Skip to main content
Log in

Oncogenes, protein tyrosine kinases, and signal transduction

  • Review
  • Published:
Journal of Biomedical Science

Abstract

Many oncogenes encode protein tyrosine kinases (PTKs). Oncogenic mutations of these genes invariably result in constitutive activation of these PTKs. Autophosphorylation of the PTKs and tyrosine phosphorylation of their cellular substrates are essential events for transmission of the mitogenic signal into cells. The recent discovery of the characteristic amino acid sequences, of thesrc homology domains 2 and 3 (SH2 and SH3), and extensive studies on proteins containing the SH2 and SH3 domains have revealed that protein tyrosine-phosphorylation of PTKs provides phosphotyrosine sites for SH2 binding and allows extracellular signals to be relayed into the nucleus through a chain of protein-protein interactions mediated by the SH2 and SH3 domains. Studies on oncogenes, PTKs and SH2/SH3-containing proteins have made a tremendous contribution to our understanding of the mechanisms for the control of cell growth, oncogenesis, and signal transduction. This review is intended to provide an outline of the most recent progress in the study of signal transduction by PTKs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aaronson SA: Growth factors and cancers. Science 254:1146–1153;1991.

    PubMed  Google Scholar 

  2. Adari H, Lowy DR, Willumsen BM, Der CJ, McCormick F: Guanosine triphosphatase activating protein (GAP) interacts with the p21ras effector binding domain. Science 240:518–521;1988.

    PubMed  Google Scholar 

  3. Anderson D, Koch CA, Grea L, Ellis C, Moran MF, Pawson T: Binding of SH2 domains of phospholipase Cγ1, GAP, and Src to activated growth factor receptors. Science 250:979–982;1990.

    PubMed  Google Scholar 

  4. Auger KR, Serunian LA, Soltoff SP, Libby P, Cantley LC: PDGF-dependent tryrosine phosphorylation stimulates production of novel polyphosphoinositides in intact cells. Cell 57:167–175;1989.

    Article  PubMed  Google Scholar 

  5. Backer JM, Schroeder GG, Cahill DA, Ullrich A, Siddle K, White MF: Cytoplasmic juxtamembrane regions of the insulin receptor: A critical role in ATP binding, endogenous substrate phosphorylation, and insulin-stimulated bioeffects in CHO cells. Biochemistry 30:6366–6372;1991.

    Article  PubMed  Google Scholar 

  6. Backer JM, Schroeder GG, Kahn CR, Myers MG, Wilden PA, Cahill DA, White MF: Insulin stimulation of phosphatidylinositol 3-kinase activity maps to insulin receptor regions required for endogenous substrate phosphorylation. J Biol Chem 267:1367–1374;1992.

    PubMed  Google Scholar 

  7. Balduzzi PC, Notter MFD, Morgan HR, Shibuya M: Some biological properties of two new avian sarcoma viruses. J Virol 40:268–275;1981.

    PubMed  Google Scholar 

  8. Ben-Levy R, Peles E, Goldman-Michael R, Yardan Y: An oncogenic point mutation confers high affinity ligand binding to theneu receptor. J Biol Chem 267:17304–17313;1992.

    PubMed  Google Scholar 

  9. Berridge MJ, Irvine RF: Inositol trisphosphate and cell signaling. Nature 341:197–205;1989.

    Article  PubMed  Google Scholar 

  10. Besmer PJ, Murphy JE, George PC, Qui F, Bergold PJ, Lederman L, Snyder HW Jr, Brodeur D, Zuckerman EE, Hardy WD: A new acute transforming feline retrovirus and relationship of its oncogene v-kit with the protein kinase gene family. Nature 320:415–421;1986.

    Article  PubMed  Google Scholar 

  11. Birchmeier C, O'Neill K, Riggs M, Wigler M: Characterization of ROS1 cDNA from a human glioblastoma cell line. Proc Natl Acad Sci USA 87:4799–4803;1990.

    PubMed  Google Scholar 

  12. Bishop JM: Molecular themes in oncogenesis. Cell 64:235–248;1991.

    Article  PubMed  Google Scholar 

  13. Bjorge JD, Chan TO, Antczak M, Kung HJ, Fujita DJ: Activated type 1 phosphatidylinositol kinase is associated with the epidermal growth factor (EGF) receptor following EGF stimulation. Proc Natl Acad Sci USA 87:3816–3820;1990.

    PubMed  Google Scholar 

  14. Blackshear PJ, Haupt DM, App H, Rapp UR: Insulin activates the Raf-1 protein kinase. J Biol Chem 265:12131–12134;1990.

    PubMed  Google Scholar 

  15. Blenis J, Growth-regulated signal transduction by the MAP kinases and RSKs. Cancer Cells 3:445–449;1991.

    PubMed  Google Scholar 

  16. Boni-Schnetzler M, Kaligian A, DelVecchio R, Pilch P: Ligand-dependent intersubunit association within the insulin receptor complex activates its intrinsic kinase activity. J Biol Chem 263:6822–6828;1988.

    PubMed  Google Scholar 

  17. Booker GW, Breeze AL, Downing AK, Panayatou G, Gout I, Waterfield MD, Campbell ID: Structure of an SH2 domain of the p85α subunit of phosphatidylinositol-3-OH kinase. Nature 358:684–687;1992.

    Article  PubMed  Google Scholar 

  18. Bottaro DP, Rubin JS, Faletto DL, Chan AML, Kmiecik TE, Vande Wounde GF, Aaronson SA: Identification of the hepatocyte growth factor receptor as the c-met proto-oncogene product. Science 251:802–804;1991.

    Google Scholar 

  19. Boulton TG, Nye SH, Robbins DJ, Ip NY, Radziejewska E, Morgenbesser SD, Depinho RA, Panayotatos N, Cobb MH, Yancopoulos GD: ERKs: A family of protein-serine/threonine kinases that are activated and tyrosine phosphorylated in response to insulin and NGF. Cell 65:663–675;1991.

    PubMed  Google Scholar 

  20. Bowtell D, Fu P, Simon M, Senior P: Identification of murine homologues of theDrosophila son of sevenless gene: Potential activators ofras. Proc. Natl Acad Sci USA 89:6511–6515;1992.

    PubMed  Google Scholar 

  21. Broek D, Toda T, Michaell T, Levin L, Nirchmier C, Zoller M, Powers S, Wigler M: TheS. cerevisiae CDC25 gene product regulates the RAS/adenylate cyclase. Cell 48:789–799;1987.

    Article  PubMed  Google Scholar 

  22. Buday L, Downward J: Epidermal growth factor regulates p21ras through the formation of a complex of receptor, Grb1 adapter protein, and Sos nucleotide exchange factor. Cell 73:611–620;1993.

    Article  PubMed  Google Scholar 

  23. Bustelo X, Barbacid M: Tyrosine phosphorylation of thevav proto-oncogene product in activated B cells. Science 256:1196–1199;1992.

    PubMed  Google Scholar 

  24. Bustelo X, Ledbetter JA, Barbacid M: Product ofvav proto-oncogene defines a new class of tyrosine protein kinase substrates. Nature 356:68–71;1992.

    Article  PubMed  Google Scholar 

  25. Cantley LC, Auger KR, Carpenter C, Duckworth B, Graziani A, Kapeller R, Soltoff S: Oncogenes and signal transduction. Cell 64:281–302;1991.

    Article  PubMed  Google Scholar 

  26. Carpenter CL, Duckworth BC, Augers KR, Cohen B, Schaffhausen BS, Cantley LC: Purification and characterization of phosphoinositide 3-kinase from rat liver. J Biol Chem 265:19704–19711;1990.

    PubMed  Google Scholar 

  27. Chan AC, Iwashima M, Turck CW, Weiss A: ZAP-70: A 70 kd protein tyrosine kinase that associates with the TCR zeta chain. Cell 71:649–662;1992.

    Article  PubMed  Google Scholar 

  28. Chen J, Heller D, Poon B, Kang L, Wang LH: The proto-oncogene c-ros codes for a transmembrane tyrosine protein kinase sharing sequence and structural homology withsevenless protein ofDrosophila melanogaster. Oncogene 6:257–264;1991.

    PubMed  Google Scholar 

  29. Chen J, Zong CS, Wang LH: Tissue and epithelial all-specific expression of chicken protooncogene c-ros in several organs suggests that it may play roles in their development and mature function. Oncogene 9:in press;1994.

  30. Chen RH, Sarnecki C, Blenis J: Nuclear localization and regulation orerk- andrsk-encoded protein kinases. Mol Cell Biol 12:915–927;1992.

    PubMed  Google Scholar 

  31. Chou MM, Fajardo JE, Hanafusa H: The SH2-and SH3-containing Nck protein transforms mammalian fibroblasts in the absence of elevated phosphotyrosine levels. Mol Cell Biol 12:5834–5842;1992.

