Skip to main content
Log in

Surface electromyogram signal modelling

  • Published:
Medical and Biological Engineering and Computing Aims and scope Submit manuscript

Abstract

The paper reviews the fundamental components of stochastic and motorunit-based models of the surface electromyogram (SEMG). Stochastic models used in ergonomics and kinesiology consider the SEMG to be a stochastic process whose amplitude is related to the level of muscle activation and whose power spectral density reflects muscle conduction velocity. Motor-unit-based models for describing the spatio-temporal distribution of individual motor-unit action potentials throughout the limb are quite robust, making it possible to extract precise information about motor-unit architecture from SEMG signals recorded by multi-electrode arrays. Motor-unit-based models have not yet been proven as successful, however, for extracting information about recruitment and firing rates throughout the full range of contraction. The relationship between SEMG and force during natural dynamic movements is much too complex to model in terms of single motor units.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Andreassen, A., andRosenfalck, A. (1981): ‘Relationship of intracellular and extracellular action potentials of skeletal muscle fibers’,CRC Crit. Rev. Bioeng.,7, pp. 267–306

    Google Scholar 

  • Arabadzhiev, T. I., Dimitrov, G. V., andDimitrova, N. A. (2003): ‘Simulation analysis of the ability to estimate motor unit propagation velocity non-invasively by different two-channel methods and types of electrodes’,J. Electromyogr. Kinesiol.,13, pp. 403–415

    Google Scholar 

  • Basmajian, J. V., andDe Luca, C. J. (1985): ‘Muscles alive: their functions revealed by electromyography’, 5th edn (William and Wilkins, Baltimore, 1985) p. 185

    Google Scholar 

  • Bigland-Ritchie, B. (1981): ‘EMG/force relations and fatigue of human voluntary contractions’,Exerc. Sports Sci. Rev.,9, pp. 75–117

    Google Scholar 

  • Blinowska, A., Verroust, J., andCannet, G. (1979). ‘The determination of motor unit characteristics from the low frequency electromyographic power spectra’,Electromyogr. Clin. Neurophysiol.,19, pp. 281–290

    Google Scholar 

  • Bonato, P. (2001): ‘Recent advancements in the analysis of dynamic EMG data’,IEEE Eng. Med. Biol. Mag.,20, pp. 29–32

    Google Scholar 

  • Brezina, V., Orekhova, I. V., andKlaudiusz, R. W. (2000) ‘The nonlinear transform: the dynamic, nonlinear link between motor neuron firing patterns and muscle contraction in rhythmic behaviors’,J. Neurophysiol.,83, pp. 207–231

    Google Scholar 

  • Christakos, C. N. (1982): ‘A study of the electromyogram using a population stochastic model of skeletal muscle’,Biol. Cybern.,45, pp. 5–12.

    MathSciNet  Google Scholar 

  • Clancy, E. A., Bouchard, S., andRancour, D. (2001): ‘Estimation and application of EMG amplitude during dynamic contraction’,IEEE Eng. Med. Biol. Mag.,20, pp. 47–54

    Google Scholar 

  • Clarys, J. P., andCabri, J. (1993). ‘Electromyography and the study of sports movements: a review’,J. Sports Sci.,11, pp. 379–448

    Google Scholar 

  • Clarys, J. P. (2000): ‘Electromyography in sports and occupational settings: an update of its limits and possibilities’,Ergonomics,43, pp. 1750–1762

    Google Scholar 

  • Day, S. J., andHulliger, M. (2001): ‘Experimental simulation of cat electromyogram: evidence for algebraic summation of motor-unit action-potential trains’,J. Neurophysiol.86, pp. 2144–2158

    Google Scholar 

  • De Luca, C. (1975): ‘A model for a motor unit train recorded during constant force isometric contractions’,Cybernetics,19, pp. 159–167

    MATH  Google Scholar 

  • De Luca, C. J. (1979). ‘Physiology and mathematics of myoelectric signals’,IEEE Trans. Biomed. Eng.,26, pp. 313–325

    Google Scholar 

  • De Luca, C. J. (1997): ‘The use of surface electromyography in biomechanics’,J. Appl. Biomech.,13, pp. 135–163

