Skip to main content
Log in

Computationally efficient algorithms for convection-permeation-diffusion models for blood-tissue exchange

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

Analysis of data on tissue depositions obtained by positron tomographic or NMR imaging, or of multiple tracer outflow dilution curves, requires fitting data with models composed of aggregates of capillary-tissue units. These units account for heterogeneities of flows and multisolute exchanges between longitudinally distributed regions across capillary and cell barriers within an organ. Because the analytic solutions to the partial differential equations require convolution integration, solutions are obtained relatively efficiently by a fast numerical method. Our approach centers on the use of a sliding fluid element algorithm for capillary convection, with the time step set equal to the length step divided by the fluid velocity. Radial fluxes by permeation between plasma, interstitial fluid, and cells and axial diffusion exchanges within each time step are calculated analytically. The method enforces mass conservation unless there is regional consumption. Solution for a 2-barrier, 3-region model, accurate to within 0.5%, are 100 to 1000 times faster than the corresponding, purely analytic solution, and over 10,000 times for a 4-region model. Applications include multiple indicator dilution studies of kinetics of transcapillary exchange and positron emission tomographic studies of the mechanisms of substrate transport into cells of organsin vivo.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abramowitz, M.; Stegun, I.A. Handbook of mathematical functions. New York: Dover; 1968.

    Google Scholar 

  2. Bassingthwaighte, J.B.; Ackerman, F.H.; Wood, E.H. Applications of the lagged normal density curve as a model for arterial dilution curves. Circ. Res. 18:398–415; 1966.

    CAS  PubMed  Google Scholar 

  3. Bassingthwaighte, J.B.; Knopp, T.J.; Anderson, D.U. Flow estimation by indicator dilution (bolus injection): Reduction of errors due to time-averaged sampling during unsteady flow. Circ. Res. 27:277–291; 1970.

    CAS  PubMed  Google Scholar 

  4. Bassingthwaighte, J.B.; Knopp, T.J.; Hazelrig, J.B. A concurrent flow model for capillary-tissue exchanges. In: Crone, C.; Lassen, N.A., eds. Capillary permeability (Alfred Benzon symp. II). Copenhagen: Munksgaard; 1970: pp. 60–80.

    Google Scholar 

  5. Bassingthwaighte, J.B. A concurrent flow model for extraction during transcapillary passage. Circ. Res. 35:483–503; 1974.

    CAS  PubMed  Google Scholar 

  6. Bassingthwaighte, J.B.; Yipintsoi, T.; Knopp, T.J. Diffusional arteriovenous shunting in the heart. Microvasc. Res. 28:233–253; 1984.

    Article  CAS  PubMed  Google Scholar 

  7. Bassingthwaighte, J.B.; Goresky, C.A. Modeling in the analysis of solute and water exchange in the microvasculature. In: Renkin, E.M.; Michel, C.C.; eds. Handbook of physiology. Section 2, the cardiovascular system. Vol IV, the microcirculation. Bethesda, MD: Am. Physiol. Soc.; 1984: pp. 549–626.

    Google Scholar 

  8. Bassingthwaighte, J.B.; Kuikka, J.T.; Chan, I.S.; Arts, T.; Reneman, R.S. A comparison of ascorbate and glucose transport in the heart. Am. J. Physiol. 249 (Heart.Circ.Physiol.18):H141-H149; 1985.

    CAS  PubMed  Google Scholar 

  9. Bassingthwaighte, J.B.; Chinard, F.P.; Crone, C.; Goresky, C.A.; Lassen, N.A.; Reneman, R.S.; Zierler, K.L. Terminology for mass transport and exchange. Am. J. Physiol. 250(Heart.Circ. Physiol.19):H539-H545; 1986.

    CAS  PubMed  Google Scholar 

  10. Bassingthwaighte, J.B.; King, R.B.; Roger, S.A. Fractal nature of regional myocardial blood flow heterogeneity. Circ. Res. 65:578–590; 1989.

    CAS  PubMed  Google Scholar 

  11. Bassingthwaighte, J.B.; Wang, C.Y. Chan, I.S. Blood-tissue exchange via transport and transformation by endothelial cells. Circ. Res. 65:997–1020; 1989.

    CAS  PubMed  Google Scholar 

  12. Bassingthwaighte, J.B.; Chan, I.S.; Wang, C.Y. Blood-tissue exchange models: BTEX30 and BTEX40(UW/BIOENG-89/1). Report PB90-501396: FORTRAN Code; PB90-172578: Descriptive text. National Technical Information Services, Springfield, VA 22161; 1989.

    Google Scholar 

  13. Bohr, C. Über die spezifische Tätigkeit der Lungen bei der respiratorischen Gasaufnahme und ihr Verhalten zu der durch die Alveolarwand stattfindenden Gasdiffusion. Skand. Arch. Physiol. 22:221–280; 1909.

