CAS  Google Scholar 

  5. Idem, ibid 31 (1974) 256.

    CAS  Google Scholar 

  6. Idem, ibid 31 (1974) 321.

    CAS  Google Scholar 

  7. Idem, J. Mater. Sci. 10 (1975) 1105.

    Article  CAS  Google Scholar 

  8. Idem, ibid 12 (1977) 1477.

    CAS  Google Scholar 

  9. T. Nakayama andN. Inoue,Bull. JSME 20 (1977) 688.

    CAS  Google Scholar 

  10. D. M. Bigg, E. G. Smith, M. M. Epstein andR. J. Fiorentino,Polymer Eng. Sci. 18 (1978) 908.

    Article  CAS  Google Scholar 

  11. A. G. Gibson, I. M. Ward, B. N. Cole andB. Parsons,J. Mater. Sci. 9 (1974) 1193.

    Article  CAS  Google Scholar 

  12. A. G. Gibson andI. M. Ward,J. Polymer Sci.,Polymer Phys. Ed. 16 (1978) 2015.

    Article  CAS  Google Scholar 

  13. P. S. Hope, A. G. Gibson, B. Parsons andI. M. Ward,Polymer. Eng. Sci. 20 (1980) 540.

    Article  CAS  Google Scholar 

  14. P. S. Hope andB. Parsons,Polymer Eng. Sci. 20 (1980) 589.

    Article  CAS  Google Scholar 

  15. Idem, ibid 20 (1980) 597.

    Article  CAS  Google Scholar 

  16. P. S. Hope, A. G. Gibson andI. M. Ward,J. Polymer Sci., Polymer Phys. Ed. 18 (1980) 1243.

    Article  CAS  Google Scholar 

  17. R. Gupta andP. G. McCormick,J. Mater Sci. 15 (1980) 619.

    Article  CAS  Google Scholar 

  18. J. M. Alexander andP. J. H. Wormell,Ann. CIRP 19 (1971) 21.

    CAS  Google Scholar 

  19. T. Williams,J. Mater. Sci. 8 (1973) 59.

    Article  CAS  Google Scholar 

  20. P. D. Coates andI. M. Ward,J. Polymer Sci., Polymer Phys. Ed. 16 (1978) 2031.

    Article  CAS  Google Scholar 

  21. P. S. Hope, I. M. Ward andA. G. Gibson,J Mater. Sci. 15 (1980) 2207.

    Article  CAS  Google Scholar 

  22. P. S. Hope andI. M. Ward, unpublished work.

  23. K. D. Pae, S. K. Bhateja andJ. A. Sauer, Proceedings of the NEL/AIRAPT International conference on Hydrostatic Extrusion, NEL, Glasgow, 1973.

    Google Scholar 

  24. A. Ciferri andI. M. Ward (editors), “Ultra-High Modulus Polymers”, (Applied Science, London, 1979).

    Google Scholar 

  25. A. G. Gibson, P. D. Coates andI. M. Ward, in “Science and Technology of Polymer Processing”, edited by N. P. Suh and N. H. Sung (MIT Press, Massachussetts, 1979).

    Google Scholar 

  26. P. D. Coates, A. G. Gibson andI. M. Ward,J. Mater. Sci. 15 (1980) 359.

    Article  CAS  Google Scholar 

  27. N. Kahar, R. A. Duckett andI. M. Ward,Polymer 19 (1978) 136.

    Article  CAS  Google Scholar 

  28. B. J. Briscoe andD. Tabor, in “Polymer Surfaces”, edited by D. T. Clark and W. J. Feast (Wiley Interscience, New York, 1978) Ch. 1.

    Google Scholar 

  29. Idem, J. Adhesion 9 (1978) 145.

    CAS  Google Scholar 

  30. O. Hoffman andG. Sachs, “Introduction to the Theory of Plasticity for Engineers” (McGraw-Hill, New York, 1953).

    Google Scholar 

  31. R. Hill, “The Mathematical Theory of Plasticity” (Clarendon Press, Oxford, 1950).

    Google Scholar 

  32. D. R. Mears, K. D. Pae andJ. A. Sauer,J. Appl. Phys. 40 (1969) 4229.

    Article  CAS  Google Scholar 

  33. S. Rabinowitz, I. M. Ward andJ. S. C. Parry,J. Mater. Sci. 5 (1970) 29.

    Article  CAS  Google Scholar 

  34. A. Keller andJ. G. Rider,ibid 1 (1966) 389.

    Article  CAS  Google Scholar 

  35. P. B. Bowden andJ. A. Jukes,ibid 3 (1968) 183.

    Article  CAS  Google Scholar 

  36. P. D. Coates andI. M. Ward,ibid 13 (1978) 1959.

    Article  Google Scholar 

  37. B. Avitzur, “Metal Forming: Processes and Analysis”, (McGraw-Hill, New York, 1968).

    Google Scholar 

  38. H. Li, D. Pugh, “Mechanical Behaviour of Materials under Pressure”, (Elsevier, Amsterdam, 1970).

    Google Scholar 

  39. I. M. Ward,J. Mater. Sci. 6 (1971) 1397.

    Article  CAS  Google Scholar 

  40. C. Bauwens-Crowet, J. C. Bauwens andG. Homes,ibid 7 (1972) 176.

    Article  CAS  Google Scholar 

  41. C. Bauwens-Crowet,ibid 8 (1973) 968.

    Article  CAS  Google Scholar 

  42. M. A. Wilding, C. J. Frye andI. M. Ward,Polymer (in press).

  43. R. Truss, R. A. Duckett andI. M. Ward,J. Mater. Sci. (in press).

  44. S. H. Joseph andR. A. Duckett,Polymer 19 (1978) 837.

    Article  CAS  Google Scholar 

  45. L. A. Davis andC. A. Pampillo,J. Appl. Phys. 42 (1971) 4659.

    Article  CAS  Google Scholar 

  46. D. H. Reneker,J. Polymer Sci. 59 (1962) 539.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hope, P.S., Ward, I.M. An activated rate theory approach to the hydrostatic extrusion of polymers. J Mater Sci 16, 1511–1521 (1981). https://doi.org/10.1007/BF02396868

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02396868

Keywords

Navigation