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ABSTRACT: The concentration of Zn, Cu, Pb, Cd, Ni, Co, Ag, Mn, Fe, Ca, Mg, K and Na in molluscs
Macoma balthica, Mya arenaria, Cardium glaucum, Mytilus edulis and Astarte borealis from the
southern Baltic was determined. The surface sediments and ferromanganese concretions associated
with the molluscs were also analysed for concentration of these metals. Species- and region-
dependent differences in the metal levels of the organisms were observed. The properties of
molluscs analysed which have a tendency toward elevated biological tolerance of selected trace
metals were specified. The interelement relationship between metal concentrations in the soft tissue
and the shell was estimated and was discussed.

INTRODUCTION

The ability of marine mussels to biologically incorporate trace metals in their tissues
has been well established; most of the studies have been carried out on the soft tissue
(Amiard et al., 1986; Bloom & Ayling, 1977; Bryan, 1980, 1983; Coleman et al., 1986;
Cossa et al., 1979; 1980; Davies & Pirie, 1980; Di Giulio & Scanlon, 1985; Farrington et al.,
1983; Galloway et al., 1983; Gault et al., 1983; Goldberg, 1975; Goldberg et al., 1978,
1983; Hung et al., 1981, 1983; Johnson & D’'Auria, 1980; Julshamn, 1981; Karbe et al.,,
1977; Langston, 1986; Martincié et al., 1984; Moller et al., 1983; Phillips, 1976a, 1976D,
1977b, 1977c, 1978; Popham & D'Auria, 1983a, 1983b; Ritz et al., 1982; Segar et al., 1971;
Slabyj & Carpenter, 1977; Szefer, 1986; Szefer & Szefer, 1985; Szefer & Wenne, 1987).
However, the number of articles on the concentration or distribution of metals in shell
material, particularly relating the metal concentration in the soft tissue to that in the shell
is scanty (Al-Dabbas et al., 1984; Bertine & Goldberg, 1972; Carriker et al., 1980b, 1982;
Chow et al., 1976; Ferrell et al., 1973; Koide et al., 1982; Pilkey & Goodell, 1963, 1964;
Sturesson, 1976, 1978; Wada & Suga, 1976).

In recent years, much attention has been paid to the chemical composition of marine
organisms, especially of molluscs, and of the associated sediments (Luoma & Bryan, 1978,
1979; Luoma & Jenne, 1976a, 1976b, 1977; Langston, 1986; Thomson et al., 1984). The
sediments at the water-sediment interface are more important to benthic invertebrates
than the subsurface sediments because meiofauna lives above the reduced zone in
sediment (Luoma & Bryan, 1981). Detritus-feeding organisms are exposed directly to
sediment-bound metals, and the bioavailability of the latter depends to a significant
extent upon the geochemical fraction with which a metal is associated in the bottom
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substrate (Luoma & Jenne, 1976a). Compared to sediments, organisms exhibit a greater
spatial sensitivity and a greater ability to concentrate some metals and therefore are often
considered as bioindicators. Analysis of seawater and sediments are rarely carried out;
the main disadvantage of the two non-biological monitoring methods is that neither
allows for the estimation of the biological availability of the trace metals (Bryan, 1980).
The aim of the present paper was to examine species- und region-dependent
variations of metals concentrations in some Baltic mollusc as well as in the associated

bottom sediments.
MATERIALS AND METHODS

Samples were collected during the cruise of the research vessel "Oceania” in the
southern Baltic in May 1987, The location of the sampling stations is presented in Figure
1. The organisms were caught using a bottom trawl, and were immediately sorted, in the
ship laboratory, in respect to species, size (age), and the region where caught. The
animals were dissected, and the soft tissue separated from the shell with a plastic spoon.
The shells were carefully cleaned of foreign matter, especially of numerous specimens of
Balanus improvisus that were fastened on the shells of Mytilus edulis. Groups of 5 to 33
specimens of similar size were pooled for analysis, weighed and dried at 105 °C.
Sediment samples, collected with a grab sampler, and surface layers of sediments were
frozen during transport to the laboratory. Then, 1-g subsamples (after drying at 105 °C)
were used for the extraction of metals with 1M HCI according to the procedure recom-
mended by Luoma & Bryan (1981). The organic matter content of sediments was
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Fig. 1. Location of the sampling stations
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determined from the weight loss on ashing at 400 °C to a constant weight. The ferroman-
ganese nodules were taken by bottom trawl together with specimens of Astarte borealis
(station B-2), and then dried at room temperature. Thin (~2 mm) portions of the surface
and the subsurface of the disk nodules were scraped off. The first layer was brown, the
second one was very dark brown. This material was used for the extraction of metals in
1M HCl in the same manner as described above for the sediment samples.

