Skip to main content
Log in

The admittance of the interface between a metal electrode and an aqueous electrolyte solution: Some problems and pitfalls

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

Electrochemical admittance measurements have become popular as a convenient, non-invasive method for the study of interfacial properties of the metal-solution interface. However, uncritical use of this technique (as of any other) can lead one astray. Here, then, some of the complicating factors and common problems will be discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Armstrong, R.D.; Henderson, M.J. Impedance plane display of a reaction with an adsorbed intermediate. Electroanal. Chem. 39:81–90; 1972.

    CAS  Google Scholar 

  2. Borisova, T.; Ershler, B. Determination of the potential of zero charge of solid metals from double layer capacitance measurements II: Thallium, cadmium, lead. Zh. Fiz. Khim. 24:337–344; 1950.

    CAS  Google Scholar 

  3. Budewski, E.; Vitanov, T.; Bostanov, W. Morphologische Beobachtungen und Polarisationserscheinumgen bei der elektrolytischen Kristallisation des Silbers an (111)-Silbereinkristallflächen. Phys. Status Solidi 8:369–376; 1965.

    Google Scholar 

  4. de Levie, R. On the impedance of electrodes with rough interfaces. J. Electroanal. Chem. 261:1–9; 1989.

    Google Scholar 

  5. Epelboin, I.; Keddam, M. Faradaic impedances: Diffusion impedance and reaction impedance. J. Electrochem. Soc. 117:1052–1056; 1970.

    Google Scholar 

  6. Gabrielli, C. Identification of electrochemical processes by frequency response analysis. Solartron Instrumentation Group. A vailable through Solartron-Schlumberger; 1980.

  7. Gabrielli, C. Use and applications of electrochemical impedance techniques. Schlumberger Technologies. Available from Solartron-Schlumberger as part no. 12860013; 1990.

  8. Grahame, D.C. Mathematical theory of the faradaic admittance: Pseudocapacity and polarization resistance. J. Electrochem. Soc. 99:370C-385C; 1952.

    CAS  Google Scholar 

  9. Kurtyka, B.; de Levie, R. Frequency dispersion associated with a non-homogeneous interfacial capacitance. (In press).

  10. Lecoeur, J.; Andro, J.; Parsons, R. The behavior of water at stepped surfaces of single-crystal gold electrodes. Surf. Sci. 114:320–330; 1982.

    Article  CAS  Google Scholar 

  11. Nyikos, L.; Pajkossy, T. Fractal dimension and fractal power frequency-dependent impedance of blocking electrodes. Electrochim. Acta 30:1533–1540; 1985.

    Article  CAS  Google Scholar 

  12. Randles, J.E.B. Kinetics of rapid electrode reactions. Disc. Faraday Soc. 1:11–19; 1947.

    Google Scholar 

  13. Rangarajan, S.K. A unified approach to linear electrochemical systems. J. Electroanal. Chem. 55: 297–374; 1974.

    CAS  Google Scholar 

  14. Valette, G.; Hamelin, A. Structure et propriétés de la couche double électrochimique à l'interphase argent/solutions aqueuses de fluorure de sodium. J. Electroanal. Chem. 45:301–319; 1973.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

de Levie, R. The admittance of the interface between a metal electrode and an aqueous electrolyte solution: Some problems and pitfalls. Ann Biomed Eng 20, 337–347 (1992). https://doi.org/10.1007/BF02368535

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02368535

Keywords

Navigation