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Abstract: A class of differential operator Lie algebras on the unit circle is introduc-
ed and discussed. They are the natural generalizations of the Witt algebra and the
Virasoro algebra. Among them are the higher-spin algebras W, . , and W, which
occur in the physics literature.

0. Introduction

The Witt algebra W is the complex Lie algebra of polynomial vector fields on the
unit circle S!. An element of W is a linear combination of the elements of the form

e™ 4 where 0 is a real parameter, and the Lie bracket of W is given by

od .o d . d
imf inf — i(n — i(m+n)8
[e 10 e _dé)] i(n —m)e B

If we define t = €, then the elements t™ = ™, me Z, span the Laurent polynomial
ring C[t,t™ '], and ™% = it"* 1§ may be viewed as a first order differential
operator on C[t,¢t™']. Let d,=¢"*'4 Then W=) 6 _,Cd, and
[d., d,] = (n — m)d,,+,. The Virasoro algebra is Vir = Zm ¢z CLy + €¢ with
3 —
(L L] = (1 = m) Ly + "

12 5m+n,0¢,

[Lm,¢]=0.

Recently, C.N. Pope and X. Shen [PS], C.N. Pope, L.J. Roman and X. Shen
[PRS1], [PRS2] studied the higher spin algebras W,, and W, ,, the generali-
zations of W. The Lie algebra W, , , has basis V;,, where meZ, ieZ >, and Lie
bracket

[V, Vil = gdm, n; )V, 5y + 4293 (m, ms o002 + -

+ g% g5, (m, ;v P 4 o+ g e(m; 1)60man, 0,
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where V}, corresponds to the mth Fourier mode of a conformal spin i + 2 field, g is
a parameter, c;(m; y) are the central terms. The structure constants are given by

’ LA I
ij . —_ J
ng(ma n, l") 2(2r + 1)!N2r(m’ n) >

2r+1
lejr(m> n) = Z (_ l)k(zrl-:l)[i + 1 + m]2r+1—k
k=0

x+1—mR[j+1+nlj+1—nlyi1-r,

al
(a—n)!"

If we parameterize y in terms of a variable sby u = s(s + 1) = — %, then ¢%,(u) can
be expressed as

[al, =

y 1 3 1 R DU S 3
¢2’r(lr‘)=4F3|:"§'-2S,§+28,—r-—i,—r,—l—z, ~J—5,l+1—2r+5;1],

where ,F; is a generalized hypergeometric function (see [PRS3] for details). We
note that W, is a Lie subalgebra of W, .

Later, [PRS4] proved that W, ., is nothing but the algebra of all polynomial
differential operators on the unit circle, including differential operators of arbitrary

order, namely
d ay
Citt™ Y -—] = Ct"‘(——) .
[ dt meZ,Er:eZgo dt

This brought a connection between the higher spin algebras and the algebra of all
smooth differential operators on the unit circle. For earlier discussion, see also

[Sa].
Note that the Lie bracket of W, , , = C[t,t ™, £] given above is very complex.
We rechoose a basis for C[t, 171, 4] as follows: For all meZ, reZ o, define

r._ ¢m d {
dh=t (tdt>'

Then {d},|meZ, reZ 5} is a basis of C[z, ¢~ ', £]. The Lie bracket is

r+s

[dn, d21 = . ()" — Em )5 .
k=0
From this we see that C[t,t™!,4] has Z-grading

. d
C[t,t 1’E]= Y. Gm> [Gm> 8] S G >

mel

where the graded subspace g,,:= ) 2, Cd,,. Further, the C-linear map ¢ such that
O'(d,:,) = d,’;,.;.l VmeZ, rEZgO

is bijective from C[t,t™ !, £] to itself and shifts a graded subspace to another. We
call ¢ a shift operator of C[t, ¢!, £] (see Sect. 1 for more details). A Lie subalgebra
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h of C[t,t™ 1, 4] is called a homogeneous Lie subalgebra if

[)= me’

meZ

where §,, = hng,, and a(h) = b.