The biological material was treated with concentrated HNO; (30-50 ml) and left to
rest a few days. Concentrated HCIO, (2-3 ml) was added. Decomposition was accom-
plished at the lowest possible temperature. The dry residue was then converted to
chlorides by evaporation with concentrated HCI and heated in 1M HCI to dissolve the
salts. Such prepared solutions and both sediment and nodule filtrates were transferred
into an acid-washed volumetric flask (25 ml). Cadmium, Zn, Pb, Cu, Co, Ni and Ag were
determined directly from the solution by atomic absorption spectroscopy (AAS); Fe, Ca,
Mg, K, Na and partly Mn determined after appropriate dilution. As the sample weight
varied, the detection limit of the method used (expressed in ug g™!) also varied. The shell
results of Pb, Ag, Ni, Co and Cd were generally below the limit of detection, i.e. were
lower than 0.1 ug m1~* for Pb and Ag, 0.04 pg ml~?! for Ni, 0.02 ug ml~* for Co and 0.01 pg
ml~! for Cd. Blank samples were routinely run through the analysis to check for
contamination. In order to correct for broad band absorption in the case of both the shell
and nodule materials, deuterium background correction was used. The standard addition
technique was applied to control the data quality. The results obtained for both the soft
tissue and shell, by analysis of the spiked material, varied depending on the metal added,
its concentration and part of molluscs. The coefficients of variation of AAS measurements
for metals in the soft tissue and the shell (in parentheses) were between 3.8 (0.7) and 13.4
(22.8) %. The average recoveries of metals ranged from 77 (70) % to 100 (100) % and
were as follows: Zn — 93 (76) %; Cu— 94 (100) %; Pb - 100 (86) %; Cd — 99 (95) %; Ni ~ 97
(100) %; Co — 87 (70) %; Mn - 98 (87) % and Fe — 77 (94) %.

DESCRIPTION OF HABITATS

The Baltic as a shallow land-locked sea differs considerably from most seas and
oceans. It is characterized by low salinity maintained by a high river inflow (457 km?
year™!) in relation to the total capacity of the basin (21 500 km?). The limited exchange of
the Baltic waters with saltier North Sea waters through the shallow Danish Straits
continuously maintains a low salt content (bomniewski et al., 1975).

The southern Baltic (92 795 km?) divides into the Arkona Basin, Pomeranian Bay,
Bornholm Basin, Stupsk Furrow, Gdarisk Basin and other smaller bays. Gdansk Bay offers
favourable conditions for marine life and, hence, an abundance of zoobenthic organisms.
Forty one species and three taxons are present in the bottom fauna of this area; the
average percentage share of molluscs is estimated to be 93.7 % of the total biomass
(Wenne & Wiktor, 1982).

A great part of the southern Baltic floor is covered by fine and medium-grained sands
and aleurite-silty loams. Residual sediments such as coarse-grained sands, pebbles and,
sometimes, fine-grained sands are formed as a result of selective bottom abrasion. Most
of the Polish coast is formed of such unconsolidated sediments exposed to continuous
movement and shifting because of the action of waves and currents. The zone far from
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coastal accumulation of sands is covered with medium and fine-grained sands. Richest in
organic matter are the silts from particular Baltic deeps, e. g. Gdafisk Deep.

Ferromanganese nodules are abundant in an area of Shupsk Furrow. According to
Lomniewski et al. {1975), the floor of this region is, as a rule, covered by nodules at the
depth range of 40 to 91 m. The bottom sediment accompanying ferromanganese nodules
are mainly sands, gravels and clays. The nodules are characterized by different shape
and magnitude; shapeless, granular and disk-nodules occur in the southern Baltic. The
material analysed in the present study was discoid, and measured ~1.5-5 cm; fragments
(to ~7 cm in length} of nodules were also found.

RESULTS AND DISCUSSION

Table 1 presents the concentration of metals in the soft tissue and shell of molluscs
taken from the southern Baltic. Tables 2 and 3 give the results for a labile (soluble in 1M
HC)) fraction of surface sediments and ferromanganese nodules taken at the same
stations as the zoobenthic organisms.

