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1. Introduction

In this paper we shall obtain the best possible estimates for the remainder term in the
asymptotic formula for the spectral function of an arbitrary elliptic (pseudo-)differential
operator. This is achieved by means of a complete description of the singularities of the
Fourier transform of the spectral function for low frequencies.

In order to describe the results and methods more precisely we must recall some
standard notations and hypotheses. Let { be a paracompact C® manifold and let P ke
an elliptic differential operator in Q with C® coefficients. We assume that P is formally

positive, that is,
(Pu, u) = c(u, u), u€CF),

where ¢>0 and (u,v) = juﬁ dz

for some positive C® density dx, kept fixed throughout. In the space L2(Q2) obtained by
completing C§°(Q) in the norm ||u|| = (u, )?, the operator P with domain C§*({2) is symmetric,
and by a classical theorem of Friedrichs it has at least one self-adjoint extension P with
a positive lower bound c. Let {E,} be the spectral resolution of such an extension, and let
e(x, ¥, A) be the kernel of E,. This is an element of C®°(Q x Q) called the spectral function
of the self-adjoint extension P.

Let p be the principal symbol of P, which is a real homogeneous polynomial of degree
m on the cotangent bundle 7*(Q). The measure dz defines a Lebesgue measure d in each

fiber of 7*(€2); which is a vector space of dimension n. With the notation

Rz, A)=A"""e(x,z,A) — (2n)‘"f dé, (1.1)
By

where B,={£€T7; p(&) <1}, our main result is

(*) This paper was written while the author was a member of the Institute for Advanced Study,
Princeton, N. J.
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THEOREM 1.1. On every compact subset of Q we have R(x, 1) = O(A~V™) uniformly when

A—>oo,

Many special cases of this theorem are known before. That R(x,1)->0 when A~ oo is a
classical result of Carleman [3] in the second order case and Garding [4] in general. When
P is an operator with constant coefficients in an open set in R, the theorem is due to
Gérding [5]. In the second order case it has been proved by Avakumovié [2] and in part
by Lewitan [10, 11]. Avakumovi¢ also noted that for the Laplace operator on a sphere
the jumps of R(x, A) caused by the high multiplicities of the eigenvalues are so large that
no better error estimate is possible. (See Section 6 below.) Apart from these cases the
best previous results are due to Agmon and Kannai [1] and Hérmander [8] who proved
that R(xz, )=0(A °'") for every 6<1 when the leading coefficients of P are constant and
for every o <} in the general case.

All of this work has been based on the study of the kernel of some function of P
which satisfies a differential equation; information about the spectral function is then
obtained by application of a Tauberian theorem. The following transforms have been used:

(i) The Stieltjes transform

G (z)= f(l —2)" 1 dE;

which is defined when z is not in the spectrum was considered already by Carleman [3].
We have (P—2z)Gy(2)=1, so G, is the resolvent of P. When z is outside an angle |arg z| <e,
one can determine an asymptotic expansion of G, where the error terms are as small as any
powers of 1/z, but this gives only the conclusion that R{z, 1) =0(1/log 1). To obtain stronger
results one must either determine ; outside such an angle with an exponentially small
error or else one must produce good estimates much closer to the spectrum. (See Ava-
kumovié¢ [2], Agmon and Kannai [1], Hérmander [8].) This is not surprising since d,
is essentially the jump of G, across the positive real axis.

(ii) The Laplace transform

G,(t) = fe“‘ dE;, t>0.

We have (2/dt+P)G,(t) =0 and G,(0) =1, so G, can be regarded as a fundamental solution
for the diffusion equation (8/dt+P). This is the method used for example by Minakshi-
sundaram and Pleijel [12] and GAarding [5]. If ¢ is real the results are parallel to those
obtained by studying the resolvent outside an angle.

(iii) The {-function

Gy(x,y,8)= fl‘s de(x, y, A).
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The integral defines a continuous function when Re s>n/m, and this function can be
continued to a meromorphic function in the whole plane (Carleman [3], Minakshisunda-
ram and Pleijel [12], Seeley [14]). If G, is represented in terms of G, or G, this follows
from the properties of these transforms which are needed to prove that R(z, 1)—0. More
precise error estimates are related to growth conditions on G, at infinity. However, these
seem hard to prove directly, and as far as the author knows the study of G, has only been
used to prove that R(z, 1)—0.

(iv) The work of Lewitan [10, 11] (and a long series of other papers) on the second
order case is based on the study of the cosine transform

G, (1) = f cost VidE,.

We have (22/012+P)G4(t) =0 and G4(0)=1, G4(0)=0, so G, is closely related to the funda-
mental solution of the hyperbolic operator ¢2/0t2 +P. (Note that 02/0f? is a negative operator
while P is a positive operator, which makes the operator hyperbolic.) Avakumovié [2]

also used his estimates of (; to draw conclusions concerning the Fourier transform
Gy (t) = f e g R,

when m =2, It was further proved in Hérmander [8] that the singularities of G; are local
objects in the sense that the restrictions of the coefficients of P to a neighborhood of a
compact set K<Q already determine the kernel of G4(f) on K x K for small £ modulo a
(= function which is analytic with respect to ¢. This paper is based on the study of G.

The reason why the methods of Lewitan have not been applied to operators of order

m>2 seems to be that the differential equation
@mom /ot — Py Gy (1) =0

is not hyperbolic then. However, one can avoid this obstacle by considering the equation
(10/0t — Pm) G5 (t) =0 (1.2)

which is obtained if irrelevant factors destroying the hyperbolicity are omitted. Here
PY™ is defined by the spectral theorem. It is no longer a differential operator but is is a
(classical) pseudo-differential operator (Seeley [14]) even if P is only a pseudo-differential
operator. This follows from the estimates used in methods (i) or (ii) to prove only that
E(z, 2)—0. For the sake of simplicity we assume that Q is compact, but in view of Theorem

5.3 in Hormander [8] this is no essential restriction in the proof of Theorem 1.1.
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There are two reasons why the Fourier transform Gj is particularly pleasant to work
with. The first is that the Tauberian arguments needed to pass from information con-
cerning the kernel of G; to the spectral function are extremely simple since there is an
inversion formula for the Fourier transformation. The second and main reason is that the
study of G; turns out to be very close to the proof of the generalized Huyghens principle
for hyperbolic equations given by Lax [9]. Thus the singularities of the kernel of G; pro-
pagate with a finite speed. (Note that this would not have been the case if we had defined
G5 without taking an mth root.) We recall that the main point in the arguments of Lax
is the construction of a good approximation to the fundamental solution by means of the
asymptotic expansions of geometrical optics. It is interesting to note that these methods
were introduced to replace a classical construction of Hadamard for the second order
case which was based on the use of normal coordinates. It is the latter technique which is
the main tool in the work of Avakumovié [2], though he applied it to G, instead of G5. Our
constructions could also be used to study the resolvent G, rather than the Fourier transform
G5 but for the reasons indicated above the proofs would then be somewhat less simple
and natural.