In this paper we investigate the homogeneous Lie subalgebras of C[t,t 1, &]
and their representations. In Sect. 1, we give the classification of the homogeneous
Lie subalgebras and find that, except for a few examples, these Lie subalgebras are
determined by polynomials in some way. The information from the automorphism
group of C[t, ¢t~ !, 4] is important for the study of the structure of C[t,t !, ] and
its Lie subalgebra. Since homogeneous Lie subalgebras are Z-graded, in Sect. 2, we
determine the automorphisms of €[z, ¢t~ !, £] which preserve the Z-grading. Our
result is that these automorphisms constitute a group isomorphic to
(Z,><(C, +))x(C*,-). In Sect. 3, we discuss the algebraic properties of the homo-
geneous Lie subalgebras. We see that there is a one to one correspondence between
the ideal lattice of the ring of one variable polynomials and the homogeneous Lie
subalgebras of €[t, ¢t~ !, 4] and almost all of the homogeneous Lie subalgebras are
indecomposible. Since the (universal) central extension of W, the Virasoro algebra
Vir, is so important in Mathematics and Physics and C[t, ¢t~ !, £] is a natural
generalization of W, it is natural to consider the central extensions of the homo-
geneous Lie subalgebras. V. Kac and A. Raina [KR] defined the infinite di-

mensional Lie algebra a, and its 1-dimensional central extension a,. Then

imbedded W as a Lie subalgebra of a, and obtained Vir as a Lie subalgebra of a,,.
Following Kac and Raina’s ideal, in Sect. 4, we imbed C[t,t™ !, £] as a Lie

subalgebra of a,, and obtain the 1-dimensional central extensions of the homo-
geneous Lie subalgebras. Moreover, we discuss the universal central extension of
9{0,1}:=3 . .zCds + Y ,,cz Cdn. On the representation side, for the Virasoro
algebra, Kac has the following conjecture: Every irreducible representation of the
Virasoro algebra with finite dimensional weight spaces is either highest or lowest
weight or has all its weight spaces of dimension less than or equal to one.
Kaplansky and Santharoubane [Kap, KS] verified the conjecture in the case when
all eigenspaces of dy have dimension < 1, and Chari and Pressley [CP] proved the
conjecture in the case the representation is unitary. Finally, the conjecture has been
proved by Martin and Piard [MP], and Mathieu [Ma]. As a generalization, we
define the admissible modules (the modules with finite dimensional weight spaces)
of the homogeneous Lie subalgebras and classify the admissible C[t, t ™!, £]-mod-
ules with 1-dimensional weight spaces in Sect. 5, and discuss the highest weight
modules in Sect. 6.

We denote the complex number field by C, the real number field by IR, and the
integer ring by Z. All Lie algebras considered are complex Lie Algebras.

1. Differential Operator Lie Algebras on C[z,¢™ ']

In this section, we consider the algebra of differential operators on the Laurent
polynomial ring C[¢, ¢t~ '], namely C[t, ¢t~ !, 4], and give it a Lie algebra structure.
We have seen in the Introduction that by suitable choice of basis, we obtain
a Z-grading on C[t,t~?*, 4], and hence we have the shift map ¢ on it. We call a Lie
subalgebra of C[t,t™!, 4] which is Z-graded and invariant under the shift map
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a homogeneous Lie subalgebra. The main result in this section is the classification

of the homogeneous Lie subalgebras of C[t, ¢!, £].

As a vector space over C, C[t, ¢, 4] has a basis {dnImeZ, reZ o}, where

dr:= t™(t &Y, and the action of d!, on C[t,t™ '] is given by
dr - th = kremtk
for all keZ. Let p(x) = Y. ,ax'e C[x] be a polynomial and define
dn(p(x)) = ;aid,‘;. -

Then
dn(p(x))-t* = Y aidp-t*
= Za,—k"t"’*"
= p(k)em+* .
Moreover,

(@dn(p(x))dn(q(x)) — du(q(x))dm(p(x))) - t*
= q(R)dn(p(x))t"** — p(k)d,(q(x))t™**
= (p(n + k)g(k) — p(k)q(k + m))em*"**
= dp+a(p(x + M)q(x) — p(x)q(x + m))t*

for all ke Z.

