Skip to main content
Log in

Electrophoretic and immunological comparisons of chloroplast and prokaryotic ribosomal proteins reveal that certain families of large subunit proteins are evolutionarily conserved

  • Published:
Journal of Molecular Evolution Aims and scope Submit manuscript

Summary

Antibodies to individual chloroplast ribosomal (r-)proteins ofChlamydomonas reinhardtii synthesized in either the chloroplast or the cytoplasm were used to examine the relatedness ofChlamydomonas r-proteins to r-proteins from the spinach (Spinacia oleracea) chloroplast,Escherichia coli, and the cyanobacteriumAnabaena 7120. In addition,35S-labeled chloroplast r-proteins from large and small subunits ofC. reinhardtii were coelectrophoresed on 2-D gels with unlabeled r-proteins from similar subunits of spinach chloroplasts,E. coli, andAnabaena to compare their size and net charge. Comigrating protein pairs were not always immunologically related, whereas immunologically related r-protein pairs often did not comigrate but differed only slightly in charge and molecular weight. In constrast, when35S-labeled chloroplast r-proteins from large and small subunits of a closely related speciesC. smithii were coelectrophoresed with unlabeledC. reinhardtii chloroplast r-proteins, only one pair of proteins from each subunit showed a net displacement in mobility.

Analysis of immunoblots of one-dimensional SDS and two-dimensional urea/SDS gels of large and small subunit r-proteins from these species revealed more antigenic conservation among the four species of large subunit r-proteins than small subunit r-proteins.Anabaena r-proteins showed the greatest immunological similarity toC. reinhardtii chloroplast r-proteins. In general, antisera made against chloroplast-synthesized r-proteins inC. reinhardtii showed much higher levels of cross-reactivity with r-proteins fromAnabaena, spinach, andE. coli than did antisera to cytoplasmically synthesized r-proteins. All spinach r-proteins that cross-reacted with antisera to chloroplast-synthesized r-proteins ofC. reinhardtii are known to be made in the chloroplast (Dorne et al. 1984b). FourE. coli r-proteins encoded by the S10 operon (L2, S3, L16, and L23) were found to be conserved immunologically among the four species. Two of the large subunit r-proteins, L2 and L16, are essential for peptidyltransferase activity. The third (L23) and two otherE. coli large subunit r-proteins (L5 and L27) that have immunological equivalents among the four species are functionally related to but not essential for peptidyltransferase activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Auron PE, Fahnestock SR (1981) Functional organization of the large ribosomal subunit ofBacillus stearothermophilus. J Biol Chem 256:10105–10110

    PubMed  Google Scholar 

  • Bartsch M (1985) Correlation of chloroplast and bacterial ribosomal proteins by cross-reactions of antibodies specific to purifiedEscherichia coli ribosomal proteins. J Biol Chem 260:237–241

    PubMed  Google Scholar 

  • Bartsch M, Kimura M, Subramanian AR (1982) Purification, primary structure, and homology relationships of a chloroplast ribosomal protein. Proc Natl Acad Sci USA 79:6871–6875

    Google Scholar 

  • Bonner WM, Laskey RA (1974) A film detection method for tritium-labelled proteins and nucleic acids in polyacrylamide gels. Eur J Biochem 46:83–88

    Article  PubMed  Google Scholar 

  • Bourque DP, Capel MS (1982) Isolation and purification of tobacco chloroplast ribosomes. In: Edelman M, Hallick RB, Chua NH (eds) Methods in chloroplast molecular biology. Elsevier Biomedical Press, Amsterdam, pp 617–628

    Google Scholar 

  • Boynton JE, Gillham NW, Lambowitz AM (1980) Biogenesis of chloroplast and mitochondrial ribosomes. In: Chambliss G, Craven GR, Davies J, Davis K, Kahan L, Nomura M (eds) Ribosomes: structure, function and genetics. University Park Press, Baltimore, pp 903–950

    Google Scholar 

  • Cooperman BS (1980) Functional sites on theE. coli ribosome as defined by affinity labeling. In: Chambliss G, Craven GR, Davies J, Davis K, Kahan L, Nomura M (eds) Ribosomes: structure, function and genetics. University Park Press, Baltimore, pp 531–554

    Google Scholar 

  • Dohme F, Nierhaus KH (1976) Role of 5S RNA in assembly and function of the 50S subunit fromEscherichia coli. Proc Natl Acad Sci USA 73:2221–2225

    PubMed  Google Scholar 

  • Dorne AM, Eneas-Filho J, Heizmann P, Mache R (1984a) Comparison of ribosomal proteins of chloroplast from spinach and ofE. coli. Mol Gen Genet 193:129–134