The plan of the paper is as follows. In Section 2 we discuss some of the main prop-
erties of operators of the type which occurs in the Lax construction of a parametrix for a
hyperbolic operator. Further developments should yield an extension of the calculus of
pseudo-differential operators with many applications to the study of non-elliptic dif-
ferential operators. However, we have decided to discuss in this paper only the facts
which we must use and a few results which seem to clarify them. Section 3 gives the con-
struction of a parametrix of 19/t + A where A is a first order elliptic pseudo-differential
operator on a compact manifold. Asymptotic properties of the spectral function of 4 are
then derived in Section 4, and the results are applied to differential operators in Section 5.
In Section 6 finally we give an example of Avakumovié which shows that Theorem 1.1

cannot be improved in general.

2. Fourier integral operators

In this section we shall discuss some classes of operators containing both pseudo-
differential operators (of type 1, 0 in the terminology of Hérmander [7]) and parametrices
of hyperbolic operators. Our discussion will be local but everything we do is invariant so
an extension to manifolds would not involve any difficulties.

As a motivation we first recall that a pseudo-differential operator in an open set Q< R"

is essentially defined by a Fourier integral operator
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plx, D) u(z) = (2n)‘"fp(w, §) P4 dE, weCT(Q), z€Q. 2.1}

Here the symbol p shall satisfy some conditions to be specified later. If we insert the

definition of the Fourier transform 4, we obtain

p(@, D) u(x) = (2n)_"ffp(x, £) € VO u(y) dédy. 2.1y

The integral may not be absolutely convergent so it should be interpreted as a repeated
integral: integration with respect to y followed by integration with respect to £. Our
purpose is to study operators defined by using a more general function in the exponent, but

first we recall the usual condition on the symbol p.

Definition 2.1. If Q is an open subset of R* and N is a positive integer, we denote by
S™Q, R") the set of all p€C®(Q xRY) such that for every compact set K<Q we have

| DEDEp(x, &)| < Ck,ap(1+| &))" ™, z€K, E€RV. (2.2)

The elements of S™ are called symbols of order m. A subset M of S™ is said to be bounded
if the same constants can be used in (2.2) for all pe M.
On bounded subsets of S™ the topology of pointwise convergence coincides with the

topology of C®(Q x RV} and will be referred to as the (weak) topology in what follows.

Lemma 2.2. Every bounded set M<S8™ is contained in a bounded set M'<S™ where

symbols vanishing for large |&| are dense for the weak topology.

Proof. Let x€C§(R") be equal to 1 in a neighborhood of 0. Then the set M’ of all
functions p(z, &) X(e&) with p€ M and 0 < ¢ <1 has the required properties, for | [ D (&)

is a bounded function of £ and ¢ for every «.

Remark. The space S™ is the space of symbols of type 1, 0 and order m in the termino-
logy used in Hormander [7], and (2.1) is a pseudo-differential operator of order m (and
type 1, 0) if p€8S™. It is often useful to note that (2.2) means precisely that A~ "p(z, 1)
belongs to a bounded set in C®(Q x {& 4 < |&| <2}) when 21>1. Occasionally we shall use
the phrase p€S™ for large |£| to mean that p is defined at least when |£| is large and that
(2.2) is valid for large &; this means that A-™p(z, A£) belongs to a bounded set in C®(Q x
{& 1< |£| <2}) when 1 is large.

We shall now describe the conditions which should be satisfied by the function which
is to replace the exponent {x -y, &> in (2.1).
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Definition 2.3. Let ; be an open set in R™, j=1,2. A real valued function
@ €SM(Q; x Q,, RY) will be called a phase function if for every compact set K <€, x
there is a constant C such that

n N

6 <0(Slop/enf+ &P Sleg/etl)i 161>C. @ y)ek; (23)
ng N

ep <o (Slenjoult+ 16 Slen/os )i 161>0. @ yek. 2.4)

The purpose of these conditions is of course to guarantee that 9= ¥.9 s highly
oscillatory for large £ even if x or y is fixed. In the case where ¢ is a homogeneous function
of £ of degree 1 for |£| >1, which is really the only one that is essential for us, the con-
dition (2.3) (or (2.4)) means that the restriction of @ to the sphere bundle {(z, ¥, £&); |&| =1}
has no zero which is a critical point if x or y is fixed.

Let @€S8'(Q; x Qy, RY) be a phase function. For every p€ 8" (Q, x Qp, RY) we wish
to define a linear operator by

Pu(x)= f fp(x, y, &) €TV O u(y)dEdy, uw€OF(Q,), z€Q,. (2.5)

Tt is obvious that the double integral exists if m < — N. If k is a non-negative integer such
that m +% < — N it is also obvious that P is an integral operator with kernel €C*(Q2; x ).

In particular, P defines a continuous mapping Cy(€Q,)—>C*((2,). More generally, we have

THEOREM 2.4. For any m there is a unique bilinear map
S™(Q, x Qp, RY) x E'(Qy) 3 (p, w) > Pu€ D' (Qy)

such that Pu is given by (2.5) when u is a function and the double integral is absolutely
convergent, and in addition

(i) for any integers v, u>0 with m~+ N+ u<v we obtain by restriction a bilinear
mapping S™ x C4(Q,) > C*(Q,) which is continuous when p is restricted to a bounded subset
of 8™ with the weak topology.

(ii) the map S™ x E'*(Q,)>D" (Q,) has the analogous continuity property.

Proof. The uniqueness is obvious in view of Lemma 2.2. If y is the function used in its

proof we even conclude that
Py =lim ij(x, Y, €) 1(e8) €710 u(y) dédy; (2.5)'
e—>0

with the obvious interpretation of the integral this remains true for distributions .
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To prove the existence it suffices to prove (i), for (ii} is just a dual statement. We
have already seen that (i) is valid when » =0, so we can prove (i) assuming that »>0 and

that the statement is proved for smaller values of ». First note that if p vanishes for large
|£] then

iffp@(p /oy e udydE = — ffap /oy, ¢ udydé — f f pe?ou /oy, dy dE, (2.6)

i f pow/of P udydE = — f f op /o8¢ udydE. 2.7)

Next it follows from (2.4) that
p=(2(0p/0y)" + 2 |E* (Gp/08))") €S
(We define ¢ smoothly when |&| < C.) For large |£| we have
P =2.9,09/0y;+ 2r;09/0&),
where q;=pyop/dy;€8™ 1 and r,=py|&]Fop/oE,€S8™.