So, if we define

[dn(p(x)), du(q(x))] = dm+a(p(x + )q(x) — p(x)q(x +m)),

then C[t, ¢t~ !, 4] is a Lie algebra. Note that if p(x) = x", g(x) = x*, then the Lie
bracket we obtained here is exactly that we have seen in the mtroductxon We note
for future reference that d,, = d,; = d,,(x) and d5, = d,,(x°). We denote C[t, ¢t~ !, &
by g in the rest of this paper.

Definition. A Lie subalgebra of g is called a differential operator Lie algebra on
Clt,t™1].

Setting

= ) Cd,,

r20

where meZ, then =3 ,,cz9m> and [Gm, Gn] S Gm+na- SO g is a Z-graded Lie
algebra. In particular, [go, go] = 0, and [d{, d5] = nd;. We see that g, is an abelian
Lie subalgebra of g and g, is the eigenspace of ad(dj), the adjoint map, of
eigenvalue m.

The linear map o from g to itself such that 6(d,) = dj,+ 1 forallmeZ,reZ » o is
called the (canonical) shift of g. Clearly ¢ is one to one and onto.
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Definition. Let i) < g be a Lie subalgebra. Yy is called a homogeneous Lie subalgebra

of g if
(i) h= Zzbm, where b, = hNg, ,

(i) o) =H .
The following are examples of homogeneous Lie subalgebras of g:

(1) g{0}:= ) ,,czCdy is an abelian Lie subalgebra of g:
(2) For any aeC, define g{x + a}:= ZmeZCdm(x + a). Then

[dn(x + @), du(x + @)] = (n — M)dp+a(x + 0) .
So g{x + «} is isomorphic to the infinite dimensional Witt algebra.

(3) 80, 1}i= ¥, g €l + ¥,z Cds.

Before we give the classification of the homogeneous Lie subalgebras, we prove
the following:

Proposition 1. § = g is a homogeneous Lie subalgebra iff there exists a subspace
V < C[x] satisfying

p(x + n)q(x) —p(x)g(x + m)e V Vp(x),q(x)eV, VmneZ,
such that

b= Y  Cdu(p().

px)eV,meZ

Proof. Clearly if V = C[x] is a subspace satisfying the above condition, then
o) e v.mez Cdn(p(x)) is @ homogeneous Lie subalgebra of g. Conversely, assume
that h < g is a homogeneous Lie subalgebra. Then

h= Y b, where b, =hng,.

meZ

Note that if d,(p(x)) € b, then d,(p(x)) €b, for all neZ since o*(d,.(p(x))) =
dy+1(p(x)). Let

V={p(x)e C[x]|dn(p(x))€b VmeZ}.
Then for polynomials p(x), g(x)e V, m,ne Z,
[du(p(x)), du(q(x))] = din+a(p(x + n)g(x) — p(x)g(x + m)) €h .

Hence
p(x +n)q(x) — p(x)g(x + myeV, VmneZ.

V satisfies the required condition. O

Remark. By Proposition 1, classifying the homogeneous Lie subalgebras of g is
equivalent to classifying the subspaces of C[x] which satisfy the condition given in
the proposition.
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Proposition 2 (Classification of homogeneous Lie subalgebras). The following are
all of the homogeneous Lie subalgebras of g:

(1) ¢{0}, g{0,1}, g{x + «} where a € C.

(2) a¢ppy = Z g e <p(d,meZ Cd,.(q(x)), where {p(x)) is the ideal of C[x] gen-
erated by p(x).

Proof. We have seen that g{0}, g{0, 1}, g{x + a} are all homogeneous Lie sub-
algebras. Now for any p(x) € C[x], if q(x), r(x) € {p(x)), then clearly

q(x + nr(x) — gx)r(x + m)e {p(x)> ,

for all m, n e Z. So g¢p(x) is a homogeneous Lie subalgebra of g by Proposition 1.
Conversely, let ¥V < C[x] be a subspace such that

p(x + n)q(x) — p(x)g(x + meV Vp(x), q(x)eV, Vm,nelZ.

Define gy = Zm eZpx)eV Cdm(p(x))

(a) Suppose for all p(x) € V, deg(p(x)) = 0. Then V = € and g, = g{0}.

