Skip to main content
Log in

Electrode-electrolyte interface impedance: Experiments and model

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

The impedance of the junction between a solid or aqueous electrolyte and a metal electrode at which no charge transfer processes occur (blocking contacts) follows closely the constant phase angle form, Z=A(jω)-n, over a wide frequency range, where A is a constant, and the frequency exponent n is typically in the range of 0.7 to 0.95. Several models have been proposed in which the magnitude of the frequency exponent n is related by a simple expression to the fractal dimension\(\bar d\) of the rough electrode surface. But experiments with aqueous H2SO4 and roughened platinum and silicon electrodes show that there is no simple relationship, if any at all, between n and\(\bar d\) when\(\bar d\) is determined from the analysis of one dimensional surface profiles. Moreover, n is not a simple function of the average roughness of the electrode. In order to gain some insight into the effect of electrode topography and the interface impedance, a model for the response of the interface to a constant voltage pulse was constructed. This model is based on the idea that, following a pulse, locally concentrated regions of ions accumulate rapidly at the tips of large protrusions on the electrode surface which screens deeper regions of the electrode from the field driven flux of mobile ions. After this rapid charging, ions are able to reach the deeper, screened regions of the electrode by diffusion, and it is this diffusive process that gives rise to the observed t1−n dependence of the charge collected. Computer simulations, similar to the diffusion limited aggregation model, using measured profiles as fixed (non-growing) clusters, gave exponents n in good agreement with experiment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Bates, J.B.; Chu, Y.T.; Stribling, W.T. Surface topography and impedance of metal-electrolyte interfaces. Phys. Rev. Lett. 60:627–630; 1988.

    Article  CAS  PubMed  Google Scholar 

  2. Bates, J.B.; Wang, J.C. Dielectric response of ionic conductors. Solid State Ionics 28–30; 115–119; 1988.

    Google Scholar 

  3. Bates, J.B.; Wang, J.C.; Chu, Y.C. Interface and bulk relaxation in solid ionic conductors. J. Non-Cryst. Solids 131–133:1046–1052; 1991.

    Google Scholar 

  4. Bates, J.B.; Wang, J.C.; Chu, Y.T. Impedance of metal-solid electrolyte interfaces. Solid State Ionics 18–19:1045–1049; 1986.

    Google Scholar 

  5. Berry, M.V. Diffractals. J. Phys. A: Math. Gen. 12:781–797; 1979.

    Google Scholar 

  6. Blender, R.; Dieterich, W.; Kirchkoff, T.; Sapoval, B. Impedance of fractal interfaces. J. Phys. A. 23:1225–1231; 1990.

    Article  Google Scholar 

  7. Bottleberghs, P.H.; Broers, G.H.J. Interfacial impedance behaviour of polished and paint platinum electrodes at Na2WO4-Na2MoO4 solid electrolytes. J. Electroanal. Chem. 67:155–167; 1976.

    Google Scholar 

  8. Breiter, M. W. Impedance on platium from voltammetry with superimposed alternating voltage. Electroanal. Chem. 7:38–49; 1964.

    Article  CAS  Google Scholar 

  9. de Levie, R. The influence of surface roughness of solid electrodes on electrochemical measurements. Electrochemica Acta 10:113–130; 1965.

    Google Scholar 

  10. Kaplan, T.; Gray, L.J. Effect of disorder on a fractal model for the ac response of a rough interface. Phys. Rev. B. 32:7360–7366; 1985.

    Article  Google Scholar 

  11. Kaplan, T.; Gray, L.J.; Liu, S.H. Self-affine fractal model for a metal-electrolyte interface. Phys. Rev. B. 35:5379–5381; 1987.

    Google Scholar 

  12. Keddam, M.; Takenouti, H. Frequence dependence of complex transfer function at fractal interfaces. An approach based on the Von Koch model. C. R. Acad. Sc. Paris 302:281–284; 1986.

