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Abstract

We study, by means of a variational method, the stability of a condensate in

a magnetically trapped atomic Bose gas with a negative scattering length and

find that the condensate is unstable in general. However, for temperatures

sufficiently close to the critical temperature the condensate turns out to be

metastable. For that case we determine in the usual WKB approximation the

decay rate of the condensate due to macroscopic quantum fluctuations. When

appropriate, we also calculate the decay rate due to thermal fluctuations. An

important feature of our approach is that (nonsingular) phase fluctuations of

the condensate are taken into account exactly.
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I. INTRODUCTION

The observation of Bose-Einstein condensation in dilute atomic 87Rb [1], 7Li [2], and

23Na [3] vapors last year, has created a great deal of excitement in the atomic physics

community. Although it was speculated upon already for some time, the actual observation

of the condensation phenomenon in these alkali gases nevertheless came as somewhat of a

surprise, because in the spring of 1995 experiments with a trapped atomic hydrogen gas still

held the record in achieving the necessary conditions for Bose-Einstein condensation [4,5].

The main reasons for this unexpected turn of events appear to be that alkali atoms are much

more easy to detect and that experiments with alkali vapors can be performed at room

temperature in contrast with the cryogenic environment that is required for experiments

with an atomic hydrogen gas.

The report of Bose-Einstein condensation in atomic 7Li was also surprising for another,

more fundamental, reason. It had namely been established experimentally [6] that the

effective interaction between two 7Li atoms is attractive, or more precisely that the s-wave

scattering length a is negative. For a homogeneous gas this implies that Bose-Einstein

condensation cannot take place in the mechanically (meta)stable region of the phase diagram

and is preempted by a first-order gas-liquid or gas-solid transition [7]. Although first Hulet

[8] and subsequently also Ruprecht et al. [9] had suggested that this conclusion holds in

an inhomogeneous situation only if the number of atoms is sufficiently large, the number

of atoms used in the experiment indeed appeared to be too large by about two orders of

magnitude.

At present, this unsatisfactory state of affairs still exists, i.e. experiment claims to observe

a condensate in a gas with a negative scattering length whereas theory seems to predict that

this should not be possible. In an attempt to bridge at least part of the gap between theory

and experiment, we study in Sec. III for zero and subsequently also for nonzero temperatures,

the stability of a condensate of 7Li atoms in an isotropic harmonic oscillator potential. In

the process of this analysis, we show that there exists an interesting analogy between the
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quantum dynamics of the condensate and the quantum mechanics of a particle in an unstable

potential. Therefore, to make the paper more selfcontained and to bring out this analogy

most clearly, we present first in Sec. II a brief summary of how the WKB approximation to

the tunneling rate of a particle is derived by path-integral methods. We end in Sec. IV with

some conclusions.

II. TUNNELING OF A PARTICLE

The tunneling rate Γ0 of a particle with mass m∗ out of a metastable minimum of a

potential V (q) can be calculated by means of the relation

Γ0 = −2

h̄
Im(E0) = lim

T↓0

2kBT

h̄
Im(lnZ) , (1)

where Im(E0) is the imaginary part of the (analytically continued) groundstate energy in

the metastable minimum of the potential, and Z = Tr[e−βH] is the partition function with

β = 1/kBT and H(p, q) = p2/2m∗+V (q) the usual Hamilton operator for the particle. This

is a convenient starting point for our discussion, because the partition function can in the

usual way be represented as a functional integral over the functions q(τ) and p(τ), i.e.