(b) Suppose for all p(x) € V, deg(p(x)) < 1, but there exists p(x) € V with degree
1. Assume that p(x) = x + a € V. If there exists f € C such that f + o and x + f €
V, then V=Cx+C and gy =g{0,1}. Otherwise, V =C(x +a) and
gy =g{x + a}.

(c) Suppose there exists g(x) € V such that deg(gq(x)) = 2.

Let
p(X)=x"+a,_ X'+ - +ageV

be the choice with minimal degree and let
qx) =x 4+ by_1x* '+ - + boeV,
where s = 2.
Case 1: r = 0. By the Taylor formula,

(2)( ) w4 (S)('x)ms

q(x +m) =4q(x) + g (x)m + =~

Since g(x + m) — g(x) = ¢'(x)m + =& (") m*+ - + q—";(!—")ms e V,forallmeZ, and the
determinant of

1 1 1

2 22 2

s s? s
is nonzero, ¢'(x), "(Zf"), s “("’e V. It follows that 1, x, x%, ..., x*"'eV. But
q(x)e V,so also x°e V. Assumethatlx ,xkeV, k>s>2 Then

(x + n)?>x* — x2xF = x*(2nx + n?) = 2nx**! + n23xk eV

for all n € Z. Thus x**! € V. By induction, ¥ = C[x] and gy = g¢1y = g.
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Case 2: r =1, p(x) = x + a. Since

+

ARG )
2 . S' )E V

p(x)q(x) — p(x)q(x + m) = — p(x) (q ()m + =——

for all m e Z, we have

09

(x +a)g(), ..., (x + @)
Thus
x+a,(x+ax, .., c+ax eV,
where s = 2. Assume that (x + a), (x + a)x, ... ,(x + a)x* € V for some k = 1. Then
(x 4+ a+ n)(x + n)(x + a)x* — (x + a)x(x + a)x*
=(x+ a)x*Qnx + n(a +n))eV

for all n. Hence (x + a)x**! € V. By induction, {x + a) < V. Note that (x + a)
has codimension 1 in €C[x], so {x + a) = V and gy = g¢x 4 a»-

Case 3: r = 2. For any n € Z, since

p(x + n)p(x) — p(x)p(x)

P P
—P(x)(P(x)n+ TR >eV,

we have
p(x), xp(x), ... ,x" " 'p(x)eV,

where r = 2. Assume that

p(x), xp(x), ..., x*p(x) eV for somek=r—12=1.

Since
1£k—r+2=<k,
we have
r(x):=x*"""2p(x)eV,
and
deg(r(x)) =k + 2.
But

r(x + n)p(x) — r(x)p(x)

‘”(x) r“T () in
-P(X)<r(X)n+ 5 R (k+2)!n" )eV

forallneZ, so
p(x), xp(x), ... ,x** ' p(x)e V,

By induction, {p(x)> < V. If there exists h(x) € V\{p(x)), then by the choice of
p(x),

deg(h(x)) = deg(p(x)) 2 .
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Assume that deg(h(x)) =1 and define h; (x):= h(x) — x'""p(x). Then h;(x)e
V\{p(x)) and deg(h;(x)) < deg(h(x)). Inductively, there exists a h*(x) e V\{p(x))>
such that deg(h*(x)) < deg(p(x)). This is a contradiction. So we have V = {p(x))
and complete the proof. O

2. Graded Automorphism Group of C[z,¢7 ', 4]

We had seen in Sect. 1 that g=C[t,¢t™',&] is Z-graded as g =, cz0m
On = re z,Cdn. Let ¢ € Aui(g), the automorphism group of g. If ¢(g,,) = g, for
all me Z, we say ¢ is a graded automorphism of g. Let

Aut(g) = {¢ € Aut(g)| ¢ is graded} .

Then Auts(g) is a subgroup of Aut(g). In this section, we determine Auts(g). First we
prove the following.

Proposition 1. As a Lie algebra, g is generated by d°.,dS, d%; that is
g= <d(-)~ 1> d(l)a d(§>
Proof. Let g':= {(d%, d?, d3). Since [d3,d}] = 2d} + d} € g, we have

dieg .
Similarly, we have

dl,eg .
Thus

do =3[dl,di]eq .