    PubMed  Google Scholar 

  32. Cicchetti P, Mayer BJ, Thiel G, Baltimore D: Identification of a protein that binds to the SH3 region of Abl and is similar to Bcr and GAP-rho. Science 257:803–806;1992.

    PubMed  Google Scholar 

  33. Clark SG, Stern MJ, Horovitz HK:C. elegans cell signaling genesem-5 encodes a protein with SH2 and SH3 domains. Nature 356:340–344;1992.

    Article  PubMed  Google Scholar 

  34. Cooke MP, Abraham KM, Forbush KA, Perlmutter RM: Regulation of T cell receptor signaling by asrc family protein-tyrosine kinase (p59fyn). Cell 65:281–291;1991.

    Article  PubMed  Google Scholar 

  35. Cooper SC, Park M, Blair DG, Trainsky MA, Huebner K, Croce CM, Vande Woude GF: Molecular cloning of a new transforming gene from a chemically transformed human cell line. Nature 311:29–33;1984.

    Article  PubMed  Google Scholar 

  36. Cooper CS, Tempest PR, Beckman PM, Hardin CH, Breakers P: Amplification and overex-pression of themet gene in spontaneously transformed NIH3T3 mouse fibroblasts. EMBO J 5:2623–2628;1986.

    PubMed  Google Scholar 

  37. Copeland NG, Gilbert DJ, Cho BC, Donovan PJ, Jenkins NA, Cosman D, Andersan D, Lyman SD, Williams DE: Mast cell growth factor maps near theSteel locus on mouse chromosome 10 and is deleted in a number ofsteel alleles. Cell 63:175–183;1990.

    Article  PubMed  Google Scholar 

  38. Coppola J, Bryant S, Koda T, Conway D, Barbacid M: Mechanism of activation of thevav protooncogene. Cell Growth Differ 2:95–105;1991.

    PubMed  Google Scholar 

  39. Coughlin SR, Escobedo JA, Williams LT: Role of phosphatidylinositol kinase in PDGF receptor signal transduction. Science 243:1191–1194;1989.

    PubMed  Google Scholar 

  40. Coulier F, Kumar R, Ernst M, Klein R, Martin-Zanca D, Barbacid M: Humantrk oncogenes activated by point mutation, in-frame deletion, and duplication of the tyrosine kinase domain. Mol Cell Biol 10:4202–4210;1990.

    PubMed  Google Scholar 

  41. Coulier F, Martin-Zanca D, Ernst M, Barbacid M: Mechanism of activation of the humantrk oncogene. Mol Cell Biol 9:15–23;1989.

    PubMed  Google Scholar 

  42. Crews CM, Alessandrini A, Erikson RL: The primary structure of MEK, a protein kinase that phosphorylates the ERK gene product. Science 258:478–480;1992.

    PubMed  Google Scholar 

  43. Crews CM, Erikson RL: Purification of a murine protein-tyrosine/threonine kinase that phosphorylates and activates the ERK-1 gene product: Relationship to the fission yeastbyr1 gene product. Proc Natl Acad Sci USA 89:8205–8209;1992.

    PubMed  Google Scholar 

  44. Davis S, Lu ML, Lo SH, Lin S, Butler JA, Druker BJ, Roberts TM, An Q, Chen LB: Presence of an SH2 domain in the actin-binding protein tensin. Science 252:712–715;1991.

    PubMed  Google Scholar 

  45. Downward J, Graves JD, Warne PH, Rayter S, Cantrell DA: Stimulation of p21ras upon T cell activation. Nature 346:719–723;1990.

    Article  PubMed  Google Scholar 

  46. Downward J, Yarden Y, Mayes E, Srace G, Totty N, Stockwell P, Ullrich A, Schlessinger J, Waterfield MD: Close similarity of epidermal growth factor receptor and v-erb-B oncogene protein sequences. Nature 307:521–527;1984.

    Article  PubMed  Google Scholar 

  47. Drubin DG, Mulholland J, Zhu Z, Botstein D: Homology of a yeast actin-binding protein to signal transduction proteins and myosin-I. Nature 343:288–290;1990.

    Article  PubMed  Google Scholar 

  48. Duronio V, Welham MJ, Abraham S, Dryden P, Schrader JW: p21ras activation via hemopoietin receptors and c-kit requires tyrosine kinase activity but not tyrosine phosphorylation of p21ras GTPase-activating protein. Proc Natl Acad Sci USA 89:1587–1591;1992.

    PubMed  Google Scholar 

  49. Ebina Y, Ellis L, Jarnagin K, Edery M, Graf L, Clauser E, Ou J, Masiaz F, Kan YW, Goldfine ID, Roth RA, Rutter WJ: The human insulin receptor cDNA: The structural basis for hormone-activated transmembrane signalling. Cell 40:747–758;1985.

    Article  PubMed  Google Scholar 

  50. Egan SE, Giddings BW, Brooks MW, Buday L, Sizeland AM, Weinberg RA: Association of Sosras exchange protein with Grb2 is implicated in tyrosine kinase signal transduction and transformation. Nature 363:45–51;1993.

    Article  PubMed  Google Scholar 

  51. Endemann G, Yonezawa K, Roth RA: Phosphatidylinositol kinase of an associated protein is a substrate for the insulin receptor tyrosine kinase. J Biol Chem 265:396–400;1990.

    PubMed  Google Scholar 

  52. Escobedo JA, Kaplan DR, Kavanaugh WM, Turck CW, Williams LT: A phosphatidylinositol-3' kinase binds ot platelet-derived growth factor receptor through a specific receptor sequence containing phosphotyrosine. Mol Cell Biol 11:1125–1132;1991.

    PubMed  Google Scholar 

  53. Escobedo JA, Navankasattusa S, Kavanaugh WM, Milfay D, Fried VA, Williams LT: cDNA cloning of a novel 85 kD protein that has SH2 domains and regulates binding of PI3-kinase to the PDGF β-receptor. Cell 65:75–82;1991.

    Article  PubMed  Google Scholar 

  54. Fantl WJ, Escobedo JA, Martin GA, Turck CW, Rosario MD, McCormick F, Williams LT: Distinct phosphotyrosines on a growth factor receptor bind to specific molecules that mediate different signaling pathways. Cell 69:413–423;1992.

    Article  PubMed  Google Scholar 

  55. Feig LA, Cooper GM: Inhibition of NIH3T3 cell proliferation by a mutant ras protein with preferential affinity for GDP. Mol Cell Biol 8:3235–3243;1988.

    PubMed  Google Scholar 

  56. Flanagan JG, Leder P: Thekit ligand: A cell surface molecule altered insteel mutant fibroblasts. Cell 63:185–194;1990.

    Article  PubMed  Google Scholar 

  57. Frackelton AR Jr, Ross AH, Eisen HN: Characterization and use of monoclonal antibodies for isolation of phosphotyrosine proteins from retrovirus-transformed cells and growth factor-stimulated cells. Mol Cell Biol 3:1343–1352;1983.

    PubMed  Google Scholar 

  58. Fu XY: A transcription factor with SH2 and SH3 domains is directly activated by an interferon α-induced cytoplasmic protein tyrosine kinases. Cell 70:323–335;1992.

    Article  PubMed  Google Scholar 

  59. Fu XY, Schindler C, Improta T, Aebersold R, Darnell JE: The proteins of ISGF-3, the interferon α-induced transcriptional activator, define a gene family involved in signal transduction. Proc Natl Acad Sci USA 89:7840–7843;1992.

    PubMed  Google Scholar 

  60. Fukui Y, Hanafusa H: Phosphatidylinositol kinase activity associates with viral p60src protein. Mol Cell Biol 9:1651–1568;1989.

    PubMed  Google Scholar 

  61. Fukui Y, Kornbluth S, Jong S, Wang L, Hanafusa H: Phosphatidylinositol kinase type I activity associates with various oncogene products. Oncogene Res 4:283–292;1989.

    PubMed  Google Scholar 

  62. Gale NW, Kaplan S, Lowenstein EJ, Schlessinger J, Bar-Sagi D: Grb2 mediates the EGF-dependent activation of guanine nucleotide exchange onras. Nature 363:88–92;1993.

    Article  PubMed  Google Scholar 

  63. Gibbs J, Marshall M, Scolnik E, Dixon R, Vogel U: Modulation of guanine nucleotides bound toras in NIH3T3 cells by oncogenes, growth factors, and the GTPase activating protein (GAP). J Biol Chem 265:20437–20442;1990.

    PubMed  Google Scholar 

  64. Giordano S, Ponzetto C, Di Renzo MF, Cooper CS, Comoglio PM: Tyrosine kinase receptor indistinguishable from the c-met protein. Nature 339:155–156;1989.

    Article  PubMed  Google Scholar 

  65. Giordano S, Di Renzo MF, Narsimhan R, Cooper CS, Comoglio PM: Biosynthesis of the protein encoded by the c-met proto-oncogene. Oncogene 4:1383–1388;1989.