    Google Scholar 

  14. Bronikowski, T.A.; Linehan, J.H.; Dawson, C.A. A mathematical analysis of the influence of perfusion heterogeneity on indicator extraction. Math. Biosci. 52:27–51; 1980.

    Article  Google Scholar 

  15. Cobelli, C.; DiStefano, III, J.J. Parameters and structural identifiability concepts and ambiguities: A critical review and analysis. Am. J. Physiol. (Regul.Integ.Comp.Physiol.8) 239:R7-R24; 1980.

    CAS  PubMed  Google Scholar 

  16. Crank, J. The mathematics of diffusion. 2nd ed. Oxford: Clarendon Press; 1975.

    Google Scholar 

  17. Crone, C. The permeability of capillaries in various organs as determined by the use of ‘indicator diffusion’ method. Acta Physiol. Scand. 58:292–305; 1963.

    CAS  PubMed  Google Scholar 

  18. Gayeski, T.E.J.; Honig, C.R. O2 gradients from sarcolemma to cell interior in red muscle at maximal\(\dot VO_2 \), Am. J. Physiol. 251(Heart.Circ.Physiol.20):H789-H799; 1986.

    CAS  PubMed  Google Scholar 

  19. Gjedde, A.; Christensen, O. Estimates of Michaelis-Menten constants for the two membranes of the brain endothelium. J. Cereb. Blood Flow Metabol. 4:241–249; 1984.

    CAS  Google Scholar 

  20. Gonzalez-Fernandez, J.M.; Atta, S.E. Concentration of oxygen around capillaries in polygonal regions of supply. Math. Biosci. 13:55–69; 1972.

    Article  CAS  Google Scholar 

  21. Goresky, C.A. A linear method for determining liver sinusoidal and extravascular volumes. Am. J. Physiol. 204:626–640; 1963.

    CAS  PubMed  Google Scholar 

  22. Goresky, C.A.; Ziegler, W.H. Bach, G.G. Capillary exchange modeling: Barrier-limited and flow-limited distribution. Circ. Res. 27:739–764; 1970.

    CAS  PubMed  Google Scholar 

  23. Guller, B.; Yipintsoi, T.; Orvis, A.L.; Bassingthwaighte, J.B. Myocardial sodium extraction at varied coronary flows in the dog: Estimation of capillary permeability by residue and outflow detection. Circ. Res. 37:359–378; 1975.

    CAS  PubMed  Google Scholar 

  24. Huang, S.C.; Carson, R.E.; Hoffman, E.J.; Carson, J.; MacDonald, N.; Barrio, J.R.; Phelps, M.E. Quantitative measurement of local cerebral blood flow in humans by positron computed tomography and15O-water. J. Cereb. Blood Flow Metabol. 3:141–153; 1983.

    CAS  Google Scholar 

  25. Jacquez, J.A. Compartmental analysis in biology and medicine. Ann Arbor, MI: University of Michigan Press; 1985.

    Google Scholar 

  26. Kuikka, J.; Levin, M.; Bassingthwaighte, J.B. Multiple tracer dilution estimates of D- and 2-deoxy-D-glucose uptake by the heart. Am. J. Physiol. 250(Heart.Circ.Physiol.19):H29-H42; 1986.

    CAS  PubMed  Google Scholar 

  27. Lenhoff, A.M.; Lightfoot, E.N. The effects of axial diffusion and permeability barriers on the transient response of tissue cylinders. II. Solution in time domain. J. Theor. Biol. 106:207–238; 1984.

    Article  CAS  PubMed  Google Scholar 

  28. Levin, M.; Kuikka, J.; Bassingthwaighte, J.B. Sensitivity analysis in optimization of time-distributed parameters for a coronary circulation model. Med. Prog. Technol. 7:119–124; 1980.

    CAS  PubMed  Google Scholar 

  29. Lumsden, C.J.; Silverman, M. Exchange of multiple indicators across renal-like epithelia: A modeling study of six physiological regimes. Am. J. Physiol. 251(Renal.Fluid.Elect.Physiol.20):F1073-F1089; 1986.

    CAS  PubMed  Google Scholar 

  30. Meier, P.; Zierler, K.L. On the theory of the indicator-dilution method for measurement of blood flow and volume. J. Appl. Physiol. 6:731–744; 1954.

    CAS  PubMed  Google Scholar 

  31. Mintun, M.A.; Raichle, M.E.; Martin, W.R.W.; Herscovitch, P. Brain oxygen utilization measured with O-15 radiotracers and positron emission tomography. J. Nucl. Med. 25:177–187; 1984.