    Google Scholar 

  • Dimitrov, G. V., andDimitrova, N. A. (1998): ‘Precise and fast calculation of the motor unit potentials detected by a point and rectangular plate electrode’,Med. Eng. Phys.,20, pp. 374–380

    Google Scholar 

  • Dimitrova, N. A. (1974): ‘Model of the extracellular potential field of a single striated muscle fiber’,Electromyogr. Clin. Neurophysiol.,14, pp. 53–66

    Google Scholar 

  • Dimitrova, N. A., andDimitrov, G. V. (1998): ‘Precise and fast MUP calculation as a prerequisite for inverse EMG modeling’, inHermans, H., Stegeman, D., Blok, J., andFreriks, B. (Eds). ‘The state of the art on modeling methods for surface electromyography’ (Roessingh Research Development, Enschede, The Netherlands, 1998), pp. 45–60

    Google Scholar 

  • Dimitrova, N. A., Dimitrov, D. V., andChikhman, V. N. (1999): ‘Effect of electrode dimensions on motor unit potentials’,Med. Eng. Biol. Phys.,21, pp. 479–486

    Google Scholar 

  • Dimitrova, N. A., andDimitrov, G. V. (2003): ‘Interpretation of EMG changes with fatigue: facts, pitfalls, and fallacies’,J. Electromyogr. Kinesol.,13, pp. 13–36

    Google Scholar 

  • Ding, J., Wexler, A. S., andBinder-Macleod, S. A. (2000): ‘Development of a mathematical model that predicts optimal muscle activation patterns by using brief trains’,J. Appl. Physiol.,88, pp. 917–925

    Google Scholar 

  • Disslehorst-Klug, C., Silny, J., andRau, G. (1997): ‘Improvement of spatial resolution in surface-EMG: a theoretical and experimental comparison of different spatial filters’,IEEE Trans. Biomed. Eng.,44, pp. 567–574

    Google Scholar 

  • Disslehorst-Klug, C., Silny, J., andRau, G. (1997): ‘Estimation of the relationship between the noninvasively detected activity of single motor units and their characteristic pathological changes by modelling’,J. Electromyogr. Kinesiol.,8, pp. 325–335

    Google Scholar 

  • Dowling, J. J. (1997): ‘The use of electromyography for the noninvasive prediction of muscle forces. Current issues’,Sports Med.,24, pp. 82–96

    Google Scholar 

  • Duchêne, J., andHogrel, J.-Y. (2000): ‘A model of EMG generation’,IEEE Trans. Biomed. Eng.,47, pp. 192–201

    Google Scholar 

  • Dumitru, D., King, J. C., andRogers, W. E. (1999): ‘Motor unit action potential components and physiologic duration’,Muscle Nerve,22, pp. 733–741

    Google Scholar 

  • Enoka, R. M. (1995): ‘Morphological features and activation patterns of motor units’,J. Clin. Neurophysiol.,12, pp. 538–559

    Google Scholar 

  • Enoka, R. M., andFuglevand, A. J. (2001): ‘Motor unit physiology: some unresolved issues,”Muscle Nerve,24, pp. 4–17

    Google Scholar 

  • Farina, D., andRainoldi, A. (1999): ‘Compensation of the effect of sub-cutaneous tissue layers on surface EMG: a simulation study’,Med. Eng. Phys.,21, pp. 487–496

    Google Scholar 

  • Farina, D., andMerletti, R. (2001): ‘A novel approach for precise simulation of the EMG signal detected by surface electrodes’,IEEE Trans. Biomed. Eng.,48, pp. 637–646

    Google Scholar 

  • Farina, D., Fattorini, L., Felici, F., andFilligoi, G. (2002a): ‘Nonlinear surface EMG analysis to detect changes of motor unit conduction velocity and synchronization’,J. Appl. Physiol.93, pp. 1753–1763

    Google Scholar 

  • Farina, D., Merletti, R., Indino, B., Nazzaro, M., andPozzo, M. (2002b). ‘Surface EMG crosstalk between knee extensor muscles: experimental and model results’,Muscle Nerve,26, pp. 681–695