Z =
∫

d[q]
∫

d[p] exp

{

−1

h̄

∫ h̄β/2

−h̄β/2
dτ

(

−ipdq
dτ

+H(p, q)

)}

(2)

with the periodic boundary condition q(−h̄β/2) = q(h̄β/2) on the coordinate but no restric-

tions on the momentum. For the hamiltonian of interest the integral over the momentum

p(τ) is just a gaussian that can be easily carried out. As a result the partition function is in

this case also equal to a path integral
∫

d[q] exp {−S[q]/h̄} over all periodic paths q(τ) and

with a (Euclidian) action given by

S[q] =
∫ h̄β/2

−h̄β/2
dτ





1

2
m∗

(

dq

dτ

)2

+ V (q)



 . (3)

Our task is therefore to evaluate this path integral. In general this cannot be done ex-

actly, but one can obtain a good (semiclassical) approximation by noting that the dominant
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contributions to the path integral are from paths that minimize the action S[q]. Such paths

are solutions to the Euler-Lagrange equation

m∗ d
2q

dτ 2
= −d(−V (q))

dq
, (4)

which has the same form as the classical equation of motion for a particle with mass m∗ in a

potential −V (q). A periodic solution to this equation is therefore q(τ) = q0, where q0 is the

position of the metastable minimum and obeys dV (q0)/dq = 0. Writing q(τ) = q0 + q′(τ)

and expanding the action up to quadratic order in the fluctuations q′(τ), we obtain first of

all that

Z ≃ e−βV (q0)
∫

d[q′] exp







−1

h̄

∫ h̄β/2

−h̄β/2
dτ





1

2
m∗

(

dq′

dτ

)2

+
1

2

d2V (q0)

dq2
q′2











. (5)

Introducing m∗ω2
0 ≡ d2V (q0)/dq

2, we notice that the path integral in the right-hand side is

just equal to the partition function for a harmonic oscillator and therefore that

∫

d[q′] exp

{

−1

2

∫ h̄β/2

−h̄β/2
dτ q′

(

−m
∗

h̄

d2

dτ 2
+
m∗ω2

0

h̄

)

q′
}

= N
{

det

[

m∗

2πh̄

(

− d2

dτ 2
+ ω2

0

)]}−1/2

= exp

{

−β h̄ω0

2
− ln

(

1− e−βh̄ω0

)

}

, (6)

denoting the usual normalization factor due to the measure in the path integral byN . Taking

now the limit T ↓ 0 (or β → ∞) we thus find in this approximation for the groundstate

energy E0 ≃ V (q0) + h̄ω0/2 and for the tunneling rate Γ0 = 0. This is clearly a reasonable

first-order result that is due to the fact that we can in first instance always approximate the

full potential V (q) by the harmonic oscillator potential V (q0) +m∗ω2
0(q − q0)

2/2.

To obtain a nonzero value for the tunneling rate we must realize that there is another

periodic solution to Eq. (4) that has an action which (in the zero temperature limit) is

only slightly different from S[q0] and therefore also gives an important contribution to the

partition function. Using the classical analogy, this so-called ‘bounce’ solution qb(τ) has

the property that the particle spends a very long time around q0 but in a relatively short

time oscillates once in the potential minimum of −V (q), i.e. it bounces from q0 to q1 and

4



back to q0, where q1 obeys V (q1) = V (q0). In particular, for τ → ±∞ it behaves as

qb(τ) ∼ q0 ∓ (v0/ω0)e
−ω0|τ | with v0 determined by the details of the potential.

Proceeding as before by writing q(τ) = qb(τ) + q′(τ) and expanding the action up to

quadratic order in q′(τ), we now find that near zero temperature the partition function

equals

Z ≃ eβ(V (q0)+h̄ω0/2)



1 +

[

det(−d2/dτ 2 + ω2
0)

det(−d2/dτ 2 + ωb(τ)2)

]1/2

e−(S[qb]−S[q0])/h̄



 , (7)

introducing the quantity ωb(τ) by means of m∗ωb(τ)
2 ≡ d2V (qb(τ))/dq

2. Adding in a similar

manner also the contributions from paths with an arbitrary number of bounces, we find that

the series exponentiates and hence that

E0 ≃ V (q0) +
h̄ω0

2
− lim

T↓0
kBT

[

det(−d2/dτ 2 + ω2
0)

det(−d2/dτ 2 + ωb(τ)2)

]1/2

e−(S[qb]−S[q0])/h̄ . (8)

We expect the third term in the right-hand side to represent the tunneling rate out of

the metastable minimum and therefore to be purely imaginary. This expectation is indeed

correct, because the operator −d2/dτ 2+ωb(τ)
2 turns out to have a negative eigenvalue. This

is most easily understood from the fact that Eq. (4) shows that dqb(τ)/dτ is an eigenfunction

of this operator with an eigenvalue equal to zero. Since this eigenfunction has one node, we

know from our experience with the Schrödinger equation that there must be an eigenfunction

without nodes that has a lower, and therefore, negative eigenvalue.