    PubMed  Google Scholar 

  66. Glenney JR, Zokas L, Kamps MJ: Monoclonal antibodies to phosphotyrosine. J Immunol Methods 109:277–285;1988.

    Article  PubMed  Google Scholar 

  67. Gomez N, Cohen P: Dissection of the protein kinase cascade by which nerve growth factor activates MAP kinases. Nature 353:170–173;1991.

    Article  PubMed  Google Scholar 

  68. Gould KL, Hunter T: Platelet-derived growth factor induces multisite phosphorylation of pp60c-src and increases its protein tyrosine kinase activity. Mol Cell Biol 8:3345–3356;1988.

    PubMed  Google Scholar 

  69. Guan JL, Shalloway D: Regulation of focal adhesion-associated protein tyrosine kinase by both cellular adhesion and oncogenic transformation. Nature 358:690–692;1992.

    Google Scholar 

  70. Haase VH, Snijders AJ, Cooke SM, Teng MN, Kaul D, Beau MML, Bruns GAP, Bernards A: Alternatively spliced 1tk mRNA in neurons predicts a receptor with a larger putative extracellular domain. Oncogene 6:2319–2325;1991.

    PubMed  Google Scholar 

  71. Haggag N, Halegoua S, Biola M: Inhibition of growth factor-induced differentiation of PC12 cells by microinjection of antibody toras p21. Nature 319:680–682;1986.

    Article  PubMed  Google Scholar 

  72. Hall A: Signal transduction through small GTPase — a tale of two GAPs. Cell 69:389–391;1992.

    Article  PubMed  Google Scholar 

  73. Hamaguchi M, Grandori C, Hanafusa H: Phosphorylation of cellular proteins in Rous sarcoma virus infected cells: Analysis by use of antiphosphotyrosine antibodies. Mol Cell Biol 8:3035–3042;1988.

    PubMed  Google Scholar 

  74. Hamaguchi M, Matsuda M, Hanafusa H: A glycoprotein in the plasma membrane matrix as a major potential substrate of p60v-src. Mol Cell Biol 10:830–836;1990.

    PubMed  Google Scholar 

  75. Han JW, Gaut J, Burstein E, Sadowski H; Young D, Macara IG: The oncogenic protein p60v-src has competence activity but does not activate phosphatidylinositol turnover or protein kinase C in Balb/3T3 cells. Oncogene 5:467–474;1990.

    PubMed  Google Scholar 

  76. Hanks SK, Quinn AM, Hunter T: The protein kinase family: Conserved features and deduced phylogeny of the catalytic domains. Science 241:42–52;1988.

    Google Scholar 

  77. Hatakeyama M, Kono T, Kobayashi N, Kawahara A, Levin SD, Permutter RM, Taniguchi T: Interaction of the IL-2 receptor with thesrc-family kinase p56lck. Identification of novel intermolecular association. Science 252:1523–1528;1991.

    PubMed  Google Scholar 

  78. Hiles ID, Otsu M, Volinia S, Fry MJ, Gout I, Dhand R, Panyaotou G, Ruia-Larrea F, Thompson A, Totty NF, Hsuan JJ, Courtneidge SA, Parker PJ, Waterfield MJ: Phosphatidylinositol 3-kinase: Structure and expression of the 110 kd catalytic subunit. Cell 70:419–429;1992.

    Article  PubMed  Google Scholar 

  79. Holmes WE, Sliwkowski MX, Akita RW, Henzel WJ, Lee J, Park JW, Yansura D, Abadi N, Raab H, Lewis GD, Shepard HM, Kuang WJ, Wood WI, Goeddel DV, Vandlen RL: Identification of heregulin, a specific activator of p185erbB2. Science 256:1205–1210;1992.

    PubMed  Google Scholar 

  80. Horvitz HR, Sternberg PW: Multiple intercellular signalling systems control the development of theCaenorhabditis elegans vulva. Nature 351:535–541;1991.

    Article  PubMed  Google Scholar 

  81. Howes LR, Leevers SJ, Gomez N, Nakilny S, Cohen P, Marshall CJ: Activation of the MAP kinase pathway by the protein kinase raf. Cell 71:335–342;1992.

    Article  PubMed  Google Scholar 

  82. Hu P, Margolis B; Skilnik EY, Lammers R, Ullrich A, Schlessinger J: Interaction of phosphatidylinositol 3-kinase-associated p85 with epidermal growth factor and platelet-derived growth factor receptors. Mol Cell Biol 12:981–990;1992.

    PubMed  Google Scholar 

  83. Huang EK, Nocka K, Beier DR, Chu TY, Buck J, Lahm HW, Wellner D, Leder P, Besmer P: The hematopoietic growth factor KL is encoded at the SI locus and is the ligand for the c-kit receptor, the gene product of the W locus. Cell 63:225–233;1990.

    Article  PubMed  Google Scholar 

  84. Jong SM, Wang LH: The transforming protein p68gag-ros of avian sarcoma virus UR2 is a transmembrane protein with thegag portion protruding extracellularly. Oncogene Res 1:7–21;1987.

    PubMed  Google Scholar 

  85. Jong SM, Zong CS, Dorai T, Wang LH: Transforming properties and substrate specificities of the protein tyrosine kinase oncogenesros andsrc and their recombinants. J Virol 66:4909–4918;1992.

    PubMed  Google Scholar 

  86. Jove R, Hanafusa H: Cell transformation by the viralsrc oncogene. Annu Rev Cell Biol 3:31–56;1987.

    Article  PubMed  Google Scholar 

  87. Jung G, Saxe CL, Korn ED, Hammer JA III: The heavy chain ofAcanthamoeba myosine IB is a fusion of myosin-like and non-myosin-like sequences. Proc Natl Acad Sci USA 84:6720–6724;1987.

    PubMed  Google Scholar 

  88. Jung G, Saxe CL, Kimmel AR, Hammer JA III:Dictyostelium discoideum contains a gene encoding a myosin I heavy chain. Proc Natl Acad Sci USA 86:6186–6190;1989.

    PubMed  Google Scholar 

  89. Kadowaki T, Koyasu S, Nishida E, Tobe K, Izumi T, Takaku F, Sakai H, Yahara I, Masuga M: Tyrosine phosphorylation of common and specific sets of cellular proteins rapidly induced by insulin, insulin-like growth factor I, and epidermal growth factor in an intact cell. J Biol Chem 262:7342–7350;1987.

    PubMed  Google Scholar 

  90. Kamps MP, Sefton BM: identification of multiple novel polypeptide substrates of the v-src, v-yes, v-fps, v-ros, and v-erb-B oncogenic tyrosine protein kinases utilizing antisera against phosphotyrosine. Oncogene 2:305–315;1988.

    PubMed  Google Scholar 

  91. Kanner SB, Reynolds AB, Vines RR, Parsons JT: Monoclonal antibodies to individual tyrosine-phosphorylated protein substrates of oncogene-encoded tyrosine kinases. Proc Natl Acad Sci USA 87:3328–3332;1990.

    PubMed  Google Scholar 

  92. Kaplan DR, Morrison DK, Wong G, McCormick F, Williams LT: PDGF β-receptor stimulates tyrosine phosphorylation of GAP and association of GAP with a signaling complex. Cell 61:125–133;1990.

    Article  PubMed  Google Scholar 

  93. Kaplan DR, Whitman M, Schauffhausen B, Pallas DC, White M, Cantley L, Roberts TM: Common elements in growth factor stimulation and oncogenic transformation: 85 Kd phosphoprotein and phosphatidylinositol kinase activity. Cell 50:1021–1029;1987.

    Article  PubMed  Google Scholar 

  94. Katan M, Parker PJ: Oncogenes and cell control. Nature 332:203;1988.

    Article  PubMed  Google Scholar 

  95. Katzav S, Cleveland JL, Heslop HE, Pulido D: Loss of the aminoterminal helix-loop-helix domain of thevav proto-oncogene activates its transforming potential. Mol Cell Biol 11:1912–1920;1991.

    PubMed  Google Scholar 

  96. Katzav S, Martin-Zanca D, Barbacid M:vav, a novel human oncogene derived from a locus ubiquitously expressed in hematopoietic cells. EMBO J 8:2283–2290;1989.

    PubMed  Google Scholar 

  97. Kavanaugh WM, Klippel A, Escobedo JA, Williams LT: Modification of the 85-kilodalton subunit of phosphatidyl-3 kinase in platelet-derived growth factor-stimulated cells. Mol Cell Biol 12:3415–3424;1992.

    PubMed  Google Scholar 

  98. Kazlauskas A, Ellis C, Pawson T, Cooper JA: Binding of GAP to activated PDGF receptors. Science 247:1578–1581;1990.

    PubMed  Google Scholar 

  99. Kim HK, Kim JW, Zilberstein A, Margolis B, Kim JG, Schlessinger J, Rhee SG: PDGF stimulation of inositol phospholipid hydrolysis requires PLC-gamma1 phosphorylation on tyrosine residues 783 and 1254. Cell 65:435–441;1991.