    Google Scholar 

  • Farina, D., Fosci, M., andMerletti, R. (2002c): ‘Motor unit recruitment strategies investigated by surface EMG variables’,J. Appl. Physiol.,92, pp. 235–247

    Google Scholar 

  • Farina, D., Arendt-Nielsen, L., Merletti, R., Indino, B., andGraven-Nielsen, T. (2003). ‘Selectivity of spatial filters for surface EMG detection from the tibialis anterior muscle’,IEEE Trans. Biomed. Eng.,50, pp. 354–364

    Google Scholar 

  • Ferdjallah, M., Wertsch, J. J., andHarris, G. F. (1999): ‘Effects of surface electrode size on computer simulated surface motor unit potentials’,Electromyogr. Clin. Neurophysiol.,39, pp. 259–265

    Google Scholar 

  • Fuglevand, A. J., Winter, D. A., andPatla, A. E. (1995): ‘Models of recruitment and rate coding organization in motor-unit pools’,J. Neurophysiol.,70, pp. 2470–2488

    Google Scholar 

  • Gootzen, T. H., Stegeman, D. F., andVan Oosterom, A. (1991): ‘Finite limb dimensions and finite muscle length in a model for the generation of electromyographic signals’,Electroencephalogr. Clin. Neurophysiol.81, pp. 152–162

    Google Scholar 

  • Griep, P. A., Boon, K. L., andStegeman, D. F. (1978): ‘A study of the motor unit action potential by means of computer simulation’,Biol. Cybern.,30, pp. 221–230

    Google Scholar 

  • Griep, P. A., Gielen, F. L., Boom, H. B., Boon, K. L., Hoogstraten, L. L., Pool, C. W., andWallinga-De Jonge, W. (1982): ‘Calculation and registration of the same motor unit action potential’,Electroenceph. Clin. Neurophysiol.,53, pp. 388–404

    Google Scholar 

  • Guha, S. K., andAnand, S. (1979): ‘Simulation linking EMG power spectra to recruitment and rate coding’,Comput. Biol. Med.,9, pp. 213–221

    Google Scholar 

  • Gydikov, A., andKosarov, D. (1972): ‘Volume conduction of the potentials from separate motor units in human muscle’,Electromyogr. Clin. Neurophysiol.,12, pp 127–147

    Google Scholar 

  • Hägg, G. M. (1992): ‘Interpretation of EMG spectral alterations and alteration indexes at sustained contraction’,J. Appl. Physiol.,73, pp. 1211–1217

    Google Scholar 

  • Hägg, G. M., Luttmann, A., andJäger, M. (2000): ‘Methodologies for evaluating electromyographic field data in ergonomics’,J. Electromyogr. Kinesiol.,10, pp. 301–312

    Google Scholar 

  • Heckman, C. J., andBinder, M. D. (1991): ‘Computer simulation of the steady-state input-output function of the cat medial gastrocnemius motoneuron pool’,J. Neurophysiol.,65, pp. 952–967

    Google Scholar 

  • Hefftner, G., Zucchini, W., andJaros, G. G. (1988): ‘The electromyogram (EMG) as a control signal for functional neuromuscular stimulation—Part I: autoregressive modeling as a means of EMG signature discrimination’,IEEE Trans. Biomed. Eng.,35, pp. 230–237

    Google Scholar 

  • Helal, J. N., andBouissou, P. (1992): ‘The spatial integration effect of surface electrode detecting myoelectric signal’,IEEE Trans. Biomed. Eng.,39, pp. 1161–1167

    Google Scholar 

  • Henneman, E., andMendell, L. M. (1981) ‘Functional organization of motoneuron pool and its inputs’ in ‘Handbook of physiology. The nervous system. Motor control’, Section I, Vol. II, Part 1 (Am. Physiol. Soc., Bethesda, MD, 1981), pp. 423–507

    Google Scholar 

  • Hermans, H., Stegeman, D., Blok, J., andFreriks, B. (Eds) (1998). ‘The state of the art on modeling methods for surface electromyography’ (Roessingh Research & Development, Enschede, The Netherlands, 1998)

    Google Scholar 

  • Hof, A. L., andVan Den Berg, J. (1981): ‘EMG to force processing—I: An electrical analogue of the Hill muscle model’,J. Biomech.,14, pp. 747–758