Metals in molluscs

The metal concentrations obtained here (Table 1) are generally comparable with
those observed in molluscs from other Baltic regions (Brzeziniska et al., 1984; Briigmann,
1981; Karbe et al.,, 1977; Mboller et al., 1983; Tervo et al., 1980). There are some
interspecies-dependent changes in the metal concentrations. Maximum levels of Zn and
Cu were observed in the soft tissue and shell of Macoma balthica whilst both of these
parts in Mya arenaria contained the highest levels of Fe and Mn. Tissue metals such as
Cd and Ni were accumulated to the greatest extent by Mytilus edulis and Cardium
glaucum, respectively. The data obtained here are in agreement with those reported
previously by Brzeziriska et al. (1984) for the southern Baltic molluscs; Macoma balthica
accumulated particularly strongly Cu and Zn but Cd less efficiently than Mytilus edulis.
Bryan (1980) recorded also significant bioavailability of these metals to East Looe Estuary
molluscs; Zn and Cu had a maximum bioavailability to Macoma balthica, Ni to Ceras-
toderma edule (Cardium edule) and Cd to Mytilus edulis. It suggests that these molluscs
as non-requlators incorporate quickly the trace metal levels from the environment
because of their elevated biological tolerance and/or limited elimination with respect to
the selected metals.

To characterize the region-dependent variations, the data concerning Macoma
balthica taken in the same period but from different sites of the southern Baltic were
compared. The highest levels of the trace metals analysed, except for Cu, occurred in the
soft tissue of Macoma balthica from the Vistula estuary. This is to be expected since the
area borders immediately on a highly urbanized and industrialized centre and hence is
exposed to an anthropogenic flux of metals (Szefer, 1990a, 1990b; Szefer & Skwarzec,
1988). As far as the variations of concentrations in the shell are concerned, Macoma
balthica from stations P-2 and ZN-2 contained maximum levels of Zn, Pb and Mn, Fe,
respectively. Specimens of this species taken from station ZP incorporated the highest
amount of Cu. The results obtained suggest that Macoma balthica and Mytilus edulis
may be good bioindicators of metal pollution since, according to several authors (Bryan,
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Table 3. The concentrations {mean * s. d., and range) of Zn, Cu, Pb, Cd, Ni, Co, Ag (ug g“), Mn and
Fe (mg g7!) in a soluble in 1M HCI fraction of ferromanganese nodules of Stupsk Furrow, the
southern Baltic. Results are means of triplicate analysis. BLD = below limit of detection

Layer of nodule Zn Cu Pb Cd Ni Co Ag Mn Fe
165+3  227+13 267+33 333+2.5 19.2+0.6 17.5+1.3 1717
Surface top 161—171 20.3-24.9 20.2-31.1 B2 300-38.0 183-203 B 150-19.2 160185

16743 15.240.8 162+13 15.1£2.0 146419 156+5
Subsurface op g3 473 138-166 S-P  BLD 438° 181 11.9-18.6 B0 12.0-18.5 146161

1980; Goldberg et al., 1978; Phillips, 1980), among the properties required of such
organisms are that they should be easily recognised, widely distributed, common,
accessible, sensitive to locally dependent variations of the trace metals, available at all
times of year, relatively stationary and sufficiently tolerant of low salinity. The latter
property is very important for estuarine and near estuarine areas, represented here by the
Vistula estuary. It is noteworthy that all these requirements for the two molluscs
investigated are entirely satisfied. Moreover, specimens of Macoma balthica and espe-
cially Mytilus edulis often reach a relatively substantial weight and length of shell; hence,
their suitability in the preparation of pooled samples composed of not numerous speci-
mens belonging to the same or similar size {(age) population. The age-dependence of
shell length in Macoma balthica from the Gdarisk Bay was described by the logarythmic
curve and the von Bertalanfly equation {(Wenne & Klusek, 1985). A relation between size
and age of Mytilus edulis and Cardium glaucum from this area has also been presented
previously (Barron & Wolowicz, 1981; Wolowicz, 1984).

Bearing in mind that one species only, i. e. Astarte borealis, was taken at station B-2,
it is impossible to determine both the interspecies- and region-dependent variations of
metal concentrations. The significantly elevated levels of tissue metals (Cd, Co, Mn and
Fe) as well as shell metals (Zn, Pb, Cd, Co, Mn and Fe) in this species originated probably
from ambient ferromanganese nodules. This material covered closely the surface area of
the shell, and contained high concentrations of the metals, significantly higher than those
in the ambient surface sediments (Tables 2 and 3). Moreover, fine-grained fragments of
nodules accompanied numerous specimens of Astarte borealis during each and every
haul.