Now [d3,d}] =2d% + d} e g’ implies that d?eg’. Then [d},d?] =d2eg and
[d3, d?] = 2d} + d9 € ¢’ imply that

dieg .
Similarly,
dl,eq .
Since g{x} is generated by {d',,d%,,d}, di,d}},
g{x} =g
Then

dpv1 =[d;,d3]eg
for all n € Z. Finally from [d3, d,] = 2nd? + n*d} e ¢’ for all ne Z, we obtain
d2eg
for all n e Z. In summary, we proved that
du(x*)eg VmeZ,k=0,12.
Now assume that d,,(x*)eg VmeZ, 0 <k < 1. Then
[dm, du(x)] = dpsn((x + 1)*x' — x*(x + m)) e ¢’

implies that d,,(x'* ') € g’ for all m € Z. By induction, we get g’ = g. O
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Definition. Let € C and define Yz:g — g to be the unique linear map such that
Y(dn(p(x))) = dm(p(x + B)) for all m e Z and p(x) € C[x].

Let ae C* and define ¢,:g—g to be the unique linear map such that
d.(dn(p(x))) = a™d,(p(x)) for all me Z and p(x) € C[x].

Let 7:g — g be the linear map such that
t(dn(p(x))) = (= D" dp(p( — x —m))
for all me Z and p(x) e C[x].

Proposition 2. Let ¥ = {y;|f€ C} and let & = {P,|ae C*}. Then Auts(g) =
(O<P)x @ = (Z,><(C, +)) x(C*,-), where 1> = 1.

Proof. Since

[ p(dn(p(x))); ¥p(dn(p(x)))]
= [du(p(x + B)), du(q(x + B))]
= dna(p(x + 1+ fq(x + f) — p(x + fg(x + m + f))

= ¥p(Ldm(p(x)), dn(q(x))]),

Yp € Autg(g) for all § € €. It is easy to see from the definition that ¢, € Auts(g) for

all a € C*, x//ax//g = Yyrp, PuPp = Pap, and P s = Y5, It is also easy to verify that
t€ Autg(g), t* =1, and td, = ¢,t, Wyt ' =y _; Hence ((HD<P)x P~
(Z,p<(€C, +))x(C*,-) is a subgroup of Autg(g).

Now suppose Y € Autg(g). We show that ¥ e ({t)p<¥)x ®. Assume that
Y(do) = " oam, idh, where meZ, and a,,;, + 0. Fix me Z. For any ne Z,

0=y [dy, d]]
= [Y(dn), ¥(@)]
= Gy, 1, @n,1, [di3, A ] + -+
= Gy 1 Ay | Aoyt (6 + 1) — Xm0 + m)) + oo

If I, > 0, then for n > 0, dy 4 4((x + n)"x" — x™(x + m)*) % 0. So we must have
l,=0,ie. y(dR) = a,d? for some a,, € C*.
Assume that Y(d}) = d,,(p.(x)). Comparing

l//I:dnlu dr?] = ‘/’(nd12+n) = nam+ndr(r)1+n

with
LY (dn), ¥(d2)] = [dm(pm(x)), ands]
= andm+n(pm(x + n) - pm(x))
Px) ,
_a,,dm+,,<pm(x) + = X + >,
we obtain

deg(pm(x)) =0
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and
Pm(X) = bpX + Cm

for some b,,, c,, € C. Thus
Y(dy) =bnd) + c,db .
Moreover, from Y [d5, d2] = [¥(dL), ¥(d2)], we have
Ny +, = Nab, VYm,nelZ . (1)
Assume that y(d3) = do(q(x)). Then
Y [d3, )] = ¥(d,(2nx + n?))
= 2ny(dy) + n*Y(dy)
= 2nb,d} + (2nc, + n%a,)d? ,
and
[Y(d3), ¥(d7)] = [do(q(x)), andy']

= andy(q(x + 1) — q(x))

= ayd <t1(x)n+ (zz)f) n? + )

for all n € Z. These imply that deg(q'(x)) = 1, and q(x) = f,x* + B1x + B, for some
B2, B1, Bo € T, where B, + 0. From ¥ [d3, d7] = [¥(d3), ¥(d7)], we get