However, the presence of an eigenvalue equal to zero appears to give an infinite result

for the ratio of determinants in Eq. (8). Fortunately, this is due to an improper treatment

of the zero mode in the calculation of the path integral over the fluctuations q′(τ). Since

qb(τ − τ0) = qb(τ)− τ0dqb(τ)/dτ +O(τ
2
0 ), we note that this zero mode is just associated with

a translation of the ‘bounce’ solution qb(τ) and hence that the square root of the ratio of

determinants must be proportional to the total time interval h̄β = h̄/kBT . A detailed and

beautiful analysis by Duru et al. actually shows that

lim
T↓0

kBT

[

det(−d2/dτ 2 + ω2
0)

det(−d2/dτ 2 + ωb(τ)2)

]1/2

=
i

2

√

m∗v20h̄ω0

π
. (9)
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Combining this with Eq. (8) we finally arrive at

Γ0 = −2

h̄
Im(E0) =

√

m∗ω0v20
πh̄

e−(S[qb]−S[q0])/h̄ , (10)

where

S[qb]− S[q0]

h̄
=

2

h̄

∫ q1

q0
dq
√

2m∗(V (q)− V (q0)) (11)

is recognized as the usual WKB expression for the exponent of the tunneling rate.

III. TUNNELING OF A CONDENSATE

We now turn to the problem of the stability of the condensate in a magnetically trapped

gas of 7Li atoms. We consider here only the experimentally relevant case of a large number

of particles N ≫ 1 in a large trap. Quantitatively, the latter means that rV /ℓ ≪ 1, where

rV is the range of the interatomic interaction, ℓ =
√

2πh̄/mω is the spatial extent of the

one-particle ground state in a harmonic oscillator potential with level spacing h̄ω, and m

is the mass of the 7Li atoms. (In the case of 7Li the above condition also implies that

|a|/ℓ≪ 1.) Moreover, we will always require that the density n in the center in the trap is

such that the gas parameter nr3V ≪ 1. This basically leads to an upper bound on the total

number of particles that is always satisfied by the experiment of interest [2].

A. The case T = 0

At zero temperature and in an external trapping potential V ext(~x) = mω2~x2/2, the

effective hamiltonian for the condensate wavefunction ψ(~x, t) and its canonical momentum

π(~x, t) = ih̄ψ∗(~x, t) is given by

H [π, ψ] =
∫

d~x ψ∗

(

− h̄2

2m
∇2 + V ext +

T 2B(~0,~0; 0)

2
|ψ|2

)

ψ (12)

since then the Hamilton equations exactly reproduce the nonlinear Schrödinger equations

for ψ(~x, t) and ψ∗(~x, t), respectively. For example, we correctly find that
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∂

∂t
ψ(~x, t) ≡ δ

δπ(~x, t)
H [π, ψ]

=
1

ih̄

(

− h̄2

2m
∇2 + V ext(~x) + T 2B(~0,~0; 0)|ψ(~x, t)|2

)

ψ(~x, t) , (13)

with T 2B(~0,~0; 0) = 4πah̄2/m the effective interaction between the atoms. It is important to

mention here that, due to infrared divergences in the theory of the dilute Bose gas [11], this

nonlinear Schrödinger equation is only valid if the energy cut-off provided by the trapping

potential is sufficiently large. More precisely we must require that h̄ω > 4πn|a|h̄2/m. Fortu-

nately, this correponds precisely to the conditions under which the condensate is metastable

as we will find out shortly.