    Article  PubMed  Google Scholar 

  100. King CR, Kraus MH, Aaronson SA: Amplification of a novel v-erbB-related gene in a human mammary carcinoma. Science 229:974–976;1985.

    PubMed  Google Scholar 

  101. Kitamura D, Haneko H, Miyagoe Y, Ariyasu T, Watanabe T: Isolation and characterization of a novel human gene expressed specifically in the cells of hematopoietic lineage. Nucleic Acids Res 17:9367–9379;1989.

    PubMed  Google Scholar 

  102. Klausner RD, Samelson LE: T cell antigen receptor activation pathway: The tyrosine kinase connection. Cell 64:875–878;1991.

    Article  PubMed  Google Scholar 

  103. Klein R, Conway D, Parada LF, Barbacid M: ThetrkB protein tyrosine kinase gene codes for a second neurogenic receptor that lacks the catalytic kinase domain. Cell 61:647–656;1990.

    Article  PubMed  Google Scholar 

  104. Klein R, Jung S, Nanduri V, O'Rourke E, Barbacid M: Thetrk proto-oncogene encodes a receptor for nerve growth factor. Cell 65:189–197;1991.

    Article  PubMed  Google Scholar 

  105. Klein R, Nanduri V, Jung SA, Lamballe F, Tapley P, Bryant S, Corson-Cardo C, Jones KR, Reichardt LF, Barbacid M: ThetrkB tyrosine kinase is a receptor for brain-derived neurotrophic factor and neurotrophin-3. Cell 66:395–403;1991.

    Article  PubMed  Google Scholar 

  106. Koch CA, Anderson D, Moran MF, Ellis C, Pawson T: SH2 and SH3 domains: Elements that control interactions of cytoplasmic signaling proteins. Science 252:668–674;1991.

    PubMed  Google Scholar 

  107. Kolch W, Heidecker G, Lloyd P, Rapp U: Raf-1 protein kinase is required for growth of induced NIH/3T3 cells. Nature 349:426–428;1991.

    Article  PubMed  Google Scholar 

  108. Kovacina KS, Yonezawa K, Brautigan DL, Tonks NK, Rapp UR, Roth RA: Insulin activates the kinase activity of the Raf-1 protooncogene by increasing its serine phosphrylation. J Biol Chem 265:12115–12118;1990.

    PubMed  Google Scholar 

  109. Kozma LM, Weber MJ: Constitutive phosphorylation of the receptor for insulinlike growth factor I in cells transformed by thesrc oncogene. Mol Cell Biol 10:3626–3634;1990.

    PubMed  Google Scholar 

  110. Kraus MH, Issing W, Miki T, Popesco NC, Aaronson SA: Isolation and characterization of ERBB3, a third member of the ERBB/epidermal growth factor receptor family: Evidence for overexpression in a subset of human mammary tumors. Proc Natl Acad Sci USA 86:9193–9197;1989.

    PubMed  Google Scholar 

  111. Kumjian DA, Wahl MI, Rhee SG, Daniel TO: Platelet-derived growth factor binding promotes physical association of PDGF receptor with phospholipase C. Proc Natl Acad Sci USA 86:8232–8239;1989.

    PubMed  Google Scholar 

  112. Kypta RM, Goldberg Y, Ulug E, Cortneidge SA: Association between PDGF receptor and members of thesrc family of tyrosine kinases. Cell 62:481–492;1990.

    Article  PubMed  Google Scholar 

  113. Kyriakis JM; App H, Zhang XF, Banerjee P, Brautigan DL, Rapp UL, Avruch J: Raf-1 activates MAP kinase-kinase. Nature 358:417–421;1992.

    Article  PubMed  Google Scholar 

  114. Lamballe F, Klein R, Barbacid M:trkC, a new member of thetrk family of tyrosine protein kinases, is a receptor for neurotrophin-3. Cell 66:967–979;1991.

    Article  PubMed  Google Scholar 

  115. Lehmann JM, Reithmuller G, Johnson JP: Nck, a melanoma cDNA encoding a cytoplasmic protein consists of the Src homology units SH2 and SH3. Nucleic Acid Res 18:1048;1990.

    PubMed  Google Scholar 

  116. Leto TL, Lomax KJ, Volpp BD, Nunoi H, Sechler JMG, Nauseef WM, Clark RA, Gallin JL, Malech HL: Cloning of a 67-kD neutrophil oxidase factor with similarity to a noncatalytic region of p60c-src. Science 248:727–730;1990.

    PubMed  Google Scholar 

  117. Li N, Batzer A, Daly R, Yajnik V, Skolnik E, Chardin P, Bar-Sagi D, Margolis B, Schlessinger J: Guanine-nucleotide-releasing factor hSos1 binds to Grb2 and links receptor tyrosine kinases toras signaling. Nature 363:85–88;1993.

    Article  PubMed  Google Scholar 

  118. Li P, Wood K, Mamon H, Haser W, Roberts T: Raf-1: A kinase currently without a cause but not lacking effects. Cell 64:479–482;1991.

    Article  PubMed  Google Scholar 

  119. Li W, Hu P, Skolnik EY, Ullrich A, Schlessinger J: The SH2-and SH3-containing Nck protein is oncogenic and a common target for phosphorylation by different surface receptors. Mol Cell Biol 12:5824–5833;1992.

    PubMed  Google Scholar 

  120. Liu D, Rutter WJ, Wang LH: Enhancement of transforming potential of human insulinlike growth factor I receptor by N-terminal truncation and fusion to avian sarcoma virus UR2gag sequence. J Virol 66:374–385;1992.

    PubMed  Google Scholar 

  121. Liu D, Rutter WJ, Wang LH: Modulating effects of extracellular sequence of human insulinlike growth factor I receptor on its transforming and tumorigenic potential. J Virol 67:9–18;1993.

    PubMed  Google Scholar 

  122. Liu D, Zong CS, Wang LH: Distinctive effects of carboxyl terminal sequence of insulinlike growth factor I receptor on its signaling functions. J Virol 67:6835–6840;1993.

    PubMed  Google Scholar 

  123. Lowenstein EJ, Daly RJ, Batzer AG, Li W, Margolis B, Lammers R, Ullrich A, Skolnik EY, Bar-Sagi D, Schlessinger J: The SH2 and SH3 domain-containing protein GRB2 links receptor tyrosine kinases toras signaling. Cell 70:431–442;1992.

    Article  PubMed  Google Scholar 

  124. McCormick F:ras GTPase activating protein: Signal transmitter and signal terminator. Cell 56:5–8;1989.

    Article  PubMed  Google Scholar 

  125. McGlade JA, Cheng A, Pelicci G, Pelicci PC, Pawson T: Shec proteins are phosphorylated and regulated by the v-Src and v-Fps protein-tyrosine kinases. Proc Natl Acad Sci USA 89:8869–8873;1992.

    PubMed  Google Scholar 

  126. McGlade J, Ellis C, Reedijk M, Anderson D, Mbamalu G, Reith AD, Panayotou G, End P, Bernstein A, Kazlauskas A, Waterfield MD, Pawson T: SH2 domains of the p85α subunit of phosphatidylinositol 3-kinase regulate binding to growth factor receptors. Mol Cell Biol 12:991–997;1992.

    PubMed  Google Scholar 

  127. MacNicol AM, Muslin AJ, Williams LT: Raf-1 kinase is essential for earlyXenopus development and mediates the induction of mesoderm by FGF. Cell 73:571–583;1993.

    Article  PubMed  Google Scholar 

  128. Maegawa H, McClain DA, Freidenberg G, Olefsky JM, Napier M, Lipair T, Dull TJ, Lee J, Ullrich A: Properties of a human insulin receptor with a COOH-terminal truncation. II: Truncated receptors have normal kinase activity but are defective in signaling metabolic effects. J Biol Chem 263:8912–8917;1988.

    PubMed  Google Scholar 

  129. Majerus PW, Connolly TM, Deckmyn H, Ross TS, Bross TE, Ishii H, Bansal VS, Wilson DB: The metabolism of phosphoinositide-derived messenger molecules. Science 234:1519–1526;1986.

    PubMed  Google Scholar 

  130. Margolis B, Hu H, Katzav S, Li W, Oliver JM, Ullrich A, Weiss A, Schlessinger J: Tyrosine phosphorylation ofvav proto-oncogene product containing SH2 domain and transcription factor motifs. Nature 356:71–74;1992.

    Article  PubMed  Google Scholar 

  131. Margolis B, Li N, Koch A, Mohamaddi M, Hurwitz DR, Zilberstein A, Ullrich A, Pawson T, Schlessinger J: The tyrosine phosphorylated carboxyterminus of the EGF receptor is a binding site of GAP and PLC-γ. EMBO J 9:4375–4380;1990.