2nb, = 2nf,a, @
2nc, + na, = a,(fin + fon?)
forallneZ.
With m =0 and n =1 in (1), and by (2), we get
bo =1
{bn=ﬁ2an nk0, (3)
and
ay .
= F(B1+ (= D) im0,
Hence
{ll/(d.}) = a,(Body + B2 B=040) ifn 0,
Y(dd) = db + codg .
Then from

Y[ds, dL] = —2mp(dd) = — 2n(ds + codd)



Differential Operator Lie Subalgebras

and

[¥(da), ¥(dLn)]

- [a,,(/izd,} f Bt oz (ﬁ; — ””d,?), a-,,(ﬁzd‘_,, Sl kL (ﬁ; — l)nd‘i,,)]

= — 2np3a.a_,ds — na,a_,p,p2dg ,

aa-,

we get a,a_,B3 = 1, and ¢y = 25~ B, 8, for all n + 0. Hence

co =L
0= 23
{cn =3B + (B2 — Dn).
From (1) and (3), and using a;a_, 83 = 1, we have
Am+1 =a1amﬁ2 VmelZ .
By induction on m, we get
= P2 a™ VmelZ,
where a = a,. Then from (3) and (4),

{bm = B3~ 'a"B,

Cp = ,8'2"_ lamﬂx +(B21- m

forallme Z.
In summary, we have proved that

{l/’(d,? )= B3 'a"d,
W(d) = By ad,(Box + Bt =y

for all n € Z. Assume that

v = pi-raa(pox-+ Ll )

2
for all n # 0. From ¥/ [d}, d3] = [¥/(d:), y(dd)], we get

v = ﬂi“a%((ﬂ” ¥ wa)

for all n # 0. So by induction on r, we obtain

foralln+0,reZx,.
Since

Y[d7, d%,] = — 3ny(dj) + 3n*Y(ds) — nY(dg) ,

441

4

&)

(6)

™
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and

[¥(d3), ¥(d2,)]
= [/}g—landn<<ﬂ2x + Eﬂ%z_—ﬂ>3>’ ﬁz—n—la—nd_n(l):]

B1 + (B2 — Dn)?
2

= /32_2‘10(3 <ﬁzx + (= B2

+ 3<ﬁ2x " B+ (ﬂzz - 1)")

(= Ban)® +( —ﬁzn)3),

and

YId;, d%,] = [Y(dn), (d2,)]

for arbitrary n #+ 0, using (7) and comparing the coefficients of n* and n, we get

pi=1

-1 ﬂl 2
Bo = B2 (—2‘> .

If B, = 1, then (7) and B, = (&)? give us
Y(d?) = ad? = ¢ad/%(d?)
Yd2)=a"'d2, = ¢a¢%_x(d9 1)

vy = ol (x+5)) = gupaty.

and

If B, = — 1, then (7) and B, = (&)? give us
Y(d}) = ad? = %W%(d?)
Yd2)=a'd2 = (baﬂp%{(dgl)

Y(dd) = — do<< —-x+ %) > = dm//%(dg) .

Since by Proposition 1, d2, d? and d° ; generate g, so in both cases above
g

Vel Y ¢u|peC, acC*).

Hence
Autg(g) = KtOp<P)x D .
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-1 d

3. Structure of Homogeneous Lie Subalgebras of C[z,¢7 ', §]

It is obvious that g{0} is abelian, g{x + «} is simple, and g{0, 1} = g{x}p<g{0}. In
this section, we discuss the structure of g, further.

Proposition 1. Let p(x), g(x) € C[x]. Then

(1) 8y 15 a L_ie subalgebra of S¢py 1ff p(x)] q(x).
(1) g¢qey is an ideal of g¢pxy iff {p(x)> = {q(x)).

Proof. (i) is clear.
(ii) Suppose that g,y is an ideal of g(,)y. Then

Ldun(p(x)), du(q@(x))] = dum+n(p(x + 1)q(x) — p(x)q(x + m)) € G¢q(x)> -

Hence
q(x)|p(x)g(x + m) VmeZ.

Assume that g(x) = p(x)r(x). Then
r(x)|q(x +m) VmeZ.
So r(x) must be a constant and {p(x)) = {g(x)>. O

Proposition 2. Let
p(x), q(x) € C[x], where g.cd.(p(x),q(x))=1,

and let
r(x) = p(x)q(x) .