In view of (2.6) and (2.7) we can therefore rewrite Pu as a sum of operators of the type (2.5)
of order m —1 acting on » and ou/dy;, j=1, ..., n,. Since m —1 +u <v —1, this completes the
induction proof of (i).

For later reference we also note the following consequence of (2.7):

LemMMa 2.5. The symbols i0p[o&; and pop|o&; define the same operator according to (2.5)".

We shall next consider the singularities of the kernel K, of P. Let (), be the set of all
(z, y) €Qy x Q, such that for some constant C, depending on (z, y),

N
1<0§|a¢/a§,|2, |&|>0C. (2.8)

(In the homogeneous case this means that 0 is not a critical value of the restriction of ¢
to the unit sphere for fixed x and y.) The set Q, is always open. In fact, if w is a compact

neighborhood of (#, y) the fact that ¢ €S* implies that for (2, y')€w
|op(’, o', &)/ok;—pl=, y, §)ok,| <C(Jlz—2'| +|y—¥'|)

for large |&|. If (2.8) is valid at («, y) it follows with another constant for all (', ') €w
in a neighborhood of (z, y). Let F, be the complement of 2, which is therefore closed.

THEOREM 2.6. The singular support of the distribution kernel K,€D'(Q, x£2,) of
the operator defined by (2.5)" is always contained in F,,.
13 — 682904 Acta mathematica. 121. Imprimsé le 4 décembre 1968.
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Proof. We have to show that the kernel is a € function in £,,. The proof is similar to
that of Theorem 2.4. If (x, y) €€, we have in a neighborhood of (z, y) that

p=(2|op[o&;|*) 1 €8,
Since for large || P = py 2 (0p[0;)

it follows from Lemma 2.5 that the kernel of P near (z, y) coincides with the kernel of an
operator defined by a symbol of order m —1. If we repeat this argument we may conclude
that K, coincides near (x, ) with the kernel of an operator of arbitrary low order. In

view of Theorem 2.4, this proves the theorem.

CorROLLARY 2.7. If u€ £'(Q,) and P is defined by (2.5), then
sing supp Puc F, sing supp u. (2.9)
Here we have written for subsets K of Q,
F K ={z€Q,; (x,y)EF, for some yEK]}.

Proof. That sing supp Puc F,supp v follows immediately from the fact that
K,€0"(Q,). Now u can be written as a sum % =v+w where v € (§°({),) and supp w is arbi-
trarily close to sing supp . Since Pv € C*(Q,) by Theorem 2.4, this proves the corollary.

The preceding result is of course the analogue of the pseudo-local property of pseudo-
differential operators; in that case 0, =Q, and ¢ ={z—y, &) so F is the diagonal.

Since we shall now start to vary ¢ it is useful to have a notation for the class of operators
of the form (2.5).

Definition 2.8. If @ is a phase function we denote by L™(p) the class of operalors
CF(€,)—~ C=(Q,) which modulo an operator with C® kernel can be written in the form (2.5)
for some p€S™(Q; x Q,, RY).

It is clear that L™(¢) only depends on the residue class of ¢ modulo §° For assume
that ¢€.8°. Then ¢¥€8° and the operator defined by p and the phase function ¢ is equal to
the operator defined by pe ® and the phase function ¢ +¢. Since pe” * has the same order
as p, this proves the assertion.

We shall now prove a less trivial result containing the fact that the class of pseudo-
differential operators is invariant under diffeomorphisms. Let I, be the ideal in S° generated
by the derivatives dg/o&,, and let J, be the functions of (x, y) (locally) in the ideal I,. (We
regard I, as consisting of germs at &= oo so equality is only required for large |£|.) Tt is

clear that J,, contains C3’(Q,), and more precisely that F is the set of common zeros of the
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elements of J,,. Let J,S! denote the S° submodule of 8! spanned by products of two

elements of J » and one of ST,

TraEoREM 2.9. If @) and @ are phase functions with ¢, —p €JLSY, it follows that L™(p)<
L™g,).

Note that there are no restrictions on ¢, over €, so we cannot expect equality in
general.

Before the proof we note a corollary:

CoroLLARY 2.10. Let Q,=Q, and N=dim Q,; assume that F, is the diagonal and
that (x, y, &)=<z —y, &> +O0(|x—y|%|&|) at the diagonal. Then L™(gp) is equal to the space
L™ of pseudo-differential operators of order m (and type 1, 0).

To obtain Corollary 2.10 from Theorem 2.9 we first note that Taylor’s formula applied
to Op(y +i(x —y), y, £)/0&,; gives for x close to y

op(x, y, £)[06; = (x;—y;) +> aul®, ¥, £) (T —Yu),

where a,,€8° and 4, =0 on the diagonal. It follows that det (6, +a,)€ES® and equals I
on the diagonal, which implies that (6, +a;) has an inverse with matrix elements in
8% in a neighborhood of the diagonal. Hence (x; —y;) €J, so if ¢, is any other function satis-
fying the hypotheses of the corollary we have L™@)<L™(p,). In view of the symmetry
between @ and ¢, it follows that L™(¢) =L™(g,) and taking ¢,(z, y, £) ={xz—y, &> we obtain
the corollary.

Proof of Theorem 2.9. Set ¢, =@+, —¢@), 0<t<1, which causes no confusion for
t=1. By hypothesis we can write

T~

Qi1 Qs (210)

1

‘P1“¢=L

where g € S and a,€.J, so that for some b,, € S°
N
a;= 2 by 09/ 06, (2.11)

Our first purpose is to show that @ can be replaced by g, in (2.11). We have
2.by, 0,/08, = a;+ 1 3.by,0(py — ) /08, = a,+ £ 3 oyt

where ¢;,€8° and c;, =0 on F,. Hence the matrix (d; +¢c;) has an inverse with elements in

S over a neighborhood of F, for 0<¢<1. We need only consider operators in L™(p) of
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the form (2.5)" where the support of p belongs to that neighborhood, for the part of p
away from F, only contributes an operator with C® kernel. Thus we have in the support
of p
N
a;= 3 bj, 01/ 0., 2.12)

where b}, €.5° and depends continuously on ¢ for 0<t < 1.

Now consider

Pyu(x)= _Up(x, y, £) €7D uly) dE dy.

If the support of p is sufficiently close to F,, as we may assume, then g, satisfies (2.3),
(2.4) there uniformly with respect to € [0, 1]. We have

d'Pyu/dt’ = ”p(w, Y, £) 7 (py — @) e uly) dé dy.

