Skip to main content
Log in

Humidity responses in forest trees: Precautions in thermal scanning surveys

Luftfeuchtereaktionen bei Waldbäumen: Vorbehalte bei der Bewertung von Temperaturscanner-Daten

  • Published:
Archives for meteorology, geophysics, and bioclimatology, Series B Aims and scope Submit manuscript

Summary

This paper deals with a special plant physiological phenomenon that is relevant to many meteorological considerations and in particular to the interpretation of false colour aerial photographs and data of temperature scanners.

It is well established that plants are able to respond to the vapour concentration gradient between leaf and ambient air by stomatal control of transpiration. Stomatal sensitivity to external humidity conditions can cause a decline in transpirational vapour flux without concommitant symptoms of plant water stress.

Examples are provided for the stomatal behaviour of 8 different tree species, 7 of which are prominent components of forests in the temperate zone (2 from the Southern Hemisphere). It is shown that different species exhbibit marked differences in their response to the vapour concentration gradient. These responses are discussed in relation to tree type and the natural environment. It is concluded that it is unjustified to draw conclusions about tree water status from estimates of canopy transpiration (e.g. via data from a thermal scanner) without knowledge of the specific physiological behaviour of the very tree species. Comparatively reduced rates of transpiration are not necessarily an indication of water shortage or pathogen induced water stress.

Zusammenfassung

Die Arbeit behandelt ein spezielles pflanzenphysiologisches Phänomen, das für eine Reihe meteorologischer Fragestellungen, insbesondere für die Interpretation von Falschfarben-Luftbildern und von Temperaturscanner-Daten relevant ist. Über die stomatäre Steuerung der Transpiration können Pflanzen direkt auf das Wasserdampfkonzentrationsgefälle zwischen Blatt und umgebender Luft reagieren. Auf Grund der Empfindlichkeit der Stomata auf die Luftfeuchte in der Blattumgebung kann es zu einer Einschränkung der Transpiration kommen, ohne daß dies mit blattinternem Wasser streß verknüpft sein muß.

Beispiele für das Stomataverhalten von 8 verschiedenen Baumarten, von denen 7 wichtige Elemente von Wäldern der temperaten Zone sind (2 aus der Südhemisphäre), werden angeführt. Es wird gezeigt, daß verschiedene Arten ganz unterschiedlich auf Luftfeuchtegradienten reagieren können. Diese Ergebnisse werden an Hand der Baumtypen und der natürlichen Umweltbedingungen diskutiert. Es erscheint unberechtigt, auf Grund der Transpirationsrate von Baumkronen (etwa über Meßdaten von einem Temperaturscanner) Schlüsse bezüglich der Wasserversorgung der Blätter zu ziehen, ohne das spezifische physiologische Verhalten der Bäume zu kennen. Verminderte Transpirationsraten, die sich in erhöhter Blattemperatur niederschlagen können, sind nicht notwendigerweise ein Hinweis auf Wasserverknappung oder pathogen induzierten Wasserstreß.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Appleby, R. F., Davies, W. J.: A Possible Evaporation Site in the Guard Cell Wall and the Influence of Leaf Structure on the Humidity Response by Stomata of Woody Plants. Oecologie56, 30–40 (1983).

    Article  Google Scholar 

  2. Berliner, P., Oosterhuis, D. M., Green, G. C.: Evaluation of the Infrared Thermometer as a Crop Stress Detector. Agr. and Forest Met.31, 219–230 (1984).

    Article  Google Scholar 

  3. Blum, A., Mayer, J., Gozlan, G.: Infrared Thermal Sensing of Plant Canopies as a Screening Technique for Dehydration Avoidance in Wheat. Field Crops Res.5, 137–146 (1982).

    Article  Google Scholar 

  4. Farquhar, G. D.: Feedforward Responses to Water Stress. Ann. Rev. Plant Physiol.5, 787–800 (1978).

    Google Scholar 

  5. Halbwachs, G.: Die Symptomatologie forstlicher Rauchschäden bei Koniferen. Mitt. Forstl. Bundes-Versuchsanstalt Wien92, 33–55 (1971).

    Google Scholar 

  6. Hsiao, T. C.: Plant Responses to Water Stress. Ann. Rev. Plant Physiol.24, 519–570 (1973).

    Article  Google Scholar 

  7. Idso, S. B., Reginato, R. J., Farah, S. M.: Soil- and Atmosphere Induced Plant Water Stress in Cotton as Inferred from Foliage Temperatures. Water Resources Res.18, 1143–1148 (1982).

    Google Scholar 

  8. Jarvis, O. G.: Stomatal Response to Water Stress in Conifers. In: Adaptation of Plants to Water and High Temperature Stress (Turner, N. C., Kramer, P. J., ed.), pp. 105–122. New York: Wiley 1980.

    Google Scholar 

  9. Johnson, D. A., Caldwell, M. M.: Gas Exchange of Four Arctic and Alpine Tundra Plant Species in Relation to Atmospheric and Soil Moisture Stress. Oecologie21, 93–108 (1975).

    Article  Google Scholar 

  10. Jones, H. G.: Plants and Microchmate — a Quantitative Approach to Environmental Plant Physiology. London: Cambridge University Press 1983.

