Skip to main content
Log in

The effect of ethylene on adventitious root formation in mung bean (Vigna radiata) cuttings

  • Published:
Journal of Plant Growth Regulation Aims and scope Submit manuscript

Abstract

A promotive effect of ethylene on the formation of adventitious roots by mung bean cuttings was demonstrated using a recirculating solution culture system to apply dissolved ethylene. The number of roots increased in proportion to the length of exposure to the gas. Mean root numbers per cutting for a 4-day exposure to ethylene and an air control were 45 and 19, respectively. The tissue was most sensitive to a 24-h ethylene “pulse” 2–3 days after taking cuttings. Rooting was maximal at a concentration of 13 μl 1−1 ethylene. The ethylene treatment inhibited the growth of roots and terminal buds. Application of Ag+, as silver thiosulfate, reversed the effect of ethylene on the two growth responses but had no effect on root numbers. Norbornadiene, another inhibitor of ethylene action, reversed all three ethylene responses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abeles FB (1973) Ethylene in plant biology. Academic Press, New York, p. 227

    Google Scholar 

  • Baadsmand S, Andersen AS (1984) Transport and accumulation of indole-3-acetic acid in pea cuttings under two levels of irradiance. Physiol Plant 61: 107–113

    Article  CAS  Google Scholar 

  • Batten DJ, Mullins MG (1978) Ethylene and adventitious root formation in hypocotyl segments of etiolated mung-bean (Vigna radiata (L.) Wilczek) seedlings. Planta 138: 193–197

    Article  CAS  Google Scholar 

  • Blazich FA, Heuser CW (1979) A histological study of adventitious root initiation in mung bean cuttings. J Am Soc Hortic Sci 104: 63–67

    Google Scholar 

  • Carpenter SB (1975) Rooting black walnut cuttings with ethephon. Tree Planters Notes 26: 3, 29

    Google Scholar 

  • Chong C (1982) Rooting cuttings with ethephon. Am Nurseryman 156: 81–83

    Google Scholar 

  • Criley RA, Parvin PE (1979) Promotive effects of auxin, ethephon, and daminozide on the rooting ofProtea neriifolia cuttings. J Am Soc Hortic Sci 104: 592–596

    CAS  Google Scholar 

  • Friedman R, Altman A, Zamski E (1979) Adventitious root formation in bean hypocotyl cuttings in relation to IAA translocation and hypocotyl anatomy. J Exp Bot 30: 769–777

    Article  CAS  Google Scholar 

  • Geneve RL, Heuser CW (1983) The relationship between ethephon and auxin on adventitious initiation in cuttings ofVigna radiata (L.) R. Wilcz. J Am Soc Hortic Sci 108: 330–333

    CAS  Google Scholar 

  • Greenwood MS, Goldsmith MHM (1970) Polar transport and accumulation of indole-3-acetic acid during root regeneration byPinus lambertiana embryos. Planta 297–313

  • Hoagland DR, Arnon DI (1950) The water culture method for growing plants without soil. Calif Agric Exp Stn Circ 347

  • Johnson CR, Hamilton DF (1977) Rooting ofHibiscus rosa-sinensis L. cuttings as influenced by light intensity and ethephon. Hort Science 12:39–40

    CAS  Google Scholar 

  • Krishnamoorthy HN (1971) Effect of Ethrel, auxins and maleic hydrazide on the rooting of mung bean hypocotyl cuttings. Z Pflanzenphysiol 66: 273–276

    CAS  Google Scholar 

  • Krishnamoorthy HN (1972) Effect of Ethrel on the rooting of mung bean hypocotyl cuttings. Biochem Physiol Pflanzen 163: 505–508

    CAS  Google Scholar 

  • Lipecki J, Selwa J (1973) Effect of 2-chloroethylphosphonic acid (Ethrel) on the rooting of the black currant hardwood cuttings. Acta Agrobot 26: 229–235

    CAS  Google Scholar 

  • Morgan PW, Gausman HW (1966) Effects of ethylene on auxin transport. Plant Physiol 41: 229–235

    Google Scholar 

  • Mudge KW, Swanson BT (1978) Effect of ethephon, indole butyric acid, and treatment solution pH on rooting and on ethylene levels within mung bean cuttings. Plant Physiol 61: 271–273

    Article  PubMed  CAS  Google Scholar 

  • Mullins MG (1972) Auxin and ethylene in adventitious root formation inPhaseolus aureus (Roxb.). In: Carr DJ (ed), Plant growth substances 1970. Springer-Verlag, New York, pp 526–533

    Google Scholar 

  • Nell TA, Sanderson KC (1972) Effect of several growth regulators on the rooting of three azalea cultivars. Flor Rev 150: 21–22

    Google Scholar 

  • Reid MS, Paul JL, Young RE (1980) Effects of pH and ethephon on betacyanin leakage from beet root discs. Plant Physiol 66: 1015–1016

    Article  PubMed  CAS  Google Scholar 

  • Robbins JA, Paul JL, Reid MS (1983a) Flowing solution culture for the mung bean rooting bioassay. HortScience 18: 465–467

    Google Scholar 

  • Robbins JA, Kays SJ, Dirr MA (1983b) Enhanced rooting of wounded mung bean cuttings by wounding and ethephon. J Am Soc Hortic Sci 108: 325–329

    CAS  Google Scholar 

  • Roy BN, Basu RN, Bose TK (1972) Interaction of auxins with growth-retarding,-inhibiting and ethylene-producing chemicals in rooting of cuttings. Plant Cell Physiol 13: 1123–1127

    CAS  Google Scholar 

  • Samananda N, Ormrod DP, Adedipe NO (1972) Rooting of chrysanthenum stem cuttings as affected by (2-chloroethyl)-phosphonic acid and indolebutyric acid. Ann Bot 36: 961–965

    CAS  Google Scholar 

  • Sanderson KC, Patterson RM (1980) An examination of ethephon as a root-inducing substance. Am Nurseryman 152: 18, 117–119

    Google Scholar 

  • Schier GA (1975) Effect of ethephon on adventitious root and shoot development in aspen. Plant Physiol 56 (Suppl): 71

    Google Scholar 

  • Sisler EC, Goren R (1981) Ethylene binding-the basis for hormone action in plants? What's New Plant Physiol 12: 37–40

    Google Scholar 

  • Swanson BT (1976) Ethrel as an aid in rooting. Am Nurseryman 143: 14–16, 92–95, 111

    Google Scholar 

  • Veen H (1983) Silver thiosulphate: An experimental tool in plant sciences. Sci Hortic 20: 211–224

    Article  CAS  Google Scholar 

  • Weigel U, Horn W, Hock B (1984) Endogenous auxin levels in terminal stem cuttings ofChrysanthemum morifolium during adventitious rooting. Physiol Plant 61: 422–428

    Article  CAS  Google Scholar 

  • Yang SF, Pratt HK (1978) The physiology of ethylene in wounded plant tissues. In: Kahl G (ed) Biochemistry of wounded plant storage tissues. De Gruyter, Berlin pp 595–622

    Google Scholar 

  • Zimmerman PW, Hitchcock AE (1933) Initiation and stimulation of adventitious roots caused by unsaturated hydrocarbon gases. Contrib Boyce Thomp Inst 5: 351–369

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Robbins, J.A., Reid, M.S., Paul, J.L. et al. The effect of ethylene on adventitious root formation in mung bean (Vigna radiata) cuttings. J Plant Growth Regul 4, 147–157 (1985). https://doi.org/10.1007/BF02266952

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02266952

Keywords

Navigation