Metals in surface sediments

As can be seen from Table 2, minimum amounts of Zn, Cu, Ni, Mn, Fe and K as well
as organic matter were found in a labile fraction of sediments from the station ZN-2 (the
Vistula estuary). The levels of Pb, Cd and Co were also low, similar to those in sediments
of the station GN. Since the Vistula estuary sediments are represented by coarse-grained
sands mixed with very small amounts or organic matter, the total levels of the trace
metals in these sediments were, therefore, very low. According to Bostrém et al. (1981)
and Krishnaswami & Sarin (1976), trace metals may be concentrated in particulate matter
by biological activities. It concerns especially metals such as Zn, Cu, Pb and Cd, as
postulated by Di Giulio & Scanlon (1985). The authors observed a significant correlation
between the concentration of these four metals and organic matter in surface sediments
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from the Chesapeake Bay. Such dependence may be used to normalize samples in order
to distinguish the variability of sediment samples reflecting background metal levels and
samples influenced by industrial contamination (Di Giulio & Scanlon, 1985). It should be
kept in mind that the Vistula estuary sediments contain a high amount of acid-insoluble
matter, essentially composed of an admixed trace metal-poor and silicate-rich dilutant.
The concentrations recalculated to an acid-insoluble free fraction or to organic matter
content showed that sediments, like mollusc soft tissue, from the Vistula estuary concen-
trated most trace metals. On the other hand, the analysis of the estuarine sandy
sediments for total metal concentrations is insufficient for pollution control because of too
high a percentage share of silicate dilutant. Moreover, the concentration of metals in
sediments, unlike that in organisms, might not represent the time-integrated value of the
biologically available metals.

Metals in ferromanganese nodules

The concentrations of Mn, Fe, Zn and Cu in a soluble in 1M HCI fraction of
ferromanganese nodules of Stlupsk Furrow were smaller but within the same order of
magnitude compared with those in nodules from the Gulf of Bothnia, Baltic Sea (Bostrém
et al., 1982). The significantly lower results obtained here than those given by Suess &
Djafari (1977) for western Baltic nodules may be a result not only of natural variations but
also of the different analytical methods used. Suess & Djafari provided bulk chemical
composition data whilst results given in the present study concern an acid leachate
fraction. Bearing in mind that, for example, Mn, Cd, Pb, Co, Ni, Cu and Zn are
preferentially concentrated in a major phase of ferromanganese nodules such as Mn-
oxides (Li, 1982), lower values for Zn, Cd, Pb, Cu and Co in an acid-soluble fraction than
in bulk material may be explained by incomplete dissolution of Mn-matrix in cold 1M
HCl during 2 h. It is noteworthy that the concentrations of Cu, Co and particularly Pb and
Ni were higher in the surface layers of the nodules than in the deeper layers. It suggests
that these metals are of anthropogenic origin and/or are more available to efficient
leaching from surface parts by 1M HCL

Relationship between soft tissue and shell metals

In order to determine the relation between both the shell and tissue concentrations of
metals, we calculated the ratio (FR) of metal content and metal concentration in these
parts of molluscs (Table 4). The concentration of metals in almost every case is higher in
the dry soft tissue than in the shell. However FR values regarding the ratio of metal
content in shell to metal content in the dry soft tissue were generally = 1 for Cu, Pb, Mn
and Fe; the FR < 1 was recorded in principle for Zn and Cd. Koide et al. (1982) also
obtained the FR values < 1 for Zn and Cd in Mytilus edulis from the West and East Coast
of U.S.A.

The correlation coefficients (r) for metal between its concentration in the soft tissue
and in the shell of Macoma balthica are presented in Table 5. Since a higher number of
pooled samples of shell than of soft tissue was analysed, the weighted average of the shell
metal concentrations attributed to the corresponding tissue data was computed before
correlation analysis, in order to obtain the same number of both. Regarding Mn concen-
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Table 4. Ratio (FR) of metal content in the shells to the dried soft tissues of the southern Baltic
molluscs, calculated by dividing the total amounts of metal in the shell sample by those in the soft
tissue sample; ratio of metal concentrations (in ug g~! dry wt.} is given for comparison in parentheses

Zn Cu Pb Cd® Ni® Co? Mn Fe

Macorma balthica
ZP 0.2(0.05) 1.2(0.3) 1.7(0.4) <0.08(<0.02) <1.1{<0.3) <0.5(<0.1) 1.3(0.3) 1.1(0.3)

GN  0.1(0.02) 3.0004) 1.6(0.2) <0.0%(<0.01) 2.6(0.4) 1.0(0.2)
P-2  03(0.09) 07{0.2) 29(0.7 <0.08(<0.02) 2.4(0.6) 2.7(0.7)
ZN-2  0.2(0.03) 2.4(04)  0.6(0.1) 2.7(0.5) 1.8(0.3)