    CAS  PubMed  Google Scholar 

  32. Moffett, T.C.; Chan, I.S.; Bassingthwaighte, J.B. Myocardial serotonin exchange: Negligible uptake by capillary endothelium. Am. J. Physiol. 254(Heart.Circ.Physiol.23):H570-H577; 1988.

    CAS  PubMed  Google Scholar 

  33. Moler, C.; Van Loan, C. Nineteen dubious ways to compute the exponential of a matrix. SIAM Rev. 20:801–836; 1978.

    Article  Google Scholar 

  34. Olesen, S.P.; Crone, C. Electrical resistance of muscle capillary endothelium. Biophys. J. 42:31–41; 1983.

    CAS  PubMed  Google Scholar 

  35. Perl, W.; Chinard, F.P. A convection-diffusion model of indicator transport through an organ. Circ. Res. 22:273–298; 1968.

    CAS  PubMed  Google Scholar 

  36. Pratt, D.T. Fast algorithms for combustion kinetics calculations. Park City, Utah International Conference on Stiff Computation; 1982.

  37. Pratt, D.T. Exponential-fitted methods for integrating stiff systems of ordinary differential equations: Application to homogeneous, gas-phase chemical kinetics. New Orleans, LA: JANNAF Propulsion Conference; 1984.

  38. Reid, J.G. Structural identifiability in linear time-invariant systems. IEEE Trans. Automat. Control 22:242–246, 1977.

    Article  Google Scholar 

  39. Renkin, E.M. Transport of potassium-42 from blood to tissue in isolated mammalian skeletal muscles. Am. J. Physiol. 197:1205–1210; 1959.

    CAS  PubMed  Google Scholar 

  40. Rose, C.P.; Goresky, C.A. Vasomotor control of capillary transit time heterogeneity in the canine coronary circulation. Circ. Res. 39:541–554; 1976.

    CAS  PubMed  Google Scholar 

  41. Rose, C.P.; Goresky, C.A.; Bach, G.G. The capillary and sarcolemmal barriers in the heart: An exploration of labeled water permeability. Circ. Res. 41:515–533; 1977.

    CAS  PubMed  Google Scholar 

  42. Rose, C.P.; Goresky, C.A. Bélanger, P.; Chen, M.J. Effect of vasodilation and flow rate on capillary permeability surface product and interstitial space size in the coronary circulation: A frequency domain technique for modeling multiple dilution data with Laguerre functions. Circ. Res. 47:312–328; 1980.

    CAS  PubMed  Google Scholar 

  43. Roth, A.C.; Feigl, E.O. Diffusional shunting in the canine myocardium. Circ. Res. 48:470–480; 1981.

    CAS  PubMed  Google Scholar 

  44. Sangren, W.C.; Sheppard, C.W. A mathematical derivation of the exchange of a labeled substance between a liquid flowing in a vessel and an external compartment. Bull. Math. Biophys. 15:387–394; 1953.

    CAS  Google Scholar 

  45. Sharan, M.; Jones, Jr., M.D.; Koehler, R.C.; Traystman, R.J.; Popel, A.S. A compartmental model for oxygen transport in brain microcirculation. Ann. Biomed. Eng. 17:13–38; 1989.

    Article  CAS  PubMed  Google Scholar 

  46. Sheppard, C.W. Basic principles of the tracer method. New York: Wiley; 1962.

    Google Scholar 

  47. Stephenson, J.L. Theory of the measurement of blood flow by the dilution of an indicator. Bull. Math. Biophys. 10:117–121; 1948.

    Google Scholar 

  48. Taylor, G. Dispersion of soluble matter in solvent flowing slowly through a tube. Proc. R. Soc. Lond. A 219:186–203; 1953.

    Google Scholar 

  49. Taylor, G. The dispersion of matter in turbulent flow through a pipe. Proc. R. Soc. Lond. A 223:446–468; 1954.

    Google Scholar 

  50. Wangler, R.D.; Gorman, M.W.; Wang, C.Y.; DeWitt, D.F.; Chan, I.S.; Bassingthwaighte, J.B.; Sparks, H.V. Transcapillary adenosine transport and interstitial adenosine concentration in guinea pig hearts. Am. J. Physiol. 257(Heart.Circ.Physiol.26):H89-H106; 1989.

    CAS  PubMed  Google Scholar 

  51. Zierler, K.L. Theory of the use of arteriovenous concentration differences for measuring metabolism in steady and non-steady states. J. Clin. Invest. 40:2111–2125; 1961.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bassingthwaighte, J.B., Chan, I.S.J. & Wang, C.Y. Computationally efficient algorithms for convection-permeation-diffusion models for blood-tissue exchange. Ann Biomed Eng 20, 687–725 (1992). https://doi.org/10.1007/BF02368613

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02368613

Keywords

Navigation