Then
3y = IKp(x)> N q(x)) -

In particular, if

r

re)) =[]+ o)k,

i=1

where a4, ... ,o, are distinct, then

,
8¢y = ﬂl 8¢ + o> -
=

Proof. Let X € Ip(x)> N BL(x) - Then
X =3 dn(p()hn(x)) = Y dm(q@(X)kn(x)) ,

where h,(x), kn(x)eC[x]. So p()h,(x)=q(x)kn,(x) for all m. But
g.c.d.(p(x), g(x)) = 1, so p(x)| k.(x) for all. Assume that k,,(x) = p(x)k}(x), for some
k#(x)e C[x]. Then X =3, dn(@(x)p(x)k%(X)) € 8¢r - O

It is clear that Cd,, is the centre of g. Moreover, we have the following:

Proposition 3. €dJ is the only proper ideal of g and hence g/Cd} is simple.
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Proof. Let 0 = I<g be an ideal. From [d}, I] < I, we see that I = Zme zIm, Where
I, = I1ng,,. Suppose that I\Cd is not empty and 0 # d,,(p(x)) € I\Cd3 such that
deg(p(x)) is minimal. If deg(p(x)) > 0, then

[dm(p(x)5 dr?] = dm+n(p(x + n) - p(x)) el
and
deg(p(x + n) — p(x)) < deg(p(x)) -
This is a contradiction. So p(x) e €, and d2 € I\Cd}. This implies that
[d},d%] =mdS,,el VneZ.

Hence g{0} < I. Note that [d,(x"), 4] = dp+a((x + n) — x") eI for all m, ne Z,
reZ . By induction on r, we see that d,,(x") eI, VmeZ,reZ . So I =g. [J

Proposition 4. For any a € C, g¢x + o is simple.

Proof. By Sect. 2, Proposition 2, we need only to show that g, is simple. Let
0 + I<g¢xy beanideal. ThenI =Y, .51, where I, = Ing,,.Letd,(xp(x)) € I and
deg(p(x)) be minimal. Since

[dm(x), du(xp(x))] = dm+a((x + n)xp(x) — x(x + m)p(x + m)) €1
for all m e Z, we have
deg((x + n)p(x) — (x + m)p(x + m)) = deg(p(x))
for all m e Z. On the other hand,

deg((x + mp(x) — (x + m)p(x + m)) < deg(p(x)) -

So they must be equal. Thus for any meZ, there exists p,(x) with
deg(pm(x)) = deg(p(x)) and d,,(xpn.(x)) € I. We may assume that the coefficient of
the highest term of p,,(x) is 1. Then

[dn(x), du(xpa(x))] = dpn+al(x + 1)xPu(x) — X(x + mM)ps(x + m)) € 1
for all m, ne Z. Fix m £ 0 and choose n = m(1 + deg(p(x))). Then
(x 4 m)pa(x) — (x + m)pa(x + m)
= (x + n)pa(x) — (x + m)(pa(x) + pu(x)m + --)
= (n — m)p,(x) — xp,(xym + lower terms .

So
deg((x + n)p,(x) — (x + m)p,(x + m)) < deg(p(x))

unless deg(p(x)) = 0. So d,,(x) € I for all me Z.
Now from [d,(x),d.(x"*')]el VreZs,, and by induction on r, we get
I= G(xd>- O

Proposition 5. For any p(x) € C[x], g¢pwx)> is indecomposable.

Proof. If deg(p(x)) £ 1, this follows from Proposition 3 and 4. Now assume that
deg(p(x)) = 2. Suppose g¢px)y = Ur @ U,, where Uy, U, are ideals of g,y and
U,nU, =0 and both U, and U, are non-zero. Let