    Article  PubMed  Google Scholar 

  • Dorne AM, Lescure AM, Mache R (1984b) Site of synthesis of spinach chloroplast ribosomal proteins and formation of incomplete ribosomal particles in isolated chloroplasts. Plant Mol Biol 3:83–90

    Article  Google Scholar 

  • Duggleby RG, Kaplan H, Visentin LP (1975) Carboxyl-terminal sequences of procaryotic ribosomal proteins fromEscherichia coli Bacillus stearothermophilus, andHalobacterium cutirubrum. Can J Biochem 53:827–833

    PubMed  Google Scholar 

  • Eneas-Filho J, Hartley MR, Mache R (1981) Pea chloroplast ribosomal proteins: characterization and site of synthesis. Mol Gen Genet 184:484–488

    Article  Google Scholar 

  • Erdmann VA, Fahnestock S, Higo K, Nomura M (1971) Role of 5S RNA in the functions of 50S ribosomal subunits. Proc Natl Acad Sci USA 68:2932–2936

    PubMed  Google Scholar 

  • Fahnestock S, Erdmann V, Nomura M (1973) Reconstitution of 50S ribosomal subunits from protein-free ribonucleic acid. Biochemistry 12:220–224

    Article  PubMed  Google Scholar 

  • Fahnestock SR, Strycharz WA, Marquis DM (1981) Immunological evidence of homologies among 50S ribosomal proteins ofBacillus stearothermophilus andEscherichia coli. J Biol Chem 256:10111–10116

    PubMed  Google Scholar 

  • Fleming GH, Boynton JE, Gillham NW (1987) Cytoplasmic ribosomal proteins fromChlamydomonas reinhardtii: characterization and immunological comparisons. Mol Gen Genet 206:226–237

    Article  PubMed  Google Scholar 

  • Hampl H, Schulze H, Nierhaus KH (1981) Ribosomal components fromEscherichia coli 50S subunits involved in the reconstitution of peptidyltransferase activity. J Biol Chem 256:2284–2288

    PubMed  Google Scholar 

  • Hancock K, Tsang VCW (1983) India ink staining of proteins on nitrocellulose paper. Anal Biochem 133:157–162

    Article  PubMed  Google Scholar 

  • Harris EH, Boynton JE, Gillham NW (1987) Chloroplast genome ofChlamydomonas reinhardtii. In: O'Brien SJ (ed) Genetic maps 1987. Cold Spring Harbor Laboratory. Cold Spring Harbor, NY, pp 266–275

    Google Scholar 

  • Horne JR, Erdmann VA (1972) Isolation and characterization of 5S RNA-protein complexes fromBacillus stearothermophilus andEscherichia coli ribosomes. Mol Gen Genet 119:337–344

    PubMed  Google Scholar 

  • Isono K (1980) Genetics of ribosomal proteins and their modifying and processing enzymes inEscherichia coli. In: Chambliss G, Craven GR, Davies J, Davis K, Kahan L, Nomura M (eds) Ribosomes: structure, function and genetics. University Park Press, Baltimore, pp 641–669

    Google Scholar 

  • Kimura J, Kimura M (1987) The complete amino acid sequences of the 5S rRNA binding proteins L5 and L18 from the moderate thermophileBacillus stearothermophilus ribosome. FEBS Lett 210:85–90

    Article  PubMed  Google Scholar 

  • Kimura M, Chow CK (1984) The complete amino acid sequences of ribosomal proteins L17, L27 and S9 fromBacillus stearothermophilus. Eur J Biochem 139:225–234

    Article  PubMed  Google Scholar 

  • Kimura M, Kimura J, Ashman K (1985a) The complete primary structure of ribosomal proteins L1, L14, L15, L23, L24, and L29 fromBacillus stearothermophilus. Eur J Biochem 150:491–497

    Article  PubMed  Google Scholar 

  • Kimura M, Kimura J, Watanabe K (1985b) The primary structure of ribosomal protein L2 fromBacillus stearothermophilus. Eur J Biochem 153:289–297

    Article  PubMed  Google Scholar 

  • Kratz WA, Myers J (1955) Nutrition and growth of several blue-green algae. Am J Bot 42:282–287

    Google Scholar 

  • Kyriakopoulos A, Subramanian AR (1977) Positions of individual ribosomal proteins after two-dimensional electrophoresis by a sensitive procedure. Biochim Biophys Acta 474:308–311

    PubMed  Google Scholar 

  • Lennox ES (1955) Transduction of linked genetic characters of the host by bacteriophage P1. Virology 1:190–206

    Article  PubMed  Google Scholar 

  • Liu XQ, Gillham NW, Boynton JE (1988) Chloroplast ribosomal protein L-18 inChlamydomonas reinhardtii is processed during ribosome assembly. Mol Gen Genet 214:588–591

