Skip to main content
Log in

The elastic and yield behavior of polyethylene tubes subjected to biaxial loadings

  • Published:
Experimental Mechanics Aims and scope Submit manuscript

Abstract

The elastic and yield response of extruded thinwalled high-density polyethylene tubes with a density in the range of 0.961 to 0.964 gm/cm3 was investigated. Material properties in the axial and hoop directions were measured, and the tubes were found to be mildly transversely isotropic. The yield response was pressure sensitive, and was well predicted using the pressure-modified Hill criterion using a compressive to tensile yield strength ratio of 1.12.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Dieter, G.E., Mechanical Metallurgy, 3rd Ed., McGraw-Hill Publishing Co., New York (1986).

    Google Scholar 

  2. Raghava, R.S., Caddell, R.M. andYeh, G.S.Y., “The Macroscopic Yield Behavior of Polymers,”J. Mat. Sci.,8,225–232 (1973).

    Article  Google Scholar 

  3. Christiansen, A.W., Baer, E. andRadcliffe S.V., “The Mechanical Behavior of Polymers under High Pressure,”Phil. Mag.,24,451–467 (1971).

    Google Scholar 

  4. Pae, K.D. andMears, D.R., “The Effects of High Pressure on Mechanical Behavior and Properties of Polytetrafluoroethylene and Polyethylene,”J. Polymer Science Part B: Polymer Letters,6,269–273 (1968).

    Google Scholar 

  5. Pae, K.D., Mears, D.R. andSauer, J.A., “Stress-Strain Behavior of Polypropylene Under High Pressure,”J. Polymer Science Part B: Polymer Letters,6,773–778 (1968).

    Google Scholar 

  6. Mears, D.R., Pae, K.D. andSauer, J.A., “Effects of Hydrostatic Pressure on the Mechanical Behavior of Polyethylene and Polypropylene,”J. Appl. Physics,40 (11),4229–4237 (1969).

    Article  Google Scholar 

  7. Mears, D.R. andPae, K.D., “Deformation and Fracture Characteristics of Polycarbonate Under High Pressures,”J. Polymer Science Part B: Polymer Letters,7,349–352 (1969).

    Google Scholar 

  8. Bauwens, J.C., “Yield Condition and Propagation of Luders' Lines in Tension-Torsion Experiments on Poly(Vinyl Chloride),”J. Polymer Science Part A2: Polymer Physics,8,893–901 (1970).

    Google Scholar 

  9. Bowden, P.B. andJukes, J.A., “The Plastic Yield Behavior of Polymethylmethacrylate,”J. Mat. Sci.,3,183–190 (1968).

    Article  Google Scholar 

  10. Bowden, P.B. andJukes, J.A., “The Plastic Flow of Isotropic Polymers,”J. Mat. Sci.,7,52–63 (1972).

    Article  Google Scholar 

  11. Freire, J.L.F. andRiley, W.F., “Yield Behavior of Photoplastic Materials,”Experimental Mechanics,37,118–125 (1980).

    Google Scholar 

  12. Pae, K.D., “The Macroscopic Yielding Behavior of Polymers in Multiaxial Stress Fields,”J. Mat. Sci.,12,1209–1214 (1977).

    Google Scholar 

  13. Raghava, R.S. andCaddell, R.M., “A Macroscopic Yield Criterion for Crystalline Polymers,”Int. J. Mech. Sci.,15,967–974 (1973).

    Article  Google Scholar 

  14. Sardar, D., Radcliffe, S.V. andBaer, E., “Effects of High Hydrostatic Pressure on the Mechanical Behavior of a Crystalline Polymer—Polyoxymethylene,”Polymer Engineering and Science,8 (4),290–301 (1968).

    Article  Google Scholar 

  15. Caddell, R.M., Raghava, R.S. andAtkins, A.G., “Pressure Dependent Yield Criteria for Polymers,”Mat. Sci. and Eng.,13,113–120 (1974).

    Google Scholar 

  16. Paul, B., “Macroscopic Criteria for Plastic Flow and Brittle Fracture,”Fracture, an Advanced Treatise, Vol. II: Mathematical Fundamentals, ed. H. Liebowitz, Chapt. 4, Academic Press, New York (1968).