After this brief discussion of the condensate wavefunction as a classical field, we can now

turn to the quantum fluctuations of the condensate. As in Sec. II, we must then consider

the partition function Z = Tr[e−βH ] at zero temperature. This function can be written as

the functional integral

Z =
∫

d[ψ∗]d[ψ] exp

{

−1

h̄

∫

dτ

(

∫

d~x ψ∗h̄
∂

∂τ
ψ +H [ih̄ψ∗, ψ]

)}

(14)

over the periodic fields ψ(~x, τ) and ψ∗(~x, t), which is the direct analog of Eq. (2). To proceed

as in the case of the quantum mechanics of a particle, we should now integrate out the

momentum field. This is, however, not helpful for our purposes because the hamiltonian does

not have a momentum independent part. Consequently, it seems that a stability analysis of

the condensate cannot be performed in the same way as in Sec. II.

The way out of this dilemma is found by noting that the instability of the condensate

is, just as in the homogeneous case, a result of density fluctuations that lead to a lower

energy because of the effectively attractive interaction between the 7Li atoms. It is therefore

advantageous to perform a canonical transformation by means of the relation ψ =
√
ρeiχ

and to use the density field ρ(~x, τ) and the phase field χ(~x, τ) to calculate the partition

function. Indeed, a simple substitution together with the periodicity of ρ(~x, τ) shows that

the partition function is equal to the functional integral
∫

d[ρ]
∫

d[χ] exp{−S[ρ, χ]/h̄} with

an action

7



S[ρ, χ] =
∫

dτ
∫

d~x

(

ih̄ρ
∂χ

∂τ
+
h̄2ρ

2m
(∇χ)2 + h̄2

8mρ
(∇ρ)2 + V extρ+

T 2B(~0,~0; 0)

2
ρ2
)

(15)

that is quadratic in the phase field χ(~x, τ). Hence, we can now immediately integrate over

this field.

There is an important point to be made about this integration, which reflects the fact

that if the original fields ψ(~x, τ) and ψ∗(~x, τ) are periodic, the phase field χ(~x, τ) is only

periodic up to a multiple of 2π. To calculate the partition function correctly, we must

therefore first integrate over all the fields χ(~x, τ) obeying the boundary condition χ(~x,∞) =

χ(~x,−∞) + 2πj and subsequently sum over all possible integers j. Clearly, this change in

boundary conditions affects only the zero-momentum part of χ(~x, τ). As a result we have

to consider the sum

∑

j

∫

d[χ~0] exp

{

−i
∫

dτ N0
dχ~0
dτ

}

first, where we made use of the fact that the total number of particles in the condensate

N0(τ) =
∫

d~xρ(~x, τ) and the boundary condition χ~0(∞) = χ~0(−∞)+2πj on the integration

is implicitly assumed for each term in the sum. Performing a partial integration on the

integral in the exponent, this sum becomes equal to

∑

j

e2πiN0j δ

[

dN0

dτ

]

because the integration over χ~0(τ) then simply leads to the constraint of a constant number

of particles in the condensate, i.e. N0(τ) = N0. At zero temperature and under the conditions

that the nonlinear Schrödinger equation is valid, this actually implies that N0(τ) is equal to

the total number of particles N . In addition, the sum
∑

j e
2πiN0j equals

∑

j δ(N0 − j) and

thus requires that N0 is an integer. In this manner we see explicitly that the integration

over the zero-momentum part of ρ(~x, τ) is effectively only a sum over the total number of

particles and, most important for our purposes, that the partition function at a constant

number of particles is given by the functional integral
∫

d[ρ]
∫

d[χ] exp{−S[ρ, χ]/h̄} over all

nonzero momentum components of the density and phase fields.

8



The integration over the nonzero momentum part of χ(~x, τ) is readily accomplished by

introducing the Green’s function for the phase fluctuations G(~x, ~x′; ρ), that obeys

h̄

m

(

(∇ρ) · ∇+ ρ∇2
)

G(~x, ~x′; ρ) = δ(~x− ~x′) . (16)

In terms of this Green’s function the formal solution to the Euler-Lagrange equation

δS[ρ, χ]/δχ = 0 reads

χ(~x, τ) = −i
∫

d~x′ G(~x, ~x′; ρ)
∂ρ(~x′, τ)

∂τ
, (17)

which after a substitution in Eq. (15) gives the following effective action for the density field

S[ρ] =
∫

dτ
∫

d~x
∫

d~x′
(

− h̄
2

∂ρ(~x, τ)

∂τ
G(~x, ~x′; ρ)

∂ρ(~x′, τ)

∂τ

)

+
∫

dτ
∫

d~x

(

h̄2

8mρ
(∇ρ)2 + V extρ+

T 2B(~0,~0; 0)

2
ρ2
)

. (18)

This is the desired analog of Eq. (3) that we will now use to determine the stability of the

condensate at zero temperature.