Here we substitute for (¢, —¢)” the sum given by (2.10) and obtain a number of terms each
of which is of order m +r but contains 2r factors a;. But if we replace one factor a; by the
expression (2.12) it follows from Lemma 2.5 that one can reduce the order by one unit
without affecting the other factors a,. Repeating this argument 2r times we conclude thaf
d'P,ujdt" is actually in L™ "(p,), hence as smooth as we wish uniformly with respect to#

for large r.
If we write Q,=(—1Yd'P,/dt /j!];-1 € L™ (¢y),

it follows from Taylor’s formula that
k-1 1
Py=2Q;+(— l)kf 7 1/(k— 1) d*P,/dt" dt.
0 0

Let @ be an operator in L™(p,) defined by an asymptotic sum of the symbols defining
Q,, =0, 1, 2, ... (see Theorem 2.7 in Hormander [7]). Then P;—@ has an infinitely dif-
ferentiable kernel, which proves that P,€L™(g,). The proof is complete. Clearly the proof

could also give formulas for the symbol of @ but we have no need for them here.

Remark. If ¢, ¢, and p are asymptotically sums of homogeneous functions of £, then
@ is also defined by means of such a kernel.

Corollary 2.10 is of course closely related to the invariance of the class of pseudo-
differential operators under a change of variables. (See also Hormander [6], [7].)

We shall now pass to the study of multiplicative properties of L(p). The main point is

the following lemma.
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Lemma 2.11. Let g(x, D) be a compactly supported pseudo-differential operator of
order u (and type 1, 0) in Q. Let V" be a compact subset of C*(QQ, R) such that no element
of ¥ has a critical point, and let F be a compact set in C=(Q). For y €Y we set

P(2) = p(@) + (2 — 2, grad p(a)) + 0. (2).
Then we have for every positive integer N

e My(x, D) (fé™)= 3 ¢(z, A grad w(z)) D% (f(z) €5@) Jar! |, + AV Ry(z, 4),
fae]<N
where Ry lies in a bounded set in C(Q) for ye¥, feF, A= 1.

Proof. This is actually what was verified in the proof of Theorem 2.16 of Hormander
[7], although that theorem as stated does not contain Lemma 2.11. (Naturally one should
also be able to obtain the lemma from Corollary 2.10 above.) For homogeneous symbols
Lemma 2.11 is Theorem 3.3 in [6].

The following consequence of Lemma 2.11 will allow us to apply a pseudo-differential

pirator inder the sign of integration in (2.5).

TueorEM 2.12. Let g(x, D) be a compactly supported pseudo-differential operator of
order p (and type 1,0) in Q,. Let € S*(Q, x Qy, RY) and assume that on compact subsets

of Q, xQ
o |EF<C 2 |og/ox?, |£]>C. (2.13)

We Set (p(z: ?/, 5) = ‘P(x, y7 E) + <Z -, gra'd:r ‘P(x’ y’ £)> + Q(.’B, ?/, 2, 5) FOT' p e Sm (Ql X QZ? R’N) we
have then

e ?q(x, D) (p€?) - IZNq“‘)(x, grad, @) D3 (p(2,y,8)€%)/a! |, + By(x, 9, &), (2.14)
where By € "4 V2(Q x Q,, RY).

Proof. We may restrict y to a compact subset K of Q, and assume that |£]>1.
Since the hypotheses of Lemma 2.11 are satisfied by the closures F and ¥ of the set of
functions

@) =2""p(x,y, AE), wyl@)=2A'g(x,y,A8); y€K, |&|=1, A1>1,

we conclude that Ry(x, y, AE) A~m-w+ e

is bounded in C(Q;) when y€K and {£|=1, A>1. The statement now follows from
Theorem 2.9 in Hormander [7] if we note that the general term in the sum in (2.14) is
in §™*#7I=2 in fact in 8™ +#-UH+D2 f | 4| is odd. (See the beginning of the proof of Theo-
rem 2.16 in [7].)
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Terms of order >m+pu—1 can only occur in (2.14) when |«|<2, and for [a|=2

they only occur when both z-derivatives fall on €. This gives

COROLLARY 2.13. Let the hypotheses be as in Theorem 2.12 and set

b= Z2q(“)(x, grad, ) Diip/al€ 8. (2.15)

lo]=

Then we have
e "q(z, D) (p€'®) = > q®(x, grad, ¢) Dip+bp+ R(x,y, &), (2.16)
al<2

where Re §m+#2,

If ¢ satisfies (2.13) it is clear that we can form the composition of g(z, D) and the
operator (2.5) by operating under the integral sign, and by Theorem 2.12 the product will
again be in the same class. In fact, operation under the integral sign is legitimate when p
vanishes for large £ and is therefore justified in general by continuity arguments based on
Lemma 2.2. However, the condition (2.13) is not a natural one since it would not be in-
variantly defined if we replace Q; and Q, by manifolds and Q, x Q, x RV by a real vector
bundle over the product. On the other hand the condition (2.3) is invariant and it is the
only one that is really needed. For the contributions from the part where |p/0&| is bounded
from below give an operator with a C*® kernel so it is clear that one can split P in a sum
where one term has a C® kernel and the other only involves integration over a set where
(2.13) is valid. This proves that the product of a compactly supported pseudo-differential
operator of order u in Q,; and an operator in L™(¢) s always in L™ *(p). Analogously we
have multiplication to the right by pseudo-differential operators in £2,, which follows by
taking adjoints. The details are left for the reader to supply.

3. The Fourier transform of the spectral measure

Let Q be a compact 0° manifold with a given positive C® density dx, and let 4 be
a formally self-adjoint semibounded elliptic pseudo-differential operator of order 1 (and
type 1, 0) in Q. In local coordinate systems A is thus (modulo operators with ¢ kernel)
of the form a(x, D) where a €8, the limit

a®(x, &) =lim ¢ 'a(x, t&) (3.1)
t—>o0
exists when £0, and a®(x, &) >0, £+0. (3.2)

(Since @ €8 the limit (3.1) exists in the C® topology on the set where &==0.) If the given

density dx agrees with the Lebesgue measure in the local coordinates, the formula for the
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adjoint of a pseudo-differential operator (Theorem 2.15 in [7]) shows that Im a €8¢ The
closure in L*(Q2) of 4 with domain C®(Q) is a self-adjoint semibounded operator. We shall
denote it by 4; the domain is equal to H ) (Q). (For the definition of the space H, see e.g.
Hoérmander [7], section 2.6.) The notation A will also be used for the extension of the
pseudo-differential operator 4 to D'(Q).

Let {dE;} be the spectral resolution of 4 and form the Fourier transform

E)= J‘e‘m dE,=e7"4,

E(t) is thus a one-parameter group of unitary operators. Moreover, E(t) defines a continuous
mapping of H, () into itself for any integer s, and this mapping is strongly continuous as
a function of ¢. This follows from the fact that if 4>¢, then £ commutes with (4 —c+1)°
for any s and the H, norm of w is equivalent to the L? norm of (4 —¢+1)*u. Note that for

o€ H y), the unique solution of the equation
Diu+ Au=0 (3.3)

with initial data %(0) =u, is given by w(t) = B(t)u,.