Mpya arenaria
ZN-2  0.3(0.0%) 0.4(0.1) 1.1(0.3) 0.8(0.2) 0.7(0.2)

Cardium glaucum
ZN-2  1.5(0.09) 1.9(0.1) 1.9(0.1) 8.5(0.5) 6.8(0.4)

Mytilus edulis
GN 0.4(0.08) 1.2(0.2) 2.1(0.4) 7.3(1.4) 0.6(0.1)

Astarte borealis
B-2 24(0.76) 2.9(0.1) >32(>1.0) 0.32 19 23 56(1.8) 65(2.0)

2 FR values for Cd, Ni and Co were <1

Table 5. Correlation coefficients (r) for metals between their concentrations in the soft tissue and in
the shell of Macoma balthica from the southern Baltic

Station No. of pooled Zn Cu Mn Fe
samples

zZP 6 0.44 0.77° 0.71° 0.03
GN 11 -0.50 0.59° 0.40 0.31
P-2 5 —-0.76° —0.79° 0.94° 0.36
Altogether® 24 0.15 0.22 0.78° 0.37
ap <0.01

bp <0.05

¢ The metal concentrations for two samples from station ZN-2 were additionally included

trations, the r value between the soft tissue and the shell is estimated to be 0.78. Only a
weak correlation between shell and soft tissue concentrations for 24 samples of Macoma
balthica is obtained for Zn and Cu, although greater correlation coefficients (positive or
negative) for the two metals were found in samples from particular stations. On the other
hand, there is strong covariance between concentrations of shell metals, unlike tissue
metals, for the following assemblages: Zn-Cu, Cu-Fe, Zn-Fe and partly Fe-Mn (Table 6).
According to Koide et al. (1982), the reason for strong shell correlation presumably relates
to differences in the biochemical behaviour of the metals in the period between the
uptake by the organism and the release to the environment or to the shell. Moreover,
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Table 6. Correlation coefficients (r) between metal concentrations in the shell and in the soft tissue of
Macoma balthica from the southern Baltic

Metal pair Correlation coefficient
Station ZP (n=%) GN (n=11) P-2 (n=6) Altogether
{(n=27)°¢
Shell
Zn-Cu 0.75° 0.49 0.94% 0.35°
Cu-Fe 0.90% 0.50 0.882 0.79*
Zn-Fe 0.86° 0.06 0.78> 0.872
Zn-Mn -0.11 0.38 0.952 0.09
Cu-Mn -0.45 0.27 0.91% -0.13
Fe-Mn -0.12 0.57° 0.76° 0.38°
Soft tissue
Zn-Cu 0.83% 0.20 0.38 -0.27
Cu~Fe —-0.23 0.45 0.64 -0.10
Zn-Fe 0.04 -0.31 —-0.06 0.48°
Zn-Mn -0.09 0.02 -0.65 0.56°
Cu~-Mn 0.43 -0.09 -0.25 -0.49°
Fe-Mn —-0.06 0.13 0.12 0.10
2p <0.01
bp <0.05
¢ The metal concentrations for three samples from station ZN-2 were additionally included

factors such as a longer biological half-life in the shell than in the soft tissue and perhaps
a relatively uniform pumping of metal from soft tissue to shell paralleling shell growth
may also be responsible for the stronger correlations between metal concentrations in the
shell than in the soft tissue. Therefore, Koide et al. (1982) suggest that the shell material
as whole life integrator of metals may be a better recorder for environmental metal levels
than soft tissue. This suggestion is supported by markedly higher concentrations of
metals in shells found near industrialized and populated areas than in regions devoid of
anthropogenic activity (Koide et al., 1982). Although use of hard parts as well as soft
tissues of molluscs as recorders of metallic pollutions is clearly promising, further
research must be performed, according to projectors of ,Mussel Watch” (Goldberg et al.,
1978; Phillips, 1977a, 1980), on the effects of various factors on the metal levels in shell.
These include ontogenetic metal variations (Carriker et al.,, 1982), the interaction of
mineral elements in seawater and shell (Carriker et al., 1980b), the effect of weathering
on the elemental composition of shells (Rosenberg, 1980), mineralogy of the shell and
heterogeneous distribution of metal in shell layers (Carriker et al., 1980a; Rosenberg,
1980; Wada & Suga, 1976), the proportion of metals adsorbed to the surface and
incorporated into the shell matrix (Phillips, 1980), the influence of environmental metal
variations on the active incorporation of metals during shell formation (Pilkey & Harriss,
1966). Moreover, the effect of other environmental parameters such as temperature and
salinity (Pilkey & Goodell, 1963) require further study.
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