    Article  PubMed  Google Scholar 

  • Lou JK, Wu M, Chang CH, Cuticchia AJ (1987) Localization of a r-protein gene within the chloroplast DNA replication origin ofChlamydomonas. Curr Genet 11:537–541

    Article  PubMed  Google Scholar 

  • Lührmann R, Bald R, Stöffler-Meilicke M, Stöffler G (1981) Localization of the puromycin binding site on the large ribosomal subunit ofEscherichia coli by immunoelectron microscopy. Proc Natl Acad Sci USA 78:7276–7280

    PubMed  Google Scholar 

  • Mache R, Dorne AM, Batlle RM (1980) Characterization of spinach plastid ribosomal proteins by two dimensional gel electrophoresis. Mol Gen Genet 177:333–338

    Article  Google Scholar 

  • Mache R, Audren H, Bisanz-Seyer C, Dorne AM, Massenet O, Rozier C, Thomas F (1987) Biosynthesis of chloroplast ribosomal components. In: Biggens J (ed) Progress in photosynthesis research, vol IV. Martinus Nijhoff Publishers, Dordrecht, pp 547–551

    Google Scholar 

  • Madjar JJ, Michel S, Cozzone AJ, Reboud JP (1979) A method to identify individual proteins in four different two-dimensional gel electrophoresis systems: application toEscherichia coli ribosomal proteins. Anal Biochem 92:174–182

    Article  PubMed  Google Scholar 

  • Marquis DM, Fahnestock SR (1980) Stoichiometry and structure of a complex of acidic ribosomal protiens. J Mol Biol 142:161–179

    Article  PubMed  Google Scholar 

  • Matheson AT, Möller W, Amons R, Yaguchi M (1980) Comparative studies on the structure of ribosomal proteins, with emphasis on the alanine-rich, acidic ribosomal ‘A’ protein. In: Chambliss G, Craven GR, Davies J, Davis K, Kahan L, Nomura M (eds) Ribosomes: structure, function and genetics. University Park Press, Baltimore, pp 297–332

    Google Scholar 

  • Möller W (1974) The ribosomal components involved in EFG-and EF-Tu-dependent GTP hydrolysis. In: Nomura M, Tissières A, Lengyel P (eds) Ribosomes. Cold Spring Harbor Laboratory, Cold Spring Harbor NY, pp 711–731

    Google Scholar 

  • Myers AM, Harris EH, Gillham NW, Boynton JE (1984) Mutations in a nuclear gene ofChlamydomonas cause the loss of two chloroplast ribosomal proteins, one synthesized in the chloroplast and the other in the cytoplasm. Cur Genet 8:369–378

    Article  Google Scholar 

  • Nierhaus KH (1980) Analysis of the assembly and function of the 50S subunit fromEscherichia coli ribosomes by reconstitution. In: Chambliss G, Craven GR, Davies J, Davis K, Kahan L, Nomura M (eds) Ribosomes: structure, function and genetics. University Park Press, Baltimore, pp 267–294

    Google Scholar 

  • Nierhaus KH, Dohme F (1979) Total reconstitution of 50S subunits fromEscherichia coli ribosomes. Methods Enzymol 59:443–449

    PubMed  Google Scholar 

  • Nomura M, Post LE (1980) Organization of ribosomal genes and regulation of their expression inEscherichia coli. In: Chambliss G, Crayen GR, Davies J, Davis K, Kahan L, Nomura M (eds) Ribosomes: structure, function and genetics. University Park Press, Baltimore, pp 671–691

    Google Scholar 

  • Ofengand J, Ciesiolka J, Denman R, Nurse K (1985) Structural and functional interactions of the tRNA-ribosome complex. In: Hardesty B, Kramer G (eds) Structure, function and genetics of ribosomes. Springer-Verlag, New York, pp 473–494

    Google Scholar 

  • Ohyama K, Fukuzawa H, Kohchi T, Shirai H, Sano T, Sano S, Umesono K, Shiki Y, Takeuchi M, Chang Z, Aota S, Inokuchi H, Ozeki H (1986) Chloroplast gene organization deduced from complete sequence of liverwortMarchantia polymorpha chloroplast DNA. Nature 322:572–574

    Article  Google Scholar 

  • Olson HM, Grant PG, Cooperman BS, Glitz DG (1982) Immunoelectron microscopic localization of puromycin binding on the large subunit of theEscherichia coli ribosome. J Biol Chem 257:2649–2656

    PubMed  Google Scholar 

  • Schmidt G, Strobel O, Stöffler-Meilicke M, Stöffler G, Böck A (1984) A ribosomal protein that is immunologically conserved in archaebacteria, eubacteria and eukaryotes. FEBS Lett 177:189–194