Our purpose is to determine the singularities of the kernel E(z, ¢, y) for small |t]. To
do so we shall use the techniques of section 2 to construct a parametrix for the operator
D,+ 4, which solves the initial value problem for this equation approximately. Let w;
be a local coordinate patch in Q which we identify with the corresponding open set in
R". We assume that the given density in Q agrees with the Lebesgue measure in o, and
choose a €8%w,;, R") so that a(z, D) is compactly supported in w, and 4 —a(x, D) has a
C® kernel in w,. (Cf. Hérmander [7], pp. 148-149.) Let w be a relatively compact open
subset of w,. We want to find an approximate representation of the operator E(t) of
the form

(@) ) (@)= f fq(x, ty, &) €7 O f(y) dy dE, f€CT (), (34)

where ¢ shall vanish for z outside some compact subset of w, so that Q(t)f can be extended
to be 0 in O\ w, without introduction of any singularities.

The construction will rely on Corollary 2.13—and is of course essentially the same as
that in Lax [9]. The first step is to choose the phase function ¢ as in geometrical optics,

that is, so that
dplot +a(x, grad, p) €8°, (3.5)

which makes the term in (2.16) with « =0 harmless. Furthermore, we want Q(0) to be the

identity operator, and in order to be able to check this using Corollary 2.10 we require that
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9, 0,y,8) =<z —y, & +0(|x—y|*|&]) when z—y. (3.6)

However, we shall now differ from Lax [9] by demanding that ¢ shall be linear with respect
to ¢, which is natural in view of the translation invariance of the operator D,+ A4 with

respect to ¢£. Thus we set with some function ¢’ to be chosen later

plx, t, y, &) =y, y, &) —ta'(y, &).

The condition (3.6) then becomes

P, y, §) = (x—y, & +0(|z—y|*|§]) whenz—y, (3.6)’

and (3.5) gives when x =y
a'(y, &) —aly, £)€S°. (3.7)

From (3.7) it follows that we may replace (3.5) by
a'(z, grad, y) —a'(y, £)€8°. (3.5)

Definition 3.1. A phase function w€SY(U, R") where U is a neighborhood of the dia-
gonal in & x @ and a real valued funetion @’ €8%w,, R") will be called adapted to 4 if
(3.5)', (3.6)" and (3.7) are fulfilled in U and w, respectively. v

It is obvious that a real valued function a’ satisfying (3.7) exists if and only if Im a €8°
—omne can then take ¢’ =Re a—and we have seen above that this is true if A4 is formally
self-adjoint. The condition (3.5)' is independent of the choice of a’. Clearly (3.5)" and (3.6)
are implied by

o' (x, grad, ) =a'(y, &), (3.5)"
(@, y, £) =0 when (x —y, & =0 and grad, p(x, y, §) =& when z=y. (3.6)"

These equations define a Cauchy problem for the non-linear first order differential equa-
tion o'(x, grad, ) =a’(y, §), depending on the parameters y and &. If o’ were homogeneous
with respect to £ we could restrict £ to the compact set |§| =1, and then extend the defini-
tion of y by homogeneity. In the general case we set £ =217 where }< || <2 and 2 is large.
With =214y, the conditions (3.5)", (3.6)” become

A (x, 2 grad, x) = A~a'(y, A7),
% =0 when @ —y,n> =0, grad,y =% when z=y.

Since A-1a’(x, 19)—+a’(x, #) in the C® topology for #=+0 when A— oo, this is also defined for
A= co and we now have a compact parameter space. From the standard existence theorems
for first order partial differential equations it follows that for large A there exists a unique

solution in a fixed neighborhood of the diagonal, independent of 4 and 7, and the solution
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belongs to a bounded set of C* functions of z, y and # for large 1. In a neighborhood U of the
diagonal of & x® in w, xw,; we have therefore constructed a function p€S! such that y
and a’ are adapted to 4. (See a remark following Lemma 2.2.)

From (3.6) and the hypothesis that € 8" it follows if U is replaced by a smaller neigh-
borhood of the diagonal of @ x@® that

|&] <Clgrad. y|; |£] >0, (2, y)€U; (3.8)
[e~y| <Cl|grad; p|; |£]=C, (2, y)€U. (3.9)

In what follows we assume that U is chosen so that these estimates are valid. This was
tacitly assumed already in the passage from (3.5) to (3.5)".

Let x€CF(U) be a function which is equal to 1 in an open neighborhood U, of the
diagonal in & x @&. We shall choose the function ¢ in (3.4) so that ¢ =0 except over a compact
subset of U, so it will not matter that y is not defined everywhere. Since the set F in
Theorem 2.6 is a closed subset of U xR and is contained in the diagonal when =0, it
follows that we can choose ¢ >0 so that (2, y) €U, if (z, y, t)€F,, |t| <e and y€Qm. Thus we
need not be concerned with the definition of ¢ outside Uy, fot it can only contribute an
operator with a C® kernel when |¢]| <e.

In view of Corollary 2.10 and the proof of Theorem 2.9 we can choose a kernel

1€8%U, R*) vanishing outside a compact subset of U such that I—(2z)""€S8-1(U,, R")
and

fﬁffl(a% Y, E) eiw(z.y,é‘)ﬂy) d?/ dé— f(x): ’e Oso(w)7 z€ Q’

is an integral operator with C® kernel. In order that the operator (3.4) for t=0 shall re-

present the identity operator (modulo operators with C® kernel) we therefore pose the

boundary condition
9(x, 0, y, &) = I(=, y, £). (3.10)

Furthermore, in order that (D, +a(z, D))Q(¢) shall have a C® kernel we must make sure that
e (D, + a(z, D)) (ge'®) € S~ (U,, R™). (3.11)

To solve (3.10), (3.11) we shall use Corollary 2.13. With b defined by (2.15) set
b, =b+a(z, grad, p) — a’ (y, &) € 8°(U, R"). We shall successively determine kernels gy, ¢y, ...
in w; X (—¢, &) X @ x R” so that for large |&|

> a®(x, grad, y) Digy+ D,gy+ by g, =0 (3.12)

je[=1

Qo(xa 0: ?/: E) = I(x’ y7 E)r (3'13)
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e (Dt a(x, D) (que®) ~ 3 a®(x, grad, y) Digc— D,qi — b1+ Be(2, 1,9, £)=0, k>0
fef=1

(3.14)
2 0@, grad.y) Diges Diget bige=ZRi-1(2,t,, £), k21, (3.15)
%(x,0,9,8) =0, k=>1. (3.16)