    Google Scholar 

  • Hof, A. L. (1997): ‘The relationship between electromyogram and muscle force’,Sportverletz Sportschaden,11, pp. 79–86

    Google Scholar 

  • Hogan, N., andMann, R. W. (1980): ‘Myoelectric signal processing: optimal estimation applied to electromyography—Part I: derivation of the optimal myoprocessor’,IEEE Trans. Biomed. Eng.,27, pp. 382–395

    Google Scholar 

  • Hogrel, J.-Y. (2003): ‘Use of surface EMG for studying motor unit recruitment during isometric linear force ramp’,J. Electromyogr. Kinesiol.,13, pp. 417–423

    Google Scholar 

  • Hornby, T. G., McDonagh, J. C., Reinking, R. M., andStuart, D. G. (2002): ‘Moteneurons: a preferred firing range across vertebrate species’,Muscle Nerve,25, pp. 632–648

    Google Scholar 

  • Ince, L. P., Leon, M. S., andChristidis, D. (1985): ‘EMG biofeedback with upper extremity musculature for relaxation training: a critical review of the literature’,J. Behav. Ther. Exp. Psychiatry,16, pp. 133–137

    Google Scholar 

  • Kanosue, K., Yoshida, M., Akazawa, K., andFujii, K. (1979): ‘The number of active motor units and their firing rates in voluntary contractions of human brachialis muscle’,Jap. J. Physiol.,29, pp. 427–443

    Google Scholar 

  • Karlsson, S., andYu, J. (2000): ‘Estimation of surface electromyogram spectral alteration using reduced-order autoregressive model’,Med. Biol. Eng. Comput.,38, pp. 520–527

    Google Scholar 

  • Kiryu, T., Saitoh, Y., andIshioka, K. (1992): ‘Investigation on parametric analysis of dynamic EMG signals by a muscle-structured simulation model’,IEEE Trans. Biomed. Eng.,39, pp. 280–288

    Google Scholar 

  • Kiryu, T., De Luca, C. J., andSaitoh, Y. (1994): ‘AR modeling of myoelectric interference signals during a ramp contraction’,IEEE Trans. Biomed. Eng.,41, pp. 1031–1038

    Google Scholar 

  • Kleine, B. U., Stegeman, D. F., Mund, D., andAnders, C. (2001): ‘Influence of motoneuron firing synchronization on SEMG characteristics in dependence of electrode position’,J. Appl. Physiol.,91, pp. 1588–1599

    Google Scholar 

  • Kleinpenning, P. H., Gootzen, T. H., Van Oosterom, A., andStegeman, D. F. (1990): ‘The equivalent source description representing the extinction of an action potential at a muscle fiber ending’,Math. Biosci.,101, pp. 41–61

    MATH  Google Scholar 

  • Kleissen, R. F. M., Buurke, J. H., Harlaar, J., andZilvold, G. (1998): ‘Electromyography in the biomechanical analysis of human movement and its clinical application’,Gait Posture,8, pp. 143–158

    Google Scholar 

  • Kukulka, C. G., andClamann, H. P. (1981): ‘Comparison of the recruitment and discharge properties of motor units in human brachial biceps and adductor pollicis during isometric contractions’,Brain Res.,219, pp. 45–55

    Google Scholar 

  • Lago, P., andJones, N. B. (1977): ‘Effect of motor-unit firing time statistics on e.m.g. spectra’,Med. Biol. Eng. Comput.,15, pp. 648–655

    Google Scholar 

  • Lateva, Z. C., Dimitrova, N. A., andDimitrov, G. V. (1993): ‘Effect of recording electrode position along a muscle fibre on surface potential power spectrum’,J. Electromyogr. Kinesiol.,3, 195–204

    Google Scholar 

  • Lateva, Z. C., McGill, K. C., andBurgar, C. R. (1996): ‘Anatomical and electrophysiological determinants of the human thenar compound muscle action potential’,Muscle Nerve,19, pp. 1457–1468

    Google Scholar 

  • Lindström, L. H., andMagnusson, R. I. (1977): ‘Interpretation of myoelectric power spectra: a model and its applications’,Proc. IEEE,65, pp. 653–662

