Skip to main content
Log in

The cloning and characterization of a RAS gene fromSchizosaccharomyces pombe

  • Published:
Journal of Molecular Evolution Aims and scope Submit manuscript

Summary

We have cloned and determined the complete nucleotide sequence of a RAS gene from the yeastSchizosaccharomyces pombe (SP-RAS). The putative RAS protein of 214 amino acids is encoded by two noncontiguous reading frames separated by an intron of 86 bp. The SP-RAS gene product shares extensive homology with the proteins of theSaccharomyces cerevisiae (SC),Dictyostelium, Drosophila, and human RAS genes in its N-terminal region but not in its C-terminal region. The extended C-terminal regions found in the SC-RAS genes have no counterpart in the SP-RAS gene. Thus the RAS genes of these two yeasts are structurally quite distinct. The SP-RAS sequence was expressed in vivo.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Abbreviations

bp:

base pair

kb:

kilobase pair

SP-RAS:

Schizosaccharomyces pombe RAS

SC-RAS:

Saccharomyces cerevisiae RAS

v-K-RAS:

Kirsten murine sarcoma virus RAS

v-H-RAS:

Harvey murine sarcoma virus RAS

H-RAS:

human RAS

HMP:

high melting point

LMP:

low melting point

ORF:

open reading frame

References

  • Aviv H, Leder P (1972) Purification of biologically active globin messenger RNA by chromatography on oligothymidylic acid-cellulose. Proc Natl Acad Sci USA 69:1408–1412

    PubMed  Google Scholar 

  • Beach D, Durkacz B, Nurse P (1982a) Functionally homologous cell cycle control genes in budding and fission yeast. Nature 300:706–709

    PubMed  Google Scholar 

  • Beach D, Piper M, Nurse P (1982b) Construction of aSchizosaccharomyces pombe gene bank in a yeast bacterial shuttle vector and its use to isolate genes by complementation. Mol Gen Genet 187:326–329

    PubMed  Google Scholar 

  • Broach JR, Atkins JF, McGill C, Chow L (1979) Identification and mapping of the transcriptional and translational products of the yeast plasmid, 2μ circle. Cell 16:827–839

    PubMed  Google Scholar 

  • Carter BLA (1981) The control of cell division inSaccharomyces cerevisiae. In: John PCL (ed) The cell cycle. Cambridge University Press, Cambridge, pp 99–117

    Google Scholar 

  • Chang EH, Gonda MA, Ellis RW, Scolnick EM, Lowy DR (1982) Human genome contains four genes homologous to transforming genes of Harvey and Kirsten murine sarcoma viruses. Proc Natl Acad Sci USA 79:4848–4852

    PubMed  Google Scholar 

  • Clewell DB, Helinski DR (1969) Supercoiled circular DNA-protein complex inEscherichia coli: purification and induced conversion to an open circular DNA form. Proc Natl Acad Sci USA 62:1159–1166

    PubMed  Google Scholar 

  • Corden J, Wasylyk B, Buchwalder A, Sassone-Corsi P, Kedinger C, Chambon P (1980) Promoter sequences of eukaryotic protein-coding genes. Science 209:1406–1414

    PubMed  Google Scholar 

  • DeFeo D, Gonda MA, Young HA, Chang EH, Lowy DR, Scolnick EM, Ellis RW (1981) Analysis of two divergent rat genomic clones homologous to the transforming gene of Harvey murine sarcoma virus. Proc Natl Acad Sci USA 78:3328–3332

    PubMed  Google Scholar 

  • DeFeo-Jones D, Scolnick EM, Koller R, Dhar R (1983) ras-Related gene sequences identified and isolated fromSaccharomyces cerevisiae. Nature 306:707–709

    PubMed  Google Scholar 

  • Dhar R, Ellis RW, Shih TY, Oroszlan S, Shapiro B, Maizel J, Lowy D, Scolnick E (1982) Nucleotide sequence of the p21 transforming protein of Harvey murine sarcoma virus. Science 217:934–937