    Article  PubMed  Google Scholar 

  • Schmidt RJ, Richardson CB, Gillham NW, Boynton JE (1983) Sites of synthesis of chloroplast ribosomal proteins inChlamydomonas. J Cell Biol 96:1451–1463

    Article  PubMed  Google Scholar 

  • Schmidt RJ, Myers AM, Gillham NW, Boynton JE (1984) Immunological similarities between specific chloroplast ribosomal proteins fromChlamydomonas reinhardtii and ribosomal proteins fromEscherichia coli. Mol Biol Evol 1:317–324

    PubMed  Google Scholar 

  • Schmidt RJ, Hosler JP, Gillham NW, Boynton JE (1985) Biogenesis and evolution of chloroplast ribosomes: cooperation of nuclear and chloroplast genes. In: Steinback K, Bonitz Z, Arntzen C, Bogorad L (eds) Molecular biology of the photosynthetic apparatus. Cold Spring Harbor Laboratory, Cold Spring Harbor NY, pp 417–427

    Google Scholar 

  • Schulze H, Nierhaus KH (1982) Minimal set of ribosomal components for reconstitution of the peptidyltransferase activity. EMBO J 1:609–613

    PubMed  Google Scholar 

  • Shinozaki K, Ohme M, Tanaka M, Wakasugi T, Hayashida N, Matsubayashi T, Zaita N, Chunwongse J, Obokata J, Yamaguchi-Shinozaki K, Ohto C, Torazawa K, Meng BY, Sugita M, Deno H, Kamogashira T, Yamada K, Kusuda J, Takaiwa F, Kato A, Tohdoh N, Shimada H, Sugiura M (1986) The complete nucleotide sequence of the tobacco chloroplast genome: its gene organization and expression. EMBO J 5:2043–2049

    Google Scholar 

  • Sueoka N (1960) Mitotic replication of deoxyribonucleic acid inChlamydomonas reinhardtii. Proc Natl Acad Sci USA 46:83–89

    Google Scholar 

  • Tanaka M, Wakasugi T, Sugita M, Shinozaki K, Sugiura M (1986) Genes for the eight ribosomal proteins are clustered on the chloroplast genome of tobacco (Nicotiana tabacum): similarity to the S10 andspc operons ofEscherichia coli. Proc Natl Acad Sci USA 83:6030–6034

    Google Scholar 

  • Visentin LP, Matheson AT, Yaguchi M (1974) Homologies in procaryotic ribosomal proteins: alanine rich acidic proteins associated with polypeptide translation. FEBS Lett 41:310–314

    Article  PubMed  Google Scholar 

  • Vogel DW, Hartmann RK, Bartsch M, Subramanian AR, Kleinow W, O'Brien TW, Pieler T, Erdmann VA (1984) Reconstitution of 50S ribosomal subunits fromBacillus stearothermophilus with 5S RNA from spinach chloroplasts and low-Mr RNA from mitochondria ofLocusta migratoria and bovine liver. FEBS Lett 169:67–72

    Article  PubMed  Google Scholar 

  • Weissbach H (1980) Soluble factors in protein synthesis. In: Chambliss G, Craven GR, Davies J, Davis K, Kahan L, Nomura M (eds) Ribosomes: structure, function and genetics. University Park Press. Baltimore, pp 377–411

    Google Scholar 

  • Wittmann HG (1982) Components of bacterial ribosomes. Annu Rev Biochem 51:155–183

    Article  PubMed  Google Scholar 

  • Wittmann-Liebold B (1985) Ribosomal proteins: their structure and evolution. In: Hardesty B, Kramer G (eds) Structure, function and genetics of ribosomes. Springer-Verlag, New York, pp 326–361

    Google Scholar 

  • Yu RST, Wittmann HG (1973) The sequence of steps in the attachment of 5S RNA to cores ofEscherichia coli ribosomes. Biochim Biophys Acta 324:375–385

    PubMed  Google Scholar 

  • Zimmerman RA (1979) Protein-RNA interactions in the bacterial ribosome. Methods Enzymol 59:551–583

    PubMed  Google Scholar 

  • Zurawski G, Bottomley W, Whitfeld PR (1984) Junctions of the large single copy region and the inverted repeats inSpinacia oleracea andNicotiana debneyi chloroplast DNA: sequence of the genes for tRNAHis and the ribosomal proteins S19 and L2. Nucleic Acids Res 12:6547–6558

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Randolph-Anderson, B.L., Gillham, N.W. & Boynton, J.E. Electrophoretic and immunological comparisons of chloroplast and prokaryotic ribosomal proteins reveal that certain families of large subunit proteins are evolutionarily conserved. J Mol Evol 29, 68–88 (1989). https://doi.org/10.1007/BF02106183

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02106183

Key words

Navigation