Thus we argue in each step as if there were no remainder term in (2.16) and a(z, grad, y) =
a'(y, £), but we take care of the error in the following step. Since a® (z, grad, ) is real
valued and has a uniform bound for |«| =1, it is clear that for sufficiently small & these
recursion formulas have solutions with compact support in U for |¢| <g; as in the discussion
of the function y above we conclude first that ¢,€8° hence that RB,€S8-1 (Corollary 2.13),
then that ¢, €S-% inductively we obtain ¢;€S7/, R,€877-1. Adding (3.12), (3.14), (3.15)
gives
E-1 x k-1
(Dt al@, D) ((@o + -+ 9 €) =1 3 By— 2 R= (= 1) 3 B~ Ry,

and adding (3.13), (3.16) we find that

(90+ +q1c) (.’.C, 0;?/: 5):1(37:?/7 5)'

Now define g~ > q; (see Hérmander [7], Theorem 2.7). It follows immediately that ¢
has the required properties (3.10), (3.11). Thus @ maps Ci°(w) into C=(Q x { — ¢, €));

QO) f=f+kf, fECT(w), (3.17)
where k has a 0™ kernel, and for |¢| < ¢ we have
D+ ) Q) f=K(@)f, [€0F (), (3.18)

where K has a C'*” kernel as a function of ¢ also. To prove (3.18) we note that A differs
from a(x, D) by an operator with C* kernel in w,, so K(¢) has a C'* kernel over w, X .
Since A4 is pseudo-local the kernel is also C® over Q x w outside a compact subset of U,
hence over Q x w.

From (3.17) and (3.18) we conclude that for |t|<e

H
QU F=E@) (f+EH+ fo B(syK(t—s)fds,

or more briefly Qt)—Ety=Et)k+ f tE”(s) K(t—s)ds, (8.19)
0

as an equality between operators from OF(w) to C*(Q). Since E(t) is a O function of ¢
with values in the space of continuous mappings of C*(Q) into itself, we conclude that
Q(t)— E(t) has a C*= kernel in Q x (— &, &) X w.
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4. Asymptotic properties of the spectral function

Having determined the singularities of the kernel of the Fourier transform £(t) of the
spectral measure when |¢| <e, we shall now invert the Fourier transformation to obtain
precise information concerning the spectral function at infinity. Let g be a positive function
in §(R) such that supp §<(—e¢, ) and §(0) =1. If £(x, t, y) and Q(x,t, y) denote the distri-
bution kernels of E(f) and of the operator Q(¢) of the form (3.5) constructed in the pre-

ceding section, we have found that
8@) (B2, t, y) —Q(x, 1, y) €C®, 2E€Q, y€ow,

and the support of this function is bounded in the ¢-direction. Hence

f@(l —w)de(x, y, ) — F1(6(.)Q, ., y))(4) (4.1)

is a rapidly decreasing function when 2-> oo, uniformly with respect to z€Q and to y in a
compact subset of w. Here we have assumed that the local coordinates are chosen so that
the given density in Q is the Lebesgue measure in .

To evaluate the inverse Fourier transform in (4.1) we introduce

R(z, A, y, £) = (2m)~1 f dt)q(z, t, y, &)t dt. (4.2)

This is a function in S§°(€) xR xw, R*) and it is rapidly decreasing as a function of 1 in
the sense that AVR(z, 4, y, §) and its translates with respect to A belong to a bounded set
in 8° for each integer IV. This follows immediately if we multipy (4.2) by 4V and integrate
by parts with respect to f.

If ¢ had compact support in & we would have

Q(x, t, y) =J“«"”’ £, v, E)ei(w(z.y.E)—a’(y.é)t)dE,
so the inverse Fourier transform would be
FH()Q, ., y))(A) = fR(w, A—d'(y, &), y, &) ePEVOdE, (4.3)

In view of the rapid decrease of R as a function of 1 this integral is a well defined continuous
function of z, y, 4 for any ¢€.8° and using Lemma 2.2 as in Section 2 we conclude that (4.3)

is valid in general. Thus we have proved:
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LeEMMA 4.1. If B is defined by (4.2) with the function g constructed in Section 3, then
f o(A—p) de(x, y, u) _fR(x, A—d'(y, &), y, £)evrDds (4.4)

is rapidly decreasing as A—> oo,

To obtain the asymptotic formulas we must study the function R more closely. With

the notation

mly, 6) =m{§; a'(y, §) <o},
we have for any integer N

l fR(x, A=a'(y, &), v, 5)6”"'”'5’%‘ < C’f(l +|A—o|)dm(y, o). (4.5)

To estimate the integral on the right we need a simple lemma.
LeMMA 4.2, The function m(y, A) belongs to S*(w, R) for large 4.
Proof. Set A=ty where 1 <u <2 and ¢ is large. Then

¢ m(y, tp) =m{; £y, t€) <p}.

Since t~1a’(y, t£)—~a%(y, £) in the O topology for & =0 when t— oo, it follows from the impli-
cit, function theorem that the function defining the surface t~1a'(y, t&) =u in polar coordi-

nates also converges in the C® topology when {— oo. Hence
t~"mly, tu) ~ u"m{g; a(y, §) <1}
in the C* topology, which proves the statement.
By Lemma, 4.2 we have |dm/de| <Co™! for large o, hence if N >n

f(l +|A—c]) Vdm(y, 0) = O ") +O’f(1 + A=) 1+ |o))* ' do

=0(A ™M +C(1+ |A|)"-1f(1 +|A=a)" 1V do
= O~ + (1 +|a])* %
Here we have used that (1+|o])<(1+[1])(1+ |0 —2]) in view of the triangle inequality.
When x =y we can therefore conclude from (4.4) and the positivity of ¢ and of de that
e(@, x, A+1)—e(x, x, 1) <C(L+]A|)* ",

when z is in a compact subset of w, hence for all €. Since e(z, y, A +1) —e(z, y, 1) is the
kernel of a positive operator, this result can immediately be extended to points outside the

diagonal (cf. Lemma 3.1 in Hérmander [8]) so we have proved the crucial
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Lemwma 4.3, There is a constant C such that
le(@, y, A+ 1) —e(, y, )| <C(L+|A])* . (4.6)

Next we shall estimate the spectral function by integrating (4.4) from — oo to A. This

gives

‘ fe(/l —p ey, pydp— H R(x,0—d'(y, &), y, &) ¥V dEdo| < C. (4.7)
1 o<

From (4.6) we obtain

f oA~ p)e(w, y, ) du—e(x, y, 4) | <o+ |Ap Y, (4.8)

if we note that (4.6) implies
le(@, y, Atp) —elx, y, )| <CL+|A] +|u] ) 1A+ |u]). (4.6)’

In order to derive an estimate for e(x, y, ) it only remains to study the double integral in
(4.7). To do so we note that by the definition of R

f R, 0, y, £)do =6(0)q(x, 0, v, &) = L(z, y, &).