    Google Scholar 

  • Lowery, M. M., Vaughan, C. L., Nolan, P. J., andO'Malley M. J. (2000): ‘Spectral compression of the electromyographic signal due to decreasing muscle fiber conduction velocity’,IEEE Trans. Rehab. Eng.,8, pp. 353–361

    Google Scholar 

  • Lowery, M. M., Stoykov, N. S., Taflove, A., andKuiken, T. A. (2002): ‘A multiple-layer finite-element model of the surface EMG signal’,IEEE Trans. Biomed. Eng.,49, pp. 446–454

    Google Scholar 

  • Lowery, M. M., andO'Malley, M. J. (2003): ‘Analysis and simulation of changes in EMG amplitude during high-level fatiguing contractions’,IEEE Trans. Biomed. Eng.,50, pp. 1052–1062

    Google Scholar 

  • Lowery, M. M., Stoykov, N. S., andKuiken, T. A. (2003): ‘Independence of myoelectric control signals examined using a surface EMG model’,IEEE Trans. Biomed. Eng.,50, pp. 789–793

    Google Scholar 

  • Lowery, M. M., andO'Malley, M. J. (2003): ‘Analysis and simulation of changes in EMG amplitude during high-level fatiguing contractions’,IEEE Trans. Biomed. Eng.,50, pp. 1052–1062

    Google Scholar 

  • Maclsaac, D. T., Parker, P. A., Scott, R. N., Englehart, K. B., andDuffley, C. (2001): ‘Influences of dynamic factors on myoelectric parameters’,IEEE Eng. Med. Biol. Mag.,20, pp. 82–89

    Google Scholar 

  • Mattson, J. P., Miller, T. A., Poole, D. C., andDelp, M. D. (2002): ‘Fiber composition and oxidative capacity of hamster skeletal muscle’,J. Histochem. Cytochem.,50, pp. 1685–1692

    Google Scholar 

  • McGill, K. C., Lateva, Z. C., andXiao, S. (2001): ‘A model of the muscle action potential for describing the leading edge, terminal wave, and slow afterwave’,IEEE Trans. Biomed. Eng.,48, pp. 1357–1365

    Google Scholar 

  • McGill, K. C., andLateva, Z. C. (2001): ‘A model of the muscle-fiber intracellular action potential waveform, including the slow repolarization phase’,IEEE Trans. Biomed. Eng.,48, pp. 1480–1483

    Google Scholar 

  • Meijers, L. M. M., Teulings, J. L. H. M., andEijkman, E. G. J. (1976): ‘Model of the electromyographic activity during brief isometric contractions’,Biol. Cybern.,25, pp. 7–16

    Google Scholar 

  • Merletti, R., Lo Conte, L., Avignone, E. andGuglielminotti, P. (1999a): ‘Modeling of surface myoelectric signals—Part I: model implementation’,IEEE Trans. Biomed. Eng.,46, pp. 810–820

    Google Scholar 

  • Merletti, R., Roy, S. H., Kupa, E., Roatta, S., andGranata, A. (1999b): ‘Modeling of surface myoelectric signals—Part II: model-based signal interpretation’,IEEE Trans. Biomed. Eng.,46, pp. 821–829

    Google Scholar 

  • Merlo, A., Farina, D., andMerletti, R. (2003): ‘A fast and reliable technique for muscle activity detection from surface EMG signal’,IEEE Trans. Biomed. Eng.,50, pp. 316–323

    Google Scholar 

  • Milner-Brown, H. S., andStein, R. B. (1975): ‘The relation between the surface electromyogram and muscular force’,J. Physiol. (Lond).,246, pp. 549–569

    Google Scholar 

  • Nandedkar, S. D., Stålberg, E., andSanders, D. S. (1985): ‘Simulation techniques in electromyography’,IEEE Trans. Biomed. Eng.,32, pp. 775–785

    Google Scholar 

  • Paiss, O., andInbar, G. F. (1987): ‘Autoregressive modeling of surface EMG and its spectrum with application to fatigue’,IEEE Trans. Biomed. Eng.,34, pp. 761–770