Our first task is to see whether a metastable condensate is possible at all in a trap. This

question can be answered by considering only the ‘potential energy’

V [ρ] =
∫

d~x

(

h̄2

8mρ
(∇ρ)2 + V extρ+

T 2B(~0,~0; 0)

2
ρ2
)

(19)

for time-independent density configurations. Because we are unable to analytically consider

all configurations, we proceed in a variational way [12] and investigate here only the gaussian

profiles

ρ(~x; q) = N

(

1

πq2

)3/2

exp

(

−~x
2

q2

)

. (20)

The physical reason behind this choice is that we expect the shape of the condensate, if it

is metastable, to be close to the square of the one-particle groundstate wavefunction of the

trapping potential and, therefore, to be reasonably accurately described by a gaussian. We

will see shortly that this expectation is indeed correct.
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Substituting the above gaussian into the expression for the ‘potential energy’, we find

that

V [ρ] = N

(

3h̄2

4mq2
+

3

4
mω2q2 − N√

2π

h̄2|a|
mq3

)

≡ NV (q) . (21)

Hence, for |a| = 0 the potential V (q) has an absolute minimum at q =
√

h̄/mω = ℓ/
√
2π

and the ‘potential energy’ at this minimum is 3Nh̄ω/2. Clearly, this corresponds exactly

to an ideal Bose condensate. For |a| 6= 0 the ‘potential energy’ is always unbounded from

below because V (q) → −∞ if q ↓ 0. This implies that the condensate is in general unstable

and tends to collapse to the density profile limq↓0 ρ(~x; q) = Nδ(~x). Of course, in a realistic

system the collapse to this density profile is ultimately prevented by the hard core of the

interatomic interaction as the density reaches a value of the order of O(1/r3V ). Although

our theory certainly breaks down at these densities, the approximation Nδ(~x) for the final

density profile is nevertheless rather accurate for the lengthscales of interest, due to the

condition rV /ℓ≪ 1.

The most important feature of Eq. (21) is, however, that if the condition

N
|a|
ℓ
<

2

55/4
≃ 0.27 (22)

is fullfiled, the potential V (q) has a metastable minimum. This result can directly be com-

pared with the work of Ruprecht et al., who find by a numerical integration of the nonlinear

Schrödinger equation Eq. (13) that a stable solution can only be obtained if N |a|/ℓ < 0.23

[9]. Our variational calculation, therefore, gives an upper bound that is only 16% too high.

Apparently this is the amount of accuracy that one can obtain for the condensate energy by

considering only the density profiles ρ(~x; q).

Having arrived at the conclusion that a metastable condensate is possible at zero tem-

perature if the number of particles in the gas is sufficiently small, we now want to calculate

the lifetime of the condensate due to macroscopic quantum fluctuations. This involves also

the evaluation of the ‘kinetic energy’

T [ρ] =
∫

d~x
∫

d~x′
(

− h̄
2

∂ρ(~x, τ)

∂τ
G(~x, ~x′; ρ)

∂ρ(~x′, τ)

∂τ

)

. (23)
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Again an exact treatment of this part of the effective action is unfeasible. However, our

previous discussion of the ‘potential energy’ suggests a reasonably accurate approximation

that amounts to the promotion of the variational parameter q to a real dynamical variable

q(τ). Hence, we assume that for a description of the tunneling process the most important

configurations of the condensate are given by ρ(~x, τ) = ρ(~x; q(τ)). The reason for this

assumption is threefold. First, we have already seen that the profile ρ(~x; q) gives an accurate

description of the metastable minimum of the potential V [ρ]. Second, one expects that the

minimum energy barrier for the tunneling process is associated with a rotationally symmetric

configuration [13] that, because of the diluteness of the gas, can be represented by a gaussian

with the same amount of accuracy as the metastable minimum. Third, the profile ρ(~x; q)

describes in the limit q ↓ 0 also the completely collapsed state of the system. In combination,

the configurations ρ(~x; q(τ)) thus seem to provide a reasonable interpolation between the

initial and final density profiles of the tunneling process.