    PubMed  Google Scholar 

  • Dhar R, Nieto A, Koller R, DeFeo-Jones D, Scolnick EM (1984) Nucleotide sequence of two rasH-related genes isolated from the yeastSaccharomyces cerevisiae. Nucleic Acids Res 12:3611–3618

    PubMed  Google Scholar 

  • Fasano O, Taparowsky E, Fiddes J, Wigler M, Goldfarb M (1983) Sequence and structure of the coding region of the human H-ras-1 gene from T24 bladder carcinoma cells. J Mol Appl Genet 2:173–180

    PubMed  Google Scholar 

  • Fasano O, Aldrich T, Tamanoi F, Taparowsky E, Furth M, Wigler M (1984) Analysis of the transforming potential of the human H-ras gene by random mutagenesis. Proc Natl Acad Sci USA 81:4008–4012

    PubMed  Google Scholar 

  • Fitzgerald M, Shenk T (1981) The sequence 5′-AAUAAA-3′ forms part of the recognition site for polyadenylation of late SV40 mRNAs. Cell 24:251–260

    PubMed  Google Scholar 

  • Fukui Y, Kaziro Y (1985) Molecular cloning and sequence analysis of a ras gene fromSchizosaccharomyces pombe. EMBO 4:687–691

    Google Scholar 

  • Gallwitz D, Donath C, Sander C (1983) A yeast gene encoding a protein homologous to the human c-has/bas proto-oncogene product. Nature 306:704–707

    PubMed  Google Scholar 

  • Gutz H, Heslot H, Leupold U, Loprieno N (1974)Schizosaccharomyces pombe. In: King RC (ed) Handbook of genetics, vol I. Plenum, New York, pp 395–446

    Google Scholar 

  • Hindley J, Phear GA (1984) Sequence of the cell division gene CDC2 fromSchizosaccharomyces pombe; patterns of splicing and homology to protein kinases. Gene 31:129–134

    PubMed  Google Scholar 

  • Kataoka T, Powers S, McGill C, Fasano O, Strathern J, Broach J, Wigler M (1984) Genetic analysis of yeast RAS1 and RAS2 genes. Cell 37:437–445

    PubMed  Google Scholar 

  • Kataoka T, Powers S, Cameron S, Fasano O, Goldfarb M, Broach J, Wigler M (1985) Functional homology of mammalian and yeast RAS genes. Cell 40:19–26

    PubMed  Google Scholar 

  • Langford CJ, Klinz F-J, Donath C, Gallwitz D (1984) Point mutations identify the conserved, intron-contained TAC-TAAC box as an essential splicing signal sequence in yeast. Cell 36:645–653

    PubMed  Google Scholar 

  • Leupold U (1970) Genetical methods forSchizosaccharomyces pombe. Methods Cell Physiol 4:169–177

    Google Scholar 

  • Lorincz AT, Reed SI (1984) Primary structure homology between the product of yeast cell division control gene CDC28 and vertebrate oncogenes. Nature 307:183–185

    PubMed  Google Scholar 

  • Mandel M, Higa A (1970) Calcium-dependent bacteriophage DNA infection. J Mol Biol 53:159–162

    PubMed  Google Scholar 

  • Maniatis T, Fritsch EF, Sambrook J (1982) Extraction, purification and analysis of mRNA from eukaryotic cells. In: Molecular cloning: a laboratory manual. Cold Spring Harbor Laboratories, Cold Spring Harbor, New York, pp 187–209

    Google Scholar 

  • Maxam AM, Gilbert W (1977) A new method for sequencing DNA. Proc Natl Acad Sci USA 74:560–564

    PubMed  Google Scholar 

  • McGrath JP, Capon DJ, Goeddel DV, Levinson AD (1984) Comparative biochemical properties of normal and activated human ras p21 protein. Nature 310:644–649

    PubMed  Google Scholar 

  • Mozer B, Marlor R, Parkhurst S, Corces V (1985) Characterization and developmental expression of aDrosophila ras oncogene. Mol Cell Biol 5:885–889