    PubMed  Google Scholar 

  132. Margolis B, Rhee SG, Felder S, Mervic M, Lyall R, Levitzki A, Ullrich A, Zilberstein A, Schlessinger J: EGF induces tyrosine phosphorylation of phospholipase C-II: A potential mechanism for EGF signalling. Cell 57:1101–1107;1989.

    Article  PubMed  Google Scholar 

  133. Margolis B, Silvennoinen O, Comoglio F, Roonprapunt C, Skolnik E, Ullrich A, Schlessinger J: High efficiency expression/cloning of epidermal growth factor receptor binding proteins withsrc homology 2 domains. Proc Natl Acad Sci USA 89:8894–8898;1992.

    PubMed  Google Scholar 

  134. Marshall CJ: How does p21ras transform cells? Trends Genet 7:91–95;1991.

    PubMed  Google Scholar 

  135. Martin GA, Yantani A, Clark R, Conroy L, Polakis P, Brown AM, McCormick F: GAP domains responsible forras p21-dependent inhibition of muscarinic atrial K+ channel currents. Science 255:192–194;1992.

    PubMed  Google Scholar 

  136. Martin-Zanca D, Hughes SH, Barbacid M: A human oncogene formed by the fusion of truncated tropomyosin and protein tyrosine kinase sequences. Nature 319:743–748;1986.

    Article  PubMed  Google Scholar 

  137. Martin-Zanca D, Oskam R, Mitra G, Copeland T, Barbacid M: Molecular and biochemical characterization of the humantrk protooncogene. Mol Cell Biol 9:24–33;1989.

    PubMed  Google Scholar 

  138. Massoglia S, Gray A, Dull TJ, Munemitsu S, Kung HJ, Schlessinger J, Ullrich A: Epidermal growth factor receptor cytoplasmic domain mutations trigger ligand-independent transformation. Mol Cell Biol 10:3048–3055;1992.

    Google Scholar 

  139. Matouka K, Shibata M, Yamakawa A, Takenawa T: Cloning of ASH, a ubiquitous protein composed of onesrc homology region 2 and two SH3 domains, From human and rat cDNA libraries. Proc Natl Acad Sci USA 89:9015–9019;1992.

    PubMed  Google Scholar 

  140. Matsuda M, Mayer BJ, Fukui Y, Hanafusa H: Binding of transforming protein, p47gag-crk, to a broad range of phosphotyrosine containing proteins. Science 248:1537–1539;1990.

    PubMed  Google Scholar 

  141. Matsushime H, Shibuya M: Tissue specific expression of rat c-ros-1 gene and partial structural similarity of its predicted products withsev protein ofDrosophila melanogaster. J Virol 64:2117–2125;1990.

    PubMed  Google Scholar 

  142. Matsushime H, Wang LH, Shibuya M: Human c-ros-1 gene homologous to the v-ros sequence of UR2 sarcoma virus encodes a transmembrane receptorlike molecule. Mol Cell Biol 6:3000–3004;1986.

    PubMed  Google Scholar 

  143. Matthews W, Jordan CT, Wiegand GW, Pardoll D, Lemischka IR, A receptor tyrosine kinase specific to hematopoietic stem and progenitor cell-enriched populations. Cell 65:1143–1152;1991.

    Article  PubMed  Google Scholar 

  144. Mayer BJ, Hamaguchi M, Hanafusa H: A novel viral oncogene with structural similarity to phospholipase C. Nature 332:272–275;1988.

    Article  PubMed  Google Scholar 

  145. Mayer BJ, Hanafusa H: Association of the v-crk oncogene product with phosphotyrosine-containing proteins and protein tyrosine kinase activity. Proc Natl Acad Sci USA 87:2638–2642;1990.

    PubMed  Google Scholar 

  146. Mayer BJ, Jackson PK, Baltimore D: The noncatalyticsrc homology region-2 segment ofabl tyrosine kinase binds to tyrosine-phosphorylated cellular proteins with high affinity. Proc Natl Acad Sci USA 88:627–631;1991.

    PubMed  Google Scholar 

  147. Mayer BJ, Jackson PK, Van Etten RA, Baltimore D: Point mutations in theabl SH2 domain coordinately impair phosphotyrosine binding in vitro and transformation activity in vivo. Mol Cell Biol 12:609–618;1992.

    PubMed  Google Scholar 

  148. Meisenhelder J, Hunter T: The SH2- and SH3-containing protein Nck is recognized by certain anti-phospholipase C-γ1 monoclonal antibodies, and its phosphorylation on tyrosine is stimulated by PDGF and EGF treatment. Mol Cell Biol 12:5843–5856;1992.

    PubMed  Google Scholar 

  149. Meisenhelder J, Suh PG, Rhee SG, Hunter T: Phospholipase C-γ is a substrate for the PDGF and EGF receptor protein-tyrosine kinases in vivo and in vitro. Cell 57:1109–1122;1989.

    Article  PubMed  Google Scholar 

  150. Mignery GA, Sudhof TC: The ligand binding site and transduction mechanism in the inositol-1,4,5-trisphosphate receptor. EMBO J 9:3893–3898;1990.

    PubMed  Google Scholar 

  151. Mohammadi M, Dionne CA, Li W, Li N, Spivak T, Honegger AM, Jaye M, Schlessinger J: Point mutation in FGF receptor eliminates phosphatidylinositol hydrolysis without affecting mitogenesis. Nature 358:681–684;1992.

    Article  PubMed  Google Scholar 

  152. Mondino A, Giordano S, Comoglio PM: Defective posttranslational processing activates tyrosine kinase encoded by the MET protooncogene (hepatocyte growth factor receptor). Mol Cell Biol 11:6084–6092;1991.

    PubMed  Google Scholar 

  153. Moran MF, Koch CA, Anderson D, Ellis C, England L, Martin GS, Pawson T:src homology region 2 domains direct protein-protein interactions in signal transduction. Proc Natl Acad Sci USA 87:8622–8626;1990.

    PubMed  Google Scholar 

  154. Morgan SJ, Smith AD, Parker PJ: Purification and characterization of bovine brain type I phosphatidylinositol kinase. Eur J Biochem 191:761–767;1990.

    Article  PubMed  Google Scholar 

  155. Morrison DK, Kaplan DR, Esscobedo JA, Rapp UR, Roberts TM, Williams LT: Direct activation of the serine/threonine kinase activity of Raf-1 through tyrosine phosphorylation by the PDGF β-receptor. Cell 58:649–657;1989.

    Article  PubMed  Google Scholar 

  156. Morrison DK, Kaplan DR, Rhee SG, Williams LT: PDGF-dependent association of PLC-gamma with the PDGF receptor signaling complex. Mol Cell Biol 10:2359–2366;1990.

    PubMed  Google Scholar 

  157. Musacchio A, Noble M, Paubtit R, Wierenga R, Saraste M: Crystal structure of a Srchomology 3 (SH3) domain. Nature 359:851–855;1992.

    Article  PubMed  Google Scholar 

  158. Myers MG, Backer JM Sun XJ, Shoelson SE, Hu P, Schlessinger J, Yoakim M, Schaffhausen B, White MF: IRS-1 activates phosphatidylinositol 3′-kinase by associating withsrc homology 2 domain of p85. Proc Natl Acad Sci USA 89:10350–10354;1992.

    PubMed  Google Scholar 

  159. Nada S, Okada M, MacAuley A, Cooper JA, Nakagawa H: Cloning of a complementary DNA for a protein-tyrosine kinase that specifically phosphorylates a negative regulatory site of p60c-src. Nature 351:69–72;1991.

    Article  PubMed  Google Scholar 

  160. Neckameyer WS, Shibuya M, Hsu MT, Wang LM: Proto-oncogene c-ros codes for a molecule with structural features common to those of growth factor receptors and displays tissue-specific and developmentally regulated expression. Mol Cell Biol 6:1478–1486;1986.

    PubMed  Google Scholar 

  161. Neckameyer WS, Wang LH: Molecular cloning and characterization of avian sarcoma virus UR2 and comparison of its transforming sequence with those of other avian sarcoma viruses. J Virol 50:914–921;1984.

    PubMed  Google Scholar 

  162. Neckameyer WS, Wang LH: Nucleotide sequence of avian sarcoma virus UR2 and comparison of its transforming gene with other members of the tyrosine protein kinase oncogene family. J Virol 53:879–884;1985.

    PubMed  Google Scholar 

  163. Nishibe S, Wahl MI, Wedegaertner PB, Kim JJ, Rhee SG, Carpenter G: Selectivity of phospholipase C phosphorylation by the epidermal growth factor receptor, the insulin receptor, and their cytoplasmic domains. Proc Natl Acad Sci USA 87:424–428;1990.