(The notation I is explained in Section 3.) Set

T

Bi(x, 7,9, &) =f R(x,0,y,§)do, <0

T

Rl (x, T, ?/, 5) = f

—

B(z,0,y, &) do—I(z,y, &) = f; R(x, 0,9, &) do, ©>0.
Then R, (z, 4, y, £) AV is uniformly bounded for any N and we have
ff AR(x, o—da'(y, &),y, &) e dE do
=f oo zI(x’ y, &) V@O gE ¢ le (x, A—a'(y, £), y, &) V-9 g,
. H<
By an estimate analogous to (4.5) and by Lemma 4.2 the last integral can be bounded

by C(1+|A])""*. Since I(z,y, &) — (27)"" = O0(1/|£|) when (z,y) € U, and & oo, it follows
when (x,y) € U, that

f I(@,y, £) ¥ VP dg— (2m) " f VO gEl < O+ | AL
ay.H<d

a'(y, §<i

On the other hand, we have I =0 when (z, y) ¢ U. Hence we have proved
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THEOREM 4.4. For x and y in a compact subset of the coordinate patch w and suffi-

ciently close we have uniformly

ez, y, 1)~ (2m) " gy .0 dsl < oL +]a)? (49)

a'(y,H<A

if the phase function y and a' are adapated to A over a neighborhood of the diagonal in
w X w (Definition 3.1). In particular,

e(x, x, A) — (Zn)_"f

a'(x,H<i

d§’<0(1 +]apht (4.10)

uniformly in Q. On compact subsets of the complement of the diagonal in Q x £ we have also
le(z, y, H| < C(L+][A)" (4.11)

Here the local coordinates are assumed to be chosen so that the Lebesgue measure in
the local coordinates is equal to the given positive density in the manifold. In the proof
of (4.11) we choose U so that (x, )¢ U.

Remark. In many cases it is not necessary to make a very careful choice of the phase
function y in (4.9). For example, if the surface {&; a®(x, £) =1} has only positive curvatures

and n >3, it follows easily from (4.9) that in local coordinate systems

= an [ cenvdg| <o (9y
a'y. H<A

In the one dimensional case on the other hand there is hardly any freedom at all in the choice
of y.

We shall now study the Riesz means e*(z, z, A). (See Hérmander [8] for the definitions.)
To do so we must evaluate the double integral in (4.7) more precisely. We now choose the
funetion g € § so that supp §<(—e¢, €) and §=1 in (—¢/2, ¢/2). (Clearly g cannot be positive
then.) First note that

Swoh= |  Reomoi
a'(z, §)<i

belongs to 8™(w x R, R) for large A and is rapidly decreasing a3 a function of ¢. The proof
is essentially a repetition of that of Lemma 4.2: We set A=ty where }<u<2and {is

large and obtain

"8z, 0, tp) = f R(z, o, x, t&) d&.

t ' @, tH<p



THE SPECTRAL FUNCTION OF AN ELLIPTIC OPERATOR 213

The only new feature is that the integral on the right could cause trouble for small &.
This difficulty is eliminated if one subtracts a function 8, defined as S but with a'(2, &)
replaced by a homogeneous function independent of z, for the assertion is easily proved for
8,. We leave the details for the reader.

Now we rewrite the double integral in (4.7) with z =1y as follows
Jf Rx,0—d (x, &), x, &) dEdo= ff R(x, 0,2, &) dédo= fS(x, 6,A— o) do.
a<i o<i-a'(x, &

Since S(z, 0, 1) is rapidly decreasing as a function of ¢, the contribution to the integral
when |g|>2/2 is rapidly decreasing. For |o|<1/2 we have by Taylor’s formula for
any N, since S€.8",

k=1
S, 0,4~ 0)= 3 (= 0)/j!&S(x, 0, ) /AN + O(1 + |o]) " 4*"* o).
The integral of the error terms is O(A"~*), and

f (— oy d'S(x, ¢,2)/dN do= Jm (— o) d'S(z, 0, A)/di do + O(A~7)
lol<A/2 o0

for any N. The infinite integral we can express in terms of the Fourier transform in

view of (4.2) and this gives the expression

dj/dljf i‘q(x’ t, Zz, E) dé |t=0

a’(z, &)<

which is a function in "7 (w, R). Hence the asymptotic sum

0

eol, A)~ 3 (— ic?/ataay /j! f RCLER L (4.12)
a'(z, H<

is defined. We choose ¢, equal to 0 on the negative half axis and set as usual for Rea >0

A
es(x, 4)= f (1= p/2)" deg(, )-

If ¢(x,A) is a continuous function on Q xR which is rapidly decreasing when 4— oo,
that is, O(1™") for every N, we set

2
o (x, )= f (1= u/A)* @z, ) du.

Note that @2 is bounded and has an asymptotic expansion in non-negative integral powers
of 1/4 at + oo.
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THEOREM 4.5. If e, satisfies (4.12) there exists a continuous function @(x, A) on QxR

which is rapidly decreasing when A—oo such that for Re a>0
le*(x, 2, A) — €& (x, A) — ¢*(x, A)| < Co (1 +|A])" 17 Re=, (4.13)
We have § @(x, ))di= —k(xz, x) if k is the operator in (3.17).

The presence of the function ¢ in (4.13) is required since e, only takes into account the
symbol of the operator A. The effect of adding to 4 an operator with a C* kernel is ac-
counted for by the term ¢=

Proof of Theorem 4.5. The definition of e, and (4.1) mean that
o+ de(z, 2) —deg(a, A) = p(w, )1,
where ¢ is rapidly decreasing and [ g(x, 1) dAi=(E(z, t, y) — Q. t, YNio r—y = — k(2, 2).
Hence de—de,—gdi=(3—p) # de, or

e—e— @' =(0—p)x e=1. (4.14)
Now it follows from (4.8) that
[f(2)] =|(6—0) = e(A))| <O +|A])*,

and by (4.14) we also know that f is rapidly decreasing at — co. Furthermore f has no
spectrum in the neighborhood of 0 where g =1. It follows that

[F0)]| <O+ 2]y 1 Re,

(See e.g. Hérmander [8], Theorem 2.6.) Since e —e,* ~@*=f2, the theorem is proved.