    Google Scholar 

  13. Le Mehaute, A.; Grepy, G. Introduction to transfer and motion in fractal media: The geometry of kinetics. Solid State Ionics 9–10:17–30; 1983.

    Google Scholar 

  14. Liu, S.H. Fractal model for the ac response of a rough interface. Phys. Rev. Lett. 55:529–532; 1985.

    CAS  PubMed  Google Scholar 

  15. Mandelbrot, B.B. Self-affine fractals and fractal dimension. Phys. Scr. 32:257–260; 1985.

    Google Scholar 

  16. Matsushita, M.; Sano, M.; Hayakawa, Y.; Honjo, H.; Sawada, Y. Fractal structures of zine metal leaves grown by electrodeposition. Phys. Rev. Lett. 53:286–289; 1964.

    Google Scholar 

  17. Nyikos, L.; Pajkossy, T. Fractal dimension and fractional power frequency-dependent impedance of blocking electrodes. Electrochemica Acta 30:1533–1540; 1985.

    Article  CAS  Google Scholar 

  18. Pajkossy, T.; Nyikos, L. Impedance of fractal blocking electrodes. J. Electrochem. Soc. 133:2061–2064; 1986.

    CAS  Google Scholar 

  19. Sapoval, B. Fractal electrodes and constant phase angle response: Exact examples and counter examples. Solid State Ionics 23:253–259; 1987.

    Article  Google Scholar 

  20. Sapoval, B.; Chazairel, J.-N.; Peyrière, J. Electrical response of fractal and porous interfaces. Phys. Rev. A. 38:5876–5887; 1988.

    Article  Google Scholar 

  21. Sayles, R.S.; Thomas, T.R. The spatial representation of surface roughness by means of the structure function: A practical alternative to correlation. Wear 42:263–276; 1977.

    Article  Google Scholar 

  22. Scheider, W. Theory of the frequency dispersion of electrode polarization. Topology of networks with fractional power frequency dependence. J. Phys. Chem. 79:127–136; 1975.

    Article  CAS  Google Scholar 

  23. Tamimura, Y.; Teague, E.C.; Scire, F.E.; Yung, R.D.; Vorburger, T.V. Graphical signatures for manufactured surfaces. J. Lubr. Technol. 105:533–537; 1982.

    Google Scholar 

  24. Voss, R.F. Random fractal forgeries. In: Earnshaw, R.A., ed. Fundamental algorithms in computer graphics. Nato Advanced Study Institute, Series F., Vol. 17, Berlin: Springer-Verlag; 1985: pp. 805–828.

    Google Scholar 

  25. Wang, J.C. Realizations of generalized Warburg impedance with RC ladder networks and transmission lines. J. Electrochem. Soc. 134:1915–1920; 1987.

    CAS  Google Scholar 

  26. Wang, J.C. Impedance of a fractal electrolyte-electrode interface. Electrochem. Acta 33:707–711; 1988.

    Article  CAS  Google Scholar 

  27. Wang, J.C. Comparison of fractal and pore models for electrolyte/electrode interfaces. Solid State Ionics 28–30:1436–1440; 1988.

    Google Scholar 

  28. Wang, J.C.; Bates, J.B. Model for the interfacial impedance between a solid electrolyte and a blocking metal electrode. Solid State Ionics 18–19:224–228; 1986.

    Google Scholar 

  29. Whitten, T.A., Jr.; Sander, L.M. Diffusion-limited aggregation, a kinetic critical phenomenon. Phys. Rev. Lett. 47:1400–1403; 1981.

    Google Scholar 

  30. Wolff, I. A study of polarization capacity over a wide frequency band. Phys. Rev. 27:755–763; 1926.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bates, J.B., Chu, Y.T. Electrode-electrolyte interface impedance: Experiments and model. Ann Biomed Eng 20, 349–362 (1992). https://doi.org/10.1007/BF02368536

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02368536

Keywords

Navigation