    PubMed  Google Scholar 

  164. Nishiyama M, Wands JR: Cloning and increased expression of an insulin receptor substrate-1-like gene in human hepatocellular carcinoma. Biochem Biophys Res Commun 183:280–285;1992.

    Article  PubMed  Google Scholar 

  165. Nishizuka Y: Turnover of inositol phospholipids and signal transduction. Science 225:1365–1370;1984.

    Google Scholar 

  166. O'Bryan JP, Frye RA, Cogswell PC, Neubauer A, Kitch B, Prokop C, Espinosa R, Meau MM, Earp HS, Liu ET:axl, a transforming gene isolated from primary human myeloid leukemia cells, encodes a novel receptor tyrosine kinase. Mol Cell Biol 11:5016–5031;1991.

    PubMed  Google Scholar 

  167. Okada M, Nada S, Yamanashi Y, Yamamoto T, Nakagawa H: CSK: A protein tyrosine kinase involved in regulation ofsrc family kinases. J Biol Chem 266:24249–24252;1991.

    PubMed  Google Scholar 

  168. Okada M, Nakagawa H: A protein tyrosine kinase involved in regulation of pp60c-src. J Biol Chem 264:20886–20893;1989.

    PubMed  Google Scholar 

  169. Ogita K, Koide H, Kikkawa U, Kishimoto A, Nishizuka J: The heterogeneity of protein kinase C in signal transduction cascade; in Nishizuka J, et al. (eds): The Biology and Medicine of Signal Transduction. New York, Raven, 218–223;1990.

    Google Scholar 

  170. Oliver JP, Raabe T, Henkemeyer M, Dickson B, Mbamalu G, Margolis B, Schlessinger J, Hafen E, Pawson T: ADrosophila SH2-SH3 adaptor protein implicated in coupling the Sevenless tyrosine kinase to an activator of Ras guanine nucleotide exchange, Sos. Cell 73:179–191;1993.

    Article  Google Scholar 

  171. Osu M, Hiles I, Gout I, Fry MJ, Ruiz-Larrea F, Panayotou G, Thompson A, Dhand R, Hsuan J, Totty N, Smith AD, Morgan SJ, Courtneidge SA, Parker PJ, Waterfield MD: Characterization of two 85 kD proteins that associate with receptor tyrosine kinases, middle-T/pp60v-src complexes, and PI3-kinase. Cell 65:91–104;1991.

    Article  PubMed  Google Scholar 

  172. Overduin M, Rios CB, Mayer BJ, Baltimore D, Cowburn D: Three-dimensional solution structure of thesrc homology 2 domain of c-abl. Cell 70:697–704;1992.

    Article  PubMed  Google Scholar 

  173. Park D, Rhee SG: Phosphorylation of Nck in response to a variety of receptors, phorbol myristate acetate, and cyclic AMP. Mol Cell Biol 12:5816–5823;1992.

    PubMed  Google Scholar 

  174. Park M, Dean M, Cooper CS, Schmidt M, O'Brien SJ, Blair DG, Vande Woude GF: Mechanisms ofmet oncogene activation. Cell 45:895–904;1986.

    Article  PubMed  Google Scholar 

  175. Pasquale EB, Singer SJ: Identification of a developmentally regulated protein-tyrosine kinase by using anti-phosphotyrosine antibodies to screen a cDNA library. Proc Natl Acad Sci USA 86:5449–5453;1989.

    PubMed  Google Scholar 

  176. Pawson T, Gish GD: SH2 and SH3 domains: From structure to function. Cell 71:359–362;1992.

    Article  PubMed  Google Scholar 

  177. Peles E, Bacus SS, Koski RA, Lu HS, Wen D, Ogden SG, Ben-Levy R, Yarden Y: Isolation of the Neu/HER2 stimulatory ligand: A 44kd glycoprotein that induces differentiation of mammary tumor cells. Cell 69:205–216;1992.

    Article  PubMed  Google Scholar 

  178. Pelicci G, Lanfrancone L, Grignani F, McGlade J, Cavallo F, Forni G, Nicoletti I, Grignani F, Pawson T, Pelicci PG: A novel transforming protein (SHC) with an SH2 domain is implicated in mitogenic signal transduction. Cell 70:93–104;1992.

    Article  PubMed  Google Scholar 

  179. Peters KG, Marie J, Wilson E, Ives HE, Escobedo J, Rosario MD, Mirda D, Williams LT: Point mutation of an FGF receptor abolishes phosphatidylinositol turnover and Ca2+ flux but not mitogenesis. Nature 358:678–681;1992.

    Article  PubMed  Google Scholar 

  180. Poon BD, Dixon D, Ellis L, Roth RA, Rutter WJ, Wang LH: Molecular basis for the activation of the tumorigenic potential of Gag-insulin receptor chimeras. Proc Natl Acad Sci USA 88:877–881;1991.

    PubMed  Google Scholar 

  181. Pulverer BJ, Kyriakis JM, Avruch J, Nikolakaki E, Woodgett JR: Phosphorylation of c-jun mediated by MAP kinases. Nature 353:670–674;1991.

    PubMed  Google Scholar 

  182. Qureshi SA, Joseph CK, RIm M, Maroney A, Foster DA: v-Src activates both protein kinase C-dependent and independent pathways in murine fibroblasts. Oncogene 6:995–999;1991.

    PubMed  Google Scholar 

  183. Rapp UR, Heidecker G, Huleihel M, Cleveland JL, Choi WC, Pawson T, Ihle JN, Anderson WB:raf family serine/threonine protein kinases in mitogen signal transduction. Cold Spring Harbor Symp Qant Biol 53:173–184;1988.

    Google Scholar 

  184. Reichman CT, Mayer BJ, Keshav S, Hanafusa H: The product of the cellularcrk gene consists primarily of SH2 and SH3 regions. Cell Growth Differ 3:451–460;1992.

    PubMed  Google Scholar 

  185. Ren RB, Mayer B, Ciccetti P, Baltimore D: Identification of a ten-amino acid proline-rich SH3-binding site. Science 259:1157–1161;1993.

    PubMed  Google Scholar 

  186. Reynolds AB, Kanner SB, Wang HCR, Parsons JT: Stable association of activated pp60src with two tyrosine phosphorylated cellular proteins. Mol Cell Biol 9:3951–3958;1989.

    PubMed  Google Scholar 

  187. Rhee SG, Suh PG, Ryu SH, Lee SY: Studies of inositol phospholipid-specific phospholipase C. Science 244:546–550;1989.

    PubMed  Google Scholar 

  188. Riotin D, Margolis B, Mohammadi M, Daly RJ, Daum G, Li N, Fisher EH, Burgess WH, Ullrich A, Schlessinger J: SH2 domains prevent tyrosine dephosphorylation of the EGF receptor: Identification of Tyr992 as the high-affinity binding site for SH2 domains of phospholipase Cγ. EMBO J 11:559–567;1992.

    PubMed  Google Scholar 

  189. Rodaway AR, Steinberg MJE, Bentley DL: Similarity among membrane proteins. Nature 342:624;1989.

    Article  PubMed  Google Scholar 

  190. Ross AH, Baltimore D, Eisen HN: Phosphotyrosine-containing proteins isolated by affinity chromatography with antibodies to a synthetic hapten. Nature 294:654–656;1981.

    Article  PubMed  Google Scholar 

  191. Russel MF, Rettenmier CW, Look AT, Sheer CJ: Cell surface expression of v-fms-coded glycoproteins is required for transformation. Mol Cell Biol 4:1999–2009;1984.

    PubMed  Google Scholar 

  192. Rozakis-Adcock M, Fernley R, Wade J, Pawson T, Bowtell D: The SH2 and SH3 domains of mammalian Grb2 couple the EGF receptor to theras activator mSos1. Nature 363:83–85;1993.

    Article  PubMed  Google Scholar 

  193. Rozakis-Adcock M, McGlade M, Mbamalu G, Pelicci G, Daly R, Li W, Batzer A, Pelicci PG, Schlessinger J, Pawson T: Association of the Shc and Grb2/Sem-5 SH2-containing proteins is implicated in activation of the Ras pathway by tyrosine kinase. Nature 360:689–692;1992.

    Google Scholar 

  194. Ruff P, Speicher DW, Husain-Chishti A: Molecular identification of a major palmitoylated erythrocyte membrane protein containing thesrc homology 3 motif. Proc Natl Acad Sci USA 88:6595–6599;1991.

    PubMed  Google Scholar 

  195. Russell RB, Breed J, Barton GJ: Conservation analysis and structure prediction of the SH2 family of phosphotyrosine binding domains. FEBS Lett 304:15–20;1992.

    Article  PubMed  Google Scholar 

  196. Ruta M, Burgess W, Givol D, Epstein J, Neiger N, Kaplow J, Crumley G, Dionne C, Jaye M, Schlessinger J: Receptor for acidic fibro-blast growth factor is related to the tyrosine kinase encoded by thefms like gene (flg). Proc Natl Acad Sci USA 86:8722–8726;1989.