    Google Scholar 

  17. Ward, I.M., “Review: The Yield Behavior of Polymers,”J. Mat. Sci.,6,1397–1417 (1971).

    Google Scholar 

  18. Stassi-D'Alia, F., “Flow and Fracture of Materials According to a New Limiting Condition of Yielding,”Meccannica,2 (3),178–195 (1967).

    Google Scholar 

  19. Hill, R., The Mathematical Theory of Plasticity, Oxford University Press (1950).

  20. Shinozaki, D. andGroves, G.W., “The Plastic Deformation of Oriented Polypropylene: Tensile and Compressive Yield Criteria,”J. Mat. Sci.,8,71–78 (1973).

    Google Scholar 

  21. Rawson, F.F. andGroves, G.W., “The Plastic Deformation of Oriented Polypropylene: Tensile and Compressive Yield Criteria,”J. Mat. Sci.,8,71–78 (1973).

    Google Scholar 

  22. Caddell, R.M. andWoodliff, A.R., “Macroscopic Yielding of Oriental Polymers,”J. Mat. Sci.,12,2028–2046 (1977).

    Article  Google Scholar 

  23. Raghava, R.S. andCaddell, R.M., “Yield Locus Studies of Oriented Polycarbonate: An Anisotropic and Pressure-dependent Solid,”Int. J. Mech. Sci.,16,789–799 (1974).

    Article  Google Scholar 

  24. Rider, J.G. andHargreaves, E., “Yielding of Oriented Poly(vinylchloride),”Journal of Polymer Science, Part A2: Polymer Physics,7,829–844 (1969).

    Google Scholar 

  25. Carapellucci, L.M. andYee, A.F.The Biaxial Deformation and Yield Behavior of Bisphenol-A Polycarbonate: Effect of Anisotropy,”Polymer Engineering and Science,26 (13),920–930 (1986).

    Article  Google Scholar 

  26. Brown, N., Duckett, R.A. andWard, I.M., “The Yield Behavior of Oriented Polyethylene Terephthalate,”Phil. Mag.,18,483–502 (1968).

    Google Scholar 

  27. Bridle, C., Buckley, A. andScanlan, J., “Mechanical Anisotropy of Oriented Polymers Part 1: Yield Criterion for Uniaxially Drawn Poly(Ethylene Terephthalate),”J. Mat. Sci.,3,622–628 (1968).

    Article  Google Scholar 

  28. Stassi-D'Alia, F., “Limiting Conditions of Yielding for Anisotropic Materials,”Meccannica,4,349–364 (1969).

    Google Scholar 

  29. Caddell, R.M., Raghava, R.S. andAtkins, A.G., “A Yield Criterion for Anisotropic and Pressure Dependent Solids Such as Oriental Polymers,”J. Mat. Sci.,8,1641–1646 (1973).

    Article  Google Scholar 

  30. “Standard Test Method for Tensile Properties of Plastics,” ASTM D 638-90, 1991 Annual Book of ASTM Standards,8.01,Amer. Soc. for Test. and Mat., Philadelphia, 157–178 (1991).

  31. “Standard Specification for Polyethylene Plastics Molding and Extrusion Materials,” ASTM D 1248-84, 1991 Annual Book of ASTM Standards,8.01,Amer. Soc. for Test. and Mat., Philadelphia, 415–420 (1991).

  32. “Standard Specification for Polyethylene Plastics Pipe and Fitting Materials,” ASTM D 3350-84, 1991 Annual Book of ASTM Standards,8.03,Amer. Soc. for Test. and Mat., Philadelphia, 60–64 (1991).

  33. Semeliss, M.A., Wong, R. and Tuttle, M.E., “The Yield and Post-Yield Behavior of High-Density Polyethylene,” Univ. Washington Rep., Mech. Eng. Dept. Seattle (1990).

  34. Passage II, v 2.10, available from Passage Software, Inc., P.O. Box 8874, Fort Collins, CO (1989).

  35. Jones, R.M., Mechanics of Composite Materials, Scripta Book Co., Washington, D.C., 32–38 (1975).

    Google Scholar 

  36. Driscopipe 1000, Polyethylene Piping System, Product brochure available from Phillips Driscopipe, Inc., Richardson, TX.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tuttle, M.E., Semeliss, M. & Wong, R. The elastic and yield behavior of polyethylene tubes subjected to biaxial loadings. Experimental Mechanics 32, 1–10 (1992). https://doi.org/10.1007/BF02317977

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02317977

Keywords

Navigation