    Google Scholar 

  11. Jones, H. G., Cumming, I. G.: Variation of Leaf Conductance and Leaf Water Potential in Apple Orchards. J. Hort. Sci.59, 329–336 (1984).

    Google Scholar 

  12. Kaufmann, M. R.: Stomatal Response of Engelmann Spruce to Humidity, Light and Water Stress. Plant Physiol.57, 898–901 (1976).

    Google Scholar 

  13. Körner, Ch.: Wasserhaushalt und Spaltenverhalten alpiner Zwergsträucher. Verh. Ges. ökologie2, 23–30 (Ed. P. Müller). The Hague: Junk 1976.

    Google Scholar 

  14. Körner, Ch., Cernusca, A.: A Semiautomatic Diffusion Porometer and its Performance Under Alpine Field Conditions. Photosynthetica10, 172–181 (1976).

    Google Scholar 

  15. Körner, Ch.: Zur anthropogenen Belastbarkeit der alpinen Vegetation. Verh. Ges. Ökol. (Göttingen)8, 451–461 (1980).

    Google Scholar 

  16. Körner, Ch.: Stomatal Behaviour and Water Potential in Apricot with Symptoms of Wilt Disease. Angew. Bot.55, 469–476 (1981).

    Google Scholar 

  17. Körner, Ch., Cochrane, P.: Stomatal Responses and Water Relations ofEucalyptus pauciflora in Summer Along an Elevational Gradient. Oecologia (1985). (In press.)

  18. Körner, Ch., Bannister, P.: Stomatal Responses to Humidity inNothofagus menziesii. NZ J. Bot. (1985). (In press.)

  19. Lange, O. L., Lösch, R., Schulze, E.-D., Kappen, L.: Response of Stomata to Changes in Humidty. Planta100, 76–86 (1971).

    Article  Google Scholar 

  20. Lange, O. L., Tenhunen, J. D., Braun, M.: Midday Stomatal Closure in Mediterranean Type Sclerophylls Under Simulated Habitat Conditions in an Environmental Chamber I. Flora172, 563–579 (1982).

    Google Scholar 

  21. Larcher, W.: Physiological Plant Ecology (2nd ed.). Berlin-Heidelberg-New York: Springer 1983.

    Google Scholar 

  22. Lösch, R., Tenhunen, J. D.: Stomatal Responses to Humidity, Phenomenon and Mechanism. In: Stomatal Physiology (Jarvis, P. G., Mansfield, T. A. (ed.). Soc. Exp. Biol. Seminar Ser. 8, 137–162. Cambridge: Cambridge University Press 1981.

    Google Scholar 

  23. Mooney, H. A., Field, C., Vásquez-Yanes, C., Chu, C.: Environmental Controls on Stomata] Conductance in a Shrub of the Humid Topics. Proc. Natl. Acad. Sci.80, 1295–1297 (1983).

    Google Scholar 

  24. Osonubi, O., Davies, W. J.: The Influence of Plant Water Stress on Stomatal Control of Gas Exchange at Different Levels of Atmospheric Humidity. Oecologa46, 1–6 (1980).

    Article  Google Scholar 

  25. Roberts, J.: Forest Transpiration, a Conservative Hydrological Process? J. Hydrol.66, 133–141 (1983).

    Article  Google Scholar 

  26. Sands, R., Sadanandan-Nambiar, E. K.: Water Relations ofPinus radiata on Competition with Weeds. Can. J. For. Res.14, 233–237 (1984).

    Google Scholar 

  27. Schaffer, B., Bubenheim, D. L., Barden, J. A.: Net Gas Exchange by Leaves of Intact and Excised Apple Shoots as Influenced by Vapour Pressure Gradient. Hort Sci.19, 556–557 (1984).

    Google Scholar 

  28. Scheel, A.: Die Variabilität des minimalen und maximalen Blattdiffusionswiderstandes. Ph.D. Thesis, University of Innsbruck, 1979.

  29. Scholander, P. F., Hammel, H. T., Bradstreet, E. D., Hemmingsen, E. A.: Sap Pressure in Vascular Plants. Science148, 339–346 (1965).

    Google Scholar 

  30. Schulze, E.-D., Lange, O. L., Buschbom, U., Kappen, L., Evenari, M.: Stomatal Responses to Humidity in Plants Growing in the Desert. Planta108, 259–270 (1972).

    Article  Google Scholar 

  31. Schulze, E. D., Lange, O. L., Kappen, L., Buschbom, U., Evenari, M.: Stomatal Responses to Changes in Temperature at Increasing Water Stress. Planta110, 29–42 (1973).

    Article  Google Scholar 

  32. Schulze, E.-D., Hall, A. E.: Stomatal Responses, Water Loss and C02 Assimilation Rates of Plants in Contrasting Environments. In: Physiological Plant Ecology II, Encyclopedia of Plant Physiology, New Series12B (Lange, O. L., Nobel, P. S., Osmond, C. B., Ziegler, E., eds.), pp. 181–230. Berlin-Heidelberg-New York: Springer 1982.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

With 8 Figures

Rights and permissions

Reprints and permissions

About this article

Cite this article

Körner, C. Humidity responses in forest trees: Precautions in thermal scanning surveys. Arch. Met. Geoph. Biocl., Ser. B 36, 83–98 (1985). https://doi.org/10.1007/BF02269459

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02269459

Navigation