    PubMed  Google Scholar 

  197. Sabe H, Knudsen B, Okada M, Nada S, Nakagawa H, Hanafusa H: Molecular cloning and expression of chicken C-terminussrc kinase: Lack of stable association with c-src protein. Proc Natl Acad Sci USA 89:2190–2194;1992.

    PubMed  Google Scholar 

  198. Sabe H. Okada M, Nakagawa H, Hanafusa H: Activation of c-src in cells bearing v-crk and its suppression bycsk. Mol Cell Biol 12:4706–4713;1992.

    PubMed  Google Scholar 

  199. Sacca R, Stanley ER, Sherr CJ, Rettenmier CW: Specific binding of the mononuclear phagocyte colony-stimulating actor CSF-1 to the product of the v-fms oncogene. Proc Natl Acad Sci USA 83:3331–3335;1986.

    PubMed  Google Scholar 

  200. Sadowski I, Stone JC, Pawson T: A noncatalytic domain among cytoplastic protein tyrosine kinases modifies the kinase function and transforming activity of Fujinami sarcoma virus P130gag-fps. Mol Cell Biol 6:4396–4408;1986.

    PubMed  Google Scholar 

  201. Sartoh T, Endo M, Nakafuku M, Nakamura S, Kaziro Y: Platelet-derived growth factor stimulates formation of active p21ras. GTP compelx in Swiss mouse 3T3 cells. Proc Natl Acad Sci USA 87:5993–5997;1990.

    PubMed  Google Scholar 

  202. Schaller MD, Borgman CA, Cobb BS, Vines RR, Reynolds AB, Parsons JT: pp125FAK, a structurally distinctive protein-tyrosine kinase associated with focal adhesions. Proc Natl Acad Sci USA 89:5192–5196;1992.

    PubMed  Google Scholar 

  203. Schechter AL, Stern DF, Vaidyanathan L, Decker SJ, Drebin JA, Greene MI, Weinberg RA: Theneu oncogene: anerbB-related gene encoding a 185,000-Mr tumor antigen. Nature 312:513–516;1985.

    Article  Google Scholar 

  204. Schlessinger J: Signal transduction by allosteric receptor oligomerization. Trends Biochem Sci 13:443–447;1988.

    Article  PubMed  Google Scholar 

  205. Settleman J, Narasimhan V, Foster LC, Weinberg RA: Molecular cloning of cDNAs encoding the GAP-associated protein p190: Implications for a signaling pathway fromras to the nucleus. Cell 69:539–549;1992.

    Article  PubMed  Google Scholar 

  206. Shen SH, Bastien L, Posner BI, Chretien P: A protein tyrosine phosphatase with sequence similarity to the SH2 domain of the protein tyrosine kinases. Nature 352:736–739;1991.

    Article  PubMed  Google Scholar 

  207. Shoelson SE, Chatterjee S, Chaudhuri M, White MF: YMXM motifs of IRS-1 define substrate specificity of the insulin receptor kinase. Proc Natl Acad Sci USA 89:2027–2031;1992.

    PubMed  Google Scholar 

  208. Shier P, Watt VM: Primary structure of a putative receptor for a ligand of the insulin family. J Biol Chem 264:14605–14608;1989.

    PubMed  Google Scholar 

  209. Shu HKG, Pelly RJ, Kung HJ: Dissecting the activating mutations in v-erbB or avian erythroblastosis virus strain R. J Virol 65:6173–6180;1991.

    PubMed  Google Scholar 

  210. Simon MA, Bowtell D, Dodson GS, Laverty TR, Rubin GM: Ras1 and a putative guanine nucleotide exchange factor perform crucial steps in signaling by the sevenless protein tyrosine kinase. Cell 67:701–716;1991.

    Article  PubMed  Google Scholar 

  211. Simon MA, Dodson GS, Rubin GM: An SH3-SH2-SH3 protein in required for p21ras1 activation and binds to sevenless and Sos proteins in vitro. Cell 73:169–177;1993.

    Article  PubMed  Google Scholar 

  212. Sjolander A, Yamamoto K, Huber BE, Lapetina EG: Association of p21ras with phosphatidylinositol 3-kinase. Proc Natl Acad Sci USA 88:7908–7912;1991.

    PubMed  Google Scholar 

  213. Skolnik EY, Margolis B, Mohammadi M, Lowenstein E, Fischer R, Drepps A, Ullrich A, Schlessinger J: Cloning of P13 kinase-associated p85 utilizing a novel method for expression/cloning of target proteins for receptor tyrosine kinases. Cell 65:83–90;1991.

    Article  PubMed  Google Scholar 

  214. Smith DR, Vogt PK, Hayman MJ: The v-sea oncogene of the avian retrovirus S13: Another member of the protein tyrosine kinase gene family. Proc Natl Acad Sci USA 86:5291–5296;1989.

    PubMed  Google Scholar 

  215. Smith MR, Degudicibus SJ, Stacey DW: Requirement for c-ras proteins during viral oncogene transformation. Nature 320:540–543;1986.

    Google Scholar 

  216. Sonnenberg E, Godecke A, Walter B, Bladt F, Birchmeier C: Transient and locally restricted expression of theros1 protooncogene during mouse development. EMBO J 10:3693–3702;1991.

    PubMed  Google Scholar 

  217. Spangler R, Joseph C, Qureshi SA, Berg KL, Foster DA: Evidence thatsrc and v-fps gene products use a protein kinase C-mediated pathway to induce expression of a transformation-related gene. Proc Natl Acad Sci USA 86:7017–7021;1989.

    PubMed  Google Scholar 

  218. Stahl ML, Ferenz CR Kelleher KL, Kriz RW, Knopf JL: Sequence similarity of phopholipase C with the non-catalytic region ofsrc. Nature 332:269–272;1988.

    Article  PubMed  Google Scholar 

  219. Sturgill TW, Ray LB, Erikson E, Maller JL: Insulin-stimulated MAP-2 kinase phosphorylates and activates ribosomal protein S6 kinase II. Nature 334:715–718;1988.

    Article  PubMed  Google Scholar 

  220. Suh PS, Ryu SH, Moon KH, Suh HW, Rhee SG: Inositol phospholipid-specific phospholipase C: Complete cDNA and protein sequences and sequence homology to tyrosine kinase-related oncogene products. Proc Natl Acad Sci USA 85:5419–5423;1988.

    PubMed  Google Scholar 

  221. Suh P, Ryu SH, Moon KH, Suh HW, Rhee SG: Cloning and sequence of multiple forms of phospholipase C. Cell 54:161–169;1988.

    Article  PubMed  Google Scholar 

  222. Sun XJ, Rothenberg P, Kahn CR, Backer JM, Araki E, Wilden PA, Cahill DA, Goldstein BJ, White MF: Structure of the insulin receptor substrate IRS-1 defines a unique signal transduction protein. Nature 352:73–77;1991.

    Article  PubMed  Google Scholar 

  223. Takahashi M, Cooper GM:ret transforming gene encodes a fusion protein homologous to tyrosine kinases. Mol Cell Biol 7:1378–1385;1987.

    PubMed  Google Scholar 

  224. Tempest PR, Cooper CS, Major GN: The activated humanmet gene encodes a protein tyrosine kinase. FEBS Lett 209:357–360;1986.

    Article  PubMed  Google Scholar 

  225. Tessarollo L, Nagarajan L, Parada L: c-ros: The vertebrate homolog of the sevenless tyrosine kinase receptor is tightly regulated during organogenesis in mouse embryonic development. Development 115:11–20;1992.

    PubMed  Google Scholar 

  226. Thomas G: MAP kinase by any other name smells just as sweet. Cell 68:3–6;1992.

    Article  PubMed  Google Scholar 

  227. Trahey M, Wang G, Halenbeck R, Rubinfeld B, Martin GA, Ladner M, Long CM, Crosier WJ, Watt K, Koths K, McCormick F: Molecular cloning of two types of GAP complementary DNA from human placenta. Science 242:1697–1700;1988.

    PubMed  Google Scholar 

  228. Truehart J, Boeke JD, Fink GR: Two genes required for cell fusion during yeast conjugation: Evidence for a pheromone-induced surface protein. Mol Cell Biol 7:2316–2328;1987.

    PubMed  Google Scholar 

  229. Ullrich A, Bell J, Chen EY, Herrera R, Petruzzelli LM, Dull TJ, Gray A, Coussens L, Liao YC, Tsubokawa M, Mason A, Seeburg PH, Grunfeld C, Rosen OM, Ramachandran J: Human insulin receptor and its relationship to the tyorsine kinase family of oncogenes. Nature 313:756–761;1985.