    PubMed  Google Scholar 

  • Neuman-Silberberg FS, Schejter E, Hoffmann FM, Shilo B-Z (1984) TheDrosophila ras oncogenes: structure and nucleotide sequence. Cell 37:1027–1033

    PubMed  Google Scholar 

  • Nurse P (1981) Genetic analysis of the cell cycle. In: Gower SW, Hopwood DA (eds) Genetics as a tool in microbiology. Cambridge University Press, Cambridge, pp 291–315

    Google Scholar 

  • Nurse P, Fantes PA (1981) Cell cycle controls in fission yeast: a genetic analysis. In: John PCL (ed) The cell cycle. Cambridge University Press, Cambridge, pp 85–98

    Google Scholar 

  • Phipps J, Nasim A, Miller DR (1985) Recovery, repair and mutagenesis inSchizosaccharomyces pombe. Adv Genet 23:1–72

    PubMed  Google Scholar 

  • Powers S, Kataoka T, Fasano O, Goldfarb M, Strathern J, Broach J, Wigler M (1984) Genes inS. cerevisiae encoding proteins with domains homologous to the mammalian ras proteins. Cell 36:607–612

    PubMed  Google Scholar 

  • Reymond CD, Gomer RH, Mehdy MC, Firtel RA (1984) Developmental regulation of aDictyostelium gene encoding a protein homologous to mammalian ras protein. Cell 39:141–148

    PubMed  Google Scholar 

  • Sweet RW, Yokoyama S, Kamata T, Feramisco JR, Rosenberg M, Gross M (1984) The product of ras in a GTPase and the T24 oncogenic mutant is deficient in this activity. Nature 311:273–275

    PubMed  Google Scholar 

  • Tabin CJ, Bradley SM, Bargmann CI, Weinberg RA, Papageorge AG, Scolnick EM, Dhar R, Lowy DR, Chang EH (1982) Mechanism of activation of a human oncogene. Nature 300:143–148

    PubMed  Google Scholar 

  • Tamanoi F, Walsh M, Kataoka T, Wigler M (1984) A product of yeast RAS2 gene is a guanine nucleotide binding protein. Proc Natl Acad Sci USA 81:6924–6928

    PubMed  Google Scholar 

  • Taparowsky E, Suard Y, Fasano O, Shimizu K, Goldfarb M, Wigler M (1982) Activation of the T24 bladder carcinoma transforming gene is linked to a single amino acid change. Nature 300:762–765

    PubMed  Google Scholar 

  • Tatchell K, Chaleff DT, DeFeo-Jones D, Scolnick EM (1984) Requirement of either of a pair of ras-related genes ofSaccharomyces cerevisiae for spore viability. Nature 309:523–527

    PubMed  Google Scholar 

  • Temeles GL, Gibbs JB, D'Alonzo JS, Sigal IS, Scolnick EM (1985) Yeast and mammalian ras proteins have conserved biochemical properties. Nature 313:700–703

    PubMed  Google Scholar 

  • Toda T, Uno I, Ishikawa T, Powers S, Kataoka T, Broek D, Cameron S, Broach J, Matsumoto K, Wigler M (1985) In yeast, ras proteins are controlling elements of adenylate cyclase. Cell 40:27–36

    PubMed  Google Scholar 

  • Tsuchida N, Ryder T, Ohtsubo E (1982) Nucleotide sequence of the oncogene encoding the p21 transforming protein of Kirsten murine sarcoma virus. Science 217:937–938

    PubMed  Google Scholar 

  • Willumsen BM, Christensen A, Hubbert NL, Papageorge AG, Lowy DR (1984) The p21 ras C-terminus is required for transformation and membrane association. Nature 310:583–589

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nadin-Davis, S.A., Yang, R.C.A., Narang, S.A. et al. The cloning and characterization of a RAS gene fromSchizosaccharomyces pombe . J Mol Evol 23, 41–51 (1986). https://doi.org/10.1007/BF02100997

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02100997

Key words

Navigation