5. The case of differential operators

In Sections 3 and 4 we have studied the spectral function of an elliptic pseudo-dif-
ferential operator of order 1 on a compact manifold. We shall now prove analogous state-
ments for differential operators of order m. As in the introduction we shall consider a
positive self-adjoint extension P of an elliptic differential operator with C® coefficients on
a paracompact manifold Q of dimension n. In a local coordinate patch w where the Lebesgue
measure agrees with the given density in  we choose a function y(z, y, &) for x and y

close to each other so that y is homogeneous of degree 1 with respect to £€R" and

p(x, grad, ) = p(y, £), vz, y, &) =<x—y, E+0(|x—y|®|¢]) asz—>y. (5.1)

Here p is the principal symbol of P.
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THEOREM 5.1. For x and y in a compact subset of w and sufficiently close we have uni-
formly

e(x’ Y, A) - (27!)7"‘[‘

eiwm.y.é‘) d&‘ < C(l + Ml)(n—l)/m (5_2)
oy, &<

if v is homogeneous in & of degree 1 and satisfies (5.1). In particular,

e(x,x, A)— (Zn)""f

iz, H<A

df} <O+ |A]yn-im (5.3)

uniformly in compact subsets of Q. On compact subsets of the complement of the diagonal in
Q x Q we have also
le(x, y, )| < O+ ||y~ Pm, (5.4)

Proof. Note first of all that by Theorem 5.3 in Hérmander [8] it suffices to prove the
theorem when ( is compact, for example a torus. Set ,4=P"™, which is a pseudo-dif-
ferential operator of order 1 whose symbol a(z, &) is asymptotically the sum of p(x, &)™
and homogeneous functions of order 0, —1, —2, ... (Seeley [14]). Since y and p"™ are
adapted to 4 the theorem now follows from Theorem 4.4. In particular, we have proved
Theorem 1.1.

Theorem 5.1 allows us to apply Theorems 6.1-6.4 in Hérmander [8]. For example,
by Theorems 6.1 and 6.2 there we obtain the following localization theorem.

TuroreM 5.2. If fELP(Q), 1<p<2, and if f has compact support in case p<2, it
follows that the Riesz means e(x, f, A) of the eigenfunction expansion of f converge to 0 locally
uniformly in the complement of the support of f when Re a=>(n —1)/p.

For further references and applications we refer the reader to [8]). However, we shall
give some remarks here concerning the Riesz means e*(z, z, 1) of the spectral function on
the diagonal. First note that the function e, in Theorem 4.5 is asymptotically a sum of
integral powers of 4 if the symbol @ of 4 is such a sum of homogeneous terms of integral
order. Hence Theorem 4.5 applied to P1/" gives, again in view of Theorem 5.2 in Hérmander
[8], that the Riesz means of e(z, x, A™) can be approximated by a sum of integral powers
of 1 within an error which is O(1"~1~%¢%). Now

& (x, r, l"f) = fl(l — "/ A"y de(z, x, T)

= J‘/l [m(l —t/)— (7;) A=z/A2+...+ (-1 - 'c/l)"’]ude(x, z, ")

14 — 682904 Acta mathematica. 121. Imprimé le 4 décembre 1968.
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so results on the Riesz means of e(z, x, A™) can be carried over to statements on the Riesz
means eX(z, z, ). {See also the proof of Theorem 2.7 in [8].) Thus ex(z, z, 1) differs from a
finite sum of integral powers of V™ by an error which is O(A™ 1"Fe®/m) To compute the
coefficients it is easier to use the standard techniques of pseudo-differential operators;
we refer the reader to Theorem 5.2 in [8] for such formulas. They can also be obtained from
the asymptotic expansion of the fundamental solution of the heat equation 9/6t+P on
the diagonal at ¢=0 since this is the Abel mean of e(z, z, ). Note that in contrast with
Theorem 4.5 the coefficients can be expressed completely in terms of the symbol of P.

Our methods can be applied with no essential modification in the case of systems for
which the eigenvalues of p(x, &) are distinct. In particular, (5.4) remains valid for such

systems and we have
A7 e(w, , A) — (2n)‘"fp(§)'"’m w(&=0""") (5.3)
Here (&) is the differential form
o) =" EdEN . ANdE,+ o (= 1) EAE A . AdE, q)

in R", carried over to 7T by a linear map preserving the Lebesgue measure. The integration
takes place over the sphere (7'; — {0})/R,, oriented by w >0.
However for systems with multiple eigenvalues we have no information beyond the

results of Agmon-Kannai [1] and Hérmander [8].

6. A counterexample

It was pointed out by Avakumovié [2] that it is not possible to improve Theorem 1.1
for the Laplacean on the sphere S?*cR*. For the sake of completeness we shall recall his
arguments here for the case of the n-sphere. First we give some well-known facts concern-
ing spherical harmonics. (See e.g. Miller {13].)

If in R**! we use the polar coordinates z =rw where r €R, and w€S8", the Laplace

operator assumes the form

A=r2As+ 62/6r2+?8/6r

outside the origin, where Ag is the Laplacean in 8" If u(x) =r#v{w) is a homogeneous fune-

tion of degree y, it follows that outside the origin
Au = r2 u(Agv +p(p+n—1)v).

Hence Au =0 outside the origin if and only if v is an eigenfunction of —Ay with eigenvalue

A=u(p+n—1). Since 4 describes all values >0 when <1 —n=, we obtain all eigenfunctions
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of —Ag by restricting to 8" all distributions % in R* which are harmonic and homogeneous
of degree <1 —= outside the origin. Then Au has to be a linear combination of the deriva-
tives of the Dirac measure, so we conclude that y=1—n—k where k is an integer >0
and that
ue)= > a,D°E,
let=k

where E is the fundamental solution of A and a, are constants. (When k=0, n =1, the
logarithmic potential £ must be replaced by a constant.) The Fourier transform of u is
> a kx| |2, so it follows that u is supported by the origin if and only if |£|2 divides the

polynomial > a,&*. Let N, be the dimension of the space of homogeneous polynomials

N.— (n + k)
7
We define N,=0 for k<0. Then it follows that the multiplicity of the eigenvalue

Me=k{k+n—1) of —Agis Ny— N, 5 for k=0,1,.... If V, is the volume of S" and e is
the spectral function of — Ag, it follows that

of degree k in n+1 variables,

e(@, &, he+ 0) — e(x, @, A~ 0) = (N = Ny_2)/V, (6.1)
e(x, 2, A+ 0) =N+ Ni1)/V, (6.2)

Since N, — Ny_» is a polynomial in k of degree n— 1, it follows from (6.1) that
e(x, x, A+ 0) —efx, 2, A, — 0) = A V2 (6.3)

for some ¢ >0 and large k. This shows that Theorem 1.1 cannot be improved. From (6.2)

we also obtain that
e(x, 2, Ay A" "2 ~2/(n! V,)=0(A"}) (6.4)

which confirms Theorem 1.1 in this special case, if we note that
2/(”‘ Vn) = (27‘5)*"177;—1/”’

and that V,_;/n is the volume of the unit ball in R".
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