Evaluating the ‘kinetic energy’ for the variational ansatz ρ(~x, τ) = ρ(~x; q(τ)) and adding

Eq. (21) we easily find that the quantum dynamics of the condensate is determined by the

action

S[q] = N
∫

dτ





1

2
m∗

(

dq

dτ

)2

+ V (q)



 , (24)

which differs only by an overall factor N from the zero temperature limit of Eq. (3). The

effective mass m∗ is difficult to calculation exactly due to the inhomogeneity of the system,

but can be estimated by noting that the dominant contributions to the ‘kinetic energy’ come

from the region near the center of the trap. In this region the Green’s function for the phase

fluctuations is well approximated by

G(~x, ~x′; ρ) ≃ − m

4πh̄ρ(~0; q)

1

|~x− ~x′| (25)

and we obtain

m∗ ≃ m

π5/2

∫

d~y
∫

d~y′
(

3

2
− ~y2

)

exp (−~y2) 1

|~y − ~y′|
(

3

2
− ~y′2

)

exp (−~y′2) ≃ 0.27m . (26)
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Although the exact value of the effective mass is presumably somewhat larger than this

result, it is in any case of the order of the atomic mass m.

Applying now the final result of Sec. II (replacing only h̄ by h̄/N) we immediately find

that the decay rate of the condensate is equal to

Γ0 =

√

Nm∗ω0v20
πh̄

exp
{

−2N

h̄

∫ q1

q0
dq
√

2m∗(V (q)− V (q0))
}

(27)

and typically very small for a number of condensate particles N ≫ 1 but still sufficiently

small to fulfill the condition of metastability. Note that both requirements do not exclude

each other, because we are only considering traps for which |a|/ℓ≪ 1.

B. The case T 6= 0

We have seen that at zero temperature a metastable condensate is possible if the number

of 7Li atoms is less than Nm ≡ 0.23ℓ/|a| ≃ 1440. (The scattering length is −27a0 and

the effective isotropic level splitting h̄(ωxωyωz)
1/3 for the trap is 7nK [2].) In the Rice

experiment, however, one reports the observation of a condensate for temperatures as high

as 400nK and total numbers of atoms as great as 2 · 105. Clearly, for these temperatures

the previous discussion is inadequate and needs to be modified before we can draw any

conclusions about a possible discrepancy between theory and experiment.

The generalization to nonzero temperatures is essentially only useful in the case that the

number of particles N ≫ 100, since then the critical temperature Tc is almost equal to the

critical temperature

T0 =

(

N

ζ(3)

)1/3
h̄ω

kB
≃ 0.94N1/3 h̄ω

kB
(28)

of the ideal Bose gas and obeys kBTc ≫ h̄ω so that we are close to the thermodynamic limit.

As a result also the thermal wavelength Λc =
√

2πh̄2/mkBTc ≪ ℓ. To understand why

this is important, we must realize that at nonzero temperatures the nonlinear Schrödinger

equation for the condensate wavefunction is
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ih̄
∂

∂t
ψ(~x, t) =

(

− h̄2

2m
∇2 + V ext(~x) + T 2B(~0,~0; 0)

(

2n′(~x, t) + |ψ(~x, t)|2
)

)

ψ(~x, t) , (29)

with n′(~x, t) the local density of atoms which are not in the condensate [14], and that the

total number of noncondensed particles is of O((kBT/h̄ω)
3) because n′(~0, t) is of O(1/Λ3)

and the size of the noncondensed cloud is of O(ℓ2/Λ). Therefore, for temperatures that

do not obey kBT ≫ h̄ω, the term 2n′(~x, t) in Eq. (29) is negligible compared to |ψ(~x, t)|2.