    Google Scholar 

  • Pan, Z. S., Zhang, Y., andParker, P. A. (1989): ‘Motor unit power spectrum and firing rate’,Med. Biol. Eng. Comput.,27, pp. 14–18

    Google Scholar 

  • Parker, P. A., andScott, R. N. (1986): ‘Myoelectric control of prostheses’,Crit. Rev. Biomed. Eng.,13, pp. 283–310

    Google Scholar 

  • Perry, J., andBekey, G. A. (1981): ‘EMG-force relationships in skeletal muscle’,Crit. Rev. Biomed. Eng.,7, pp. 1–22

    Google Scholar 

  • Plonsey, R. (1974): ‘The active fiber in a volume conductor’,IEEE Trans. Biomed. Eng.,21, pp. 371–381

    Google Scholar 

  • Pollak, V. (1980: ‘Surface EMG and muscle force at low force levels’,Am. J. Phys. Med.,59, pp. 126–141

    Google Scholar 

  • Rainoldi, A., Nazzaro, M., Merletti, R., Farina, D., Caruso, I., andGaudenti, S. (2000): ‘Geometrical factors in surface EMG of the vastus medialis and lateralis muscles’,J. Kinesiol. Electromyogr.,10, pp. 327–336

    Google Scholar 

  • Roeleveld, K., Blok, J. H., Stegeman, D. F. andVan Oosterom, A. (1997a). ‘Volume conduction models for surface EMG; confrontation with measurements’,J. Electromyogr. Kinesiol.,7, pp. 221–232

    Google Scholar 

  • Roeleveld, K., Stegeman, D. F., Vingerhoets, H. M., andVan Oosterom, A. (1997b): ‘Motor unit potential contribution to surface electromyography’,Acta Physiol. Scand.,160, pp. 175–183

    Google Scholar 

  • Roeleveld, K., Stegeman, D. F., Vingerhoets, H. M., andVan Oosterom, A. (1997c): ‘The motor unit potential distribution over the skin surface and its use in estimating the motor unit location’,Acta Physiol. Scand.,161, pp. 465–472

    Google Scholar 

  • Rosenfalck, P. (1969): ‘Intra- and extracellular potential fields of active nerve and muscle fibres’,Acta Physiol. Scand.,321, pp. 1–168

    Google Scholar 

  • Roth, B. J., Gielen, F. L. H., andWikswo, J. P. (1988): ‘Spatial and temporal frequency-dependent conductivities in volume conduction calculations of skeletal muscle’,Math. Biosci.,88, pp. 159–189

    MATH  Google Scholar 

  • Rutten, W. L., van Veen, B. K., Stroeve, S. H., Boom, H. B., andWallinga, W. (1997): ‘Influence of inhomogeneities in muscle tissue on single-fibre action potentials: a model study’,Med. Biol. Eng. Comput.,35, pp. 91–95

    Google Scholar 

  • Schneider, J., Silny, J., andRau, G. (1991): ‘Influence of tissue inhomogeneities on noninvasive muscle fiber conduction velocity measurements-investigated by physical and numerical modeling’,IEEE Trans. Biomed. Eng.,38, pp. 851–860

    Google Scholar 

  • Shwedyk, E., Balasubramanian, R., andScott, R. N. (1977): ‘A nonstationary model for the electromyogram’,IEEE Trans. Biomed. Eng.,24, pp. 417–424

    Google Scholar 

  • Solomonow, M., Baratta, R., Zhou, B. H., Shoji, H., andD'Ambrosia, R. (1986). ‘Historical update and new developments on the EMG-force relationships of skeletal muscles’,Orthopedics,9, pp. 1541–1543

    Google Scholar 

  • Stashuk, D. W. (1993): ‘Simulation of electromyographic signals’,J. Electromyogr. Kinesol.,3, pp. 157–173

    Google Scholar 

  • Staude, G., andWolf, W. (1999): ‘Objective motor response onset detection in surface myoelectric signals’,Med. Eng. Phys.,21, pp. 449–467

    Google Scholar 

  • Stegeman, D. F., andLinssen, W. H. J. P. (1992): ‘Muscle fiber action potential changes and surface EMG: a simulation study’,J. Electromyogr. Kinesol.,2, pp. 130–140