    Article  PubMed  Google Scholar 

  230. Ullrich A, Gray A, Tam AW, Yang-Feng T, Tsubokawa M, Jacobs S, Francke U, Ramachandran J, Fujita-Yamaguchi Y: Insulin-like growth factor I receptor primary structure: Comparison with insulin receptor suggests structural determinants that define functional specificity. EMBO J 5:2503–2512;1986.

    PubMed  Google Scholar 

  231. Ullrich A, Schlessinger J: Signal transduction by receptors with tyrosine kinase activity. Cell 61:202–212;1990.

    Article  Google Scholar 

  232. Varticovski L, Drucker B, Morrison D, Cantley L, Roberts T: The colony stimulating factor-1 receptor associates with and activates phosphatidylinositol-3 kinase. Nature 342:699–702;1989.

    Article  PubMed  Google Scholar 

  233. Velazquez L, Fellous M, Stark GR: Pellegrini S: A protein tyrosine kinase in the interferon α/β signaling pathway. Cell 70:313–322;1992.

    Article  PubMed  Google Scholar 

  234. Vogel US, Dixon RAF, Schaber MD, Diehl RE, Marshall MS, Scolnick EM, Gibbs JB: Cloning of bovine GAP and its interaction with oncogenicras p21. Nature 335:90–93;1988.

    Article  PubMed  Google Scholar 

  235. Volpp BD, Nauseef WM, Donelson JE, Moser DR, Clark RA: Cloning of the cDNA and functional expression of the 47-kD cytosolic component of human neutrophil respiratory burst oxidase. Proc Natl Acad Sci USA 86:7195–7199;1989.

    PubMed  Google Scholar 

  236. Wages DS, Keeper J, Rall TB, Weber MJ: Mutations in the SH3 domain of thesrc oncogene which decrease association of phosphatidylinositol 3-kinase activity with pp60v-src and alter cell morphology. J Virol 66:1866–1874;1992.

    PubMed  Google Scholar 

  237. Wahl MI, Nishibe S, Suh PG, Rhee SG, Carpenter G: Epidermal growth factor stimulates tyrosine phosphorylation of phospholipase C (II) independently of receptor internalization and extracellular calcium. Proc Natl Acad Sci USA 86:1568–1572;1989.

    PubMed  Google Scholar 

  238. Waksman G, Kominos D, Robertson SC, Pant N, Baltimore D, Birge RB, Cowburn D, Hanafusa H, Mayer BJ, Overduin M, Resh MD, Rios CB, Silverman L, Kuriyan J: Crystal structure of the phosphotyrosine recognition domain of v-src complexes with tyrosinephosphorylated peptides. Nature 358:645–653;1992.

    Google Scholar 

  239. Wang LH: The ros oncogene; in Reddy EP, Skalka AM, Curran T (eds): The Oncogene Handbook. Amsterdam, Elsevier, 135–148;1988.

    Google Scholar 

  240. Wang LH, Hanafusa H, Noter MFD, Balduzzi PC: Genetic structure and transforming sequence of avian sarcoma virus UR2. J Virol 41:833–841;1982.

    PubMed  Google Scholar 

  241. Wang LH, Lin B, Jong SM, Dixon D, Ellis L, Roth RA, Rutter WJ: Activation of trnsforming potential of the human insulin receptor gene. Proc Natl Acad Sci USA 84:5725–5729;1987.

    PubMed  Google Scholar 

  242. Wasenius VM, Saraste M, Salven P, Eramaa M, Holm L, Lehto VP: Primary structure of the brain α-spectrin. J Cell Biol 108:79–93;1989.

    Article  PubMed  Google Scholar 

  243. Wen D, Peles E, Cupples R, Suggs SV, Bacus SS, Luo Y, Trail G, Hu S, Silbiger SM, Levy RB, Koski RA, Lu HS, Yardan Y: Neu differentiation factor: A transmembrane glycoprotein containing an EGF domain and an immunoglobulin homology unit. Cell 69:559–572;1992.

    Article  PubMed  Google Scholar 

  244. Westermark B, Heldin CH: Activation of proto-oncogenes coding for growth factors or growth factor receptors; in Klein G (ed): Cellular Oncogene Activation. New York, Marcel Dekker, 149–180;1988.

    Google Scholar 

  245. Whitman MD, Downes CP, Keeler M, Keller T, Cantley L: Type I phosphatidylinositol kinase makes a novel inositol phospholipid, phosphatidylinositol-3-phosphate. Nature 332:644–646;1988.

    Article  PubMed  Google Scholar 

  246. Whitman M, Kaplan D, Roberts T, Cantley L: Evidence for two distinct phosphatidylinositol kinases in fibroblasts: Implication for cellular regulation. Biochem J 247:165–174;1987.

    PubMed  Google Scholar 

  247. Whitman M, Kaplan DR, Schaffhausen B, Cantley L, Roberts TM: Association of phosphatidylinositol kinase activity with polyoma middle-T competent for transformation. Nature 315:239–242;1985.

    Article  PubMed  Google Scholar 

  248. Williams DE, Eisenman J, Baird A, Rauch C, Ness KV, March CJ, Park LS, Martin V, Mochizuki DY, Bosusell HS, Burgess GS, Cosman D, Lyman SD: Identification of a ligand for the c-kit proto-oncogene. Cell 63:167–174;1990.

    Article  PubMed  Google Scholar 

  249. Williams LT: Signal transduction by the platelet-derived growth factor receptor. Science 243:1564–1570;1989.

    Google Scholar 

  250. Wong G, Muller O, Clark R, Conroy L, Moran MF, Polakis P, McCormick F: Molecular cloning and nucleic binding properties of the GAP-associated tyrosine phosphorprotein p62. Cell 69:551–558;1992.

    Article  PubMed  Google Scholar 

  251. Wood KW, Sarnecki C, Roberts TM, Blenis J:ras mediates nerve growth factor receptor modulation of three signal-transducing protein kinases: MAP kinase,raf-1, andrsk. Cell 68:1041–1050;1992.

    Article  PubMed  Google Scholar 

  252. Wu H, Reynolds AB, Kanner AB, Vines RR, Parsons JT: Identification and characterization of a novel cytoskeleton-associated pp60src. Mol Cell Biol 11:5113–5124;1991.

    PubMed  Google Scholar 

  253. Xu G, Boris L, Tanaka K, Dunn D, Wood D, Gesteland R, White R, Weiss R, Tamanoi F: The catalytic domain of the neurofibromatosis type I gene product stimulatesras GTPase and complement ira mutants ofS. cerevisiae. Cell 63:835–841;1990.

    Article  PubMed  Google Scholar 

  254. Xu G, O'Connell P, Viskochil D, Cawthon R, Robertson M, Culver M, Dunn D, Stevens J, Gesteland R, White R, Weiss R: The neurofibromatosis type I gene encodes a protein related to GAP. Cell 62:599–608;1990.

    Article  PubMed  Google Scholar 

  255. Yamamoto T, Hihara H, Nishda T, Kawai S, Toyoshima K: A new avian erythroblastosis virus, AEV-H carrieserbB gene responsible for the induction of both erythroblastosis and sarcomas. Cell 34:225–234;1983.

    Article  PubMed  Google Scholar 

  256. Yamanashi Y, Fukui Y, Wongsasant B, Kinoshita Y, Ichimori Y, Toyoshima K, Yamamoto T: Activation of Src-like protein-tyrosine kinase Lyn and its association with phosphatidylinositol 3-kinase upon B-cell antigen receptor-mediated signaling. Proc Natl Acad Sci USA 89:1118–1122;1992.

    PubMed  Google Scholar 

  257. Yamanashi Y, Okada M, Semba T, Yamori T, Umemori H, Tsunasawa S, Toyoshima K, Kitamura D, Watanabe T, Yamamoto T: Identification of HS1 protein as a major substrate for protein-tyrosine kinases upon B-cell antigen receptor-mediated signaling. Proc Natl Acad Sci USA 90:3631–3635;1993.

    PubMed  Google Scholar 

  258. Yarden Y, Kuang WJ, Yang-Feng T, Coussens L, Munemitsu S, Dull TJ, Chen E, Schlessinger J, Franckie U, Ullrich A: Human protooncogene c-kit: A new cell surface receptor tyrosine kinase for an unindentified ligand. EMBO J 6:3341–3351;1987.

    PubMed  Google Scholar 

  259. Yarden J, Schlessinger J: Epidermal growth factor induces rapid, reversible aggregation of the purified epidermal growth factor receptor. Biochemistry 26:1443–1451;1987.

    Article  PubMed  Google Scholar 

  260. Zheng XM, Wang Y, Pallen CJ: Cell transformation and activation of pp60c-src by overexpression of a protein tyrosine phosphatase. Nature 359:336–339;1992.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, D., Wang, LH. Oncogenes, protein tyrosine kinases, and signal transduction. J Biomed Sci 1, 65–82 (1994). https://doi.org/10.1007/BF02257980

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02257980

Key Words

Navigation