For temperatures T ≫ h̄ω/kB this does not have to be the case. However, under these

conditions we can replace 2n′(~x, t) by a constant since the size of the noncondensed cloud is

now much larger than the size of the condensate. Performing then the same analysis as in

Sec. IIIA, we find that the potential V (q) is just shifted by a constant.

We thus conclude that for N ≫ 100 a metastable condensate can exists as long as

N0 < Nm, or sufficiently close to the critical temperature. Moreover, the decay rate of the

condensate can at all temperatures be calculated by means of the effective action

S[q] = N0

∫ h̄β/2

−h̄β/2
dτ





1

2
m∗

(

dq

dτ

)2

+ V (q)



 . (30)

Hence, for T ≪ h̄ω0/kB quantum fluctuations dominate and the decay rate is given by

Eq. (27) with N replaced by N0. For T ≫ h̄ω0/kB, which is the relevant temperature interval

if N ≫ Nm, the decay of the condensate is dominated by thermal (or classical) fluctuations

and the decay rate is proportional to the Boltzmann factor e−N0(V (qm)−V (q0))/kBT , where qm

denotes the position at which V (q) has a maximum. The prefactor of the exponent is

always a difficult point, but can be estimated by noting that in the classical limit the action

of Eq. (30) implies a probability distribution

P (p, q) ≃ βω0

2π
exp

{

−β
(

p2

2m∗N0
+N0(V (q)− V (q0))

)}

(31)

for the momentum p and the coordinate q of a fictitious classical particle. Using this prob-

ability distribution we then easily find from the average flux over the energy barrier that

Γ0 =
ω0

2π
exp

{

− N0

kBT
(V (qm)− V (q0))

}

. (32)
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Notice that this decay rate is only small if N0(V (qm) − V (q0)) ≪ kBT . Therefore, a long-

lived metastable condensate is only possible sufficiently close to the critical temperature, if

the total number of atoms obeys N ≪ (Nm)
3.

IV. CONCLUSIONS

In view of the results obtained above it seems that we have arrived at an explanation of

the experiment with atomic 7Li, since we have shown that a long-lived metastable condensate

is possible if 1 ≪ N0 < Nm. Unfortunately, this is only partly true because we have not yet

considered the mechanical stability of the noncondensed cloud. In particular, we have not

shown that the gas is stable (or metastable) at the critical temperature and will, in contrast

to what occurs in the homogeneous case [7], not immediately collapse to a dense liquid or

solid phase. In our opinion, this is at present the most important question which remains

to be answered before we can speak of a theoretical understanding of the Rice experiment.

Finally, we need to discuss the important observation by Dalfovo and Stringari that

a condensate with a vortex line through the center of the trap has a value of Nm that is

significantly larger than 0.23ℓ/|a|, due to the fact that the local density of the gas must vanish

at the point where the phase singularity occurs [15]. In principle, we can also consider the

decay of a condensate with a vortex in the framework of the theory presented in Sec. III. We

should then first put χ(~x, τ) = χv(~x, τ) + χ′(~x, τ), where χv(~x, τ) is the phase configuration

of a vortex, before we integrate over the nonsingular phase fluctuations χ′(~x, τ). The main

difficulty, however, will be to find an accurate solution of the coupled dynamical equations

for the density profile and the position of the vortex. Although such a calculation would

certainly be interesting in its own right, it clearly does not invalidate the main conclusion

of our paper that the most important unresolved issue is the stability of the gas without a

condensate.

After completion of the work presented in Sec. IIIA of this paper, we received a preprint

by Kagan, Shlyapnikov, and Walraven [16] in which these authors also consider the stability

14



of an inhomogeneous condensate at T = 0, and arrive at qualitatively the same results.

However, their calculation of the decay rate is completely different from ours and, in partic-

ular, does not take phase fluctuations of the condensate into account. As a result, it appears

not to correspond to a WKB treatment of the tunneling process.
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