    Google Scholar 

  • Stegeman, D. F., Dumitru, D., King, J. C., andRoeleveld, K. (1997): ‘Near- and far-fields: source characteristics and the conducting medium in neurophysiology’,J. Clin. Neurophysiol.,14, pp. 429–442

    Google Scholar 

  • Stegeman, D. F., Blok, J. H., Hermens, H. J., andRoelevled, K. (2000): ‘Surface EMG models: properties and applications’,J. Electromyogr. Kinesiol.,10, pp. 313–326

    Google Scholar 

  • Stoykov, N. S., Lowery, M. M., Taflove, A., andKuiken, T. A. (2002): ‘Frequency- and time-domain FEM models of EMG: capacitive effects and aspects of dispersion’,IEEE Trans. Biomed. Eng.,49, pp. 763–772

    Google Scholar 

  • Studer, L. M., Ruegg, D. G., andGabriel, J.-P. (1999): ‘A model for steady isometric muscle activation’,Biol. Cybern.,80, pp. 339–355

    MATH  Google Scholar 

  • Stulen, F. B., andDe Luca, C. J., (1981): ‘Frequency parameters of the myoelectric signal as a measure of muscle conduction velocity’,IEEE Trans. Biomed. Eng.,28, pp. 515–523

    Google Scholar 

  • Sutherland, D. H. (2001): ‘The evolution of clinical gait analysis. Part 1: kinesiological EMG’,Gait Posture,14, pp. 61–70

    Google Scholar 

  • Tansey, K. E., andBotterman, B. R. (1996): ‘Activation of typeidentified motor units during centrally evoked contractions in the cat medial gastrocnemius muscle. II. Motoneuron firing-rate modulation’,J. Neurophysiol.,75, pp. 38–50

    Google Scholar 

  • van Oosterom, A. (1991): ‘History and evolution of methods for solving the inverse problem’,J. Clin. Neurophysiol.8, pp. 371–380

    Article  Google Scholar 

  • van Veen, B. K., Rijkhoff, N. J., Rutten, W. L., Wallinga, W., andBoom, H. B. (1992): ‘Potential distribution and single-fibre action potentials in a radially bounded muscle model’,Med. Biol. Eng. Comput.,30, pp. 303–310

    Google Scholar 

  • van Veen, B. K., Wolters, H., Wallinga, W., Rutten, W. L., andBoom, H. B. (1993): ‘The bioelectrical source in computing single muscle fiber action potentials’,Biophys. J.,64, pp. 1492–1498

    Article  Google Scholar 

  • Woods, J. J., andBigland-Ritchie, B. (1983): ‘Linear and nonlinear surface emg/force relationships in human muscles. An anatomical/functional argument for the existence of both’,Am. J. Phys. Med.,62, pp. 287–299

    Google Scholar 

  • Yana, K., Mizuta, H., andKajiyama, R. (1995): ‘Surface electromyogram recruitment analysis using higher order spectrum’. Proc. IEEE 17th Ann. Conf. Eng. Med. Biol. Soc.,2, pp. 1345–1346

    Google Scholar 

  • Yao, W., Fuglevand, A. J., andEnoka, R. M. (2000): ‘Motor-unit synchronization increases EMG amplitude and decreases force steadiness of simulated contractions’,J. Neurophysiol.,83, pp. 441–452

    Google Scholar 

  • Zajac, F. E., Neptune, R. R., andKautz, S. A. (2003): ‘Biomechanics and muscle coordination of human walking: Part II: lessons from dynamical simulations and clinical implications’,Gait Posture,17, pp. 1–17

    Google Scholar 

  • Zwarts, M. J., andStegeman, D. F. (2003): ‘Multichannel surface EMG: basic aspects and clinical utility’,Muscle Nerve,28, pp. 1–17

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. C. McGill.

Rights and permissions

Reprints and permissions

About this article

Cite this article

McGill, K.C. Surface electromyogram signal modelling. Med. Biol. Eng. Comput. 42, 446–454 (2004). https://doi.org/10.1007/BF02350985

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02350985

Keywords

Navigation