0+ y=d;(q:(x)+d;,(@:(x) + - +d(q(x)eU;,



Differential Operator Lie Subalgebras 445

wherej; <j, < --+ <jiand q,(x), g2(x), ... ,qx(x) are non-zero. Thenforallme Z,
Ym'=[du(p(x)), ]
= [du(p(x)), d;,(¢:(x))] + -+
=dp+j,(P(x +j1)q1(x) — pX)g:1(x + m)) + --- €U, .
Note that
4= p(x +j1)4:(x) — p(x)q:(x +m) * 0
if m> 0, and
deg(q"(x)) < deg(p(x)) + deg(q:(x))

forall me Z.
Let

O%fz=d, (ri(x)+ - +di(rs(x) €U, ,

where i; < -+ <i,, and ry(x), ... ,rs(x) are non-zero. Then [y,, z] =0 for all
m € Z. This implies

[dm+ 1. (a77(x)), di, (r1(x))]
= dm+j,+1, (g7 (x + i)r1(x) — g ()rs (x + m))
=0
for all me Z. But
deg(q{"(x)) < deg(p(x)) + deg(q:(x))
forallmeZ, so
g (x + i)ri(x) — ()i (x +m) % 0
if m > 0. Hence
et j,+1, (@77 (x + )11 (%) = g7 ()71 (x + m)) + 0
if m » 0. This is a contradiction. O

4. Central Extensions

In this section we consider the 1-dimensional central extensions of the homogene-
ous differential operator Lie algebras and determine the universal central extension
of g{0, 1}.

Recall that gl (C) = ), ;. z CE;; with Lie bracket

[Eija Eul = 5jkEu - 51iEkj

is a Lie-algebra, where E;; is the matrix with 1 in i-row and j-column, with
0 elsewhere. Define

0: gl (C)x gl (C) > C
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to be bilinear and

a(Eij, Eji) = — a(Eﬁ, Eij) =1 i20,j=21

o(E;j, Ey) =0 otherwise .

Then « is a 2-cocycle of the Lie algebra gl (C).
Kac and Raina [KR] defined the following infinite matrix Lie algebra:

G = {Ad=(ayijezlaje Ca;=0 V|i—j|>0},

where |i — j| > 0 means that |i — j| is sufficiently large. The Lie bracket of a, is
given by [A4, B] = AB — BA, for all A, Bea,, where AB is the usual matrix
multiplication. A matrix in a,, is a linear combination of matrices of the form

2 /liEi+m,i
ieZ

formeZ.
The 2-cocycle o defined above can be extended to a 2-cocycle of the Lie algebra

a,, as follows:
d(Z/liEHm,i, z,quj+n,j> = Zzliﬂj“(EHm,i, Ej+n,j) .
i j i j

Kac and Raina [KR] also defined the 1-dimensional central extension a,, of a,.

A, = 0, + C¢
and
[x, y]=xy — yx + a(x, y)¢,
[x,¢]:=0’ Vx,yeﬁ;.
Let
M0y — Qg

be the canonical homomorphism given by n(x) = x, for all x € a,, and =n(¢) = 0.

For any Lie subalgebra b of a_,, 7:= 7~ '(h) is a Lie subalgebra of a,,. In general, it
is a 1-dimensional central extension of .

In the following, we imbed g as a Lie subalgebra of a,, and hence obtain the
1-dimensional central extensions of g and its Lie subalgebras.

Proposition 1. For any f§ € C, define
ipig—>a,
to be the linear map such that

igdn) =Y, G+ P Ejim,; -

JEZ

Then iy is an injective Lie algebra homomorphism.
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Proof.
[ig(drn), ig(dn)] = ZZ(] + BY (i + BY[Ej+m, j» Ei+n,i]

= ZZ(J + B) (i + BP0, i+nEj+m i — Oi, j4mEixn, j)
it B+ B Eremans
- Z(J +B(j+m+ BFEjsmtn,;

=2(G+n+BYG+B =+ B+ B+m)Ejsmin;

= Z@«Dn" — ()mh)(j + ﬁ)’*S-")Ej+m+n,,~
= ;((z)n" — mMyigdie*
=igldn, di] .

The injectivity of i, is clear. 0O

Now if we identify dy, with ) ;j"E;+,, ;, then for polynomials p(x), g(x),
a<2p(j)Ej+m,j’ Zq(i)Ei+n,i>
J i

= Zzp(j)‘I(i)“(Ej+m,j, Eitni)

=< Y p(ai—-m— ) p(j—m)q(j)>5m+,.,o.

1<j<n 1<j<n

So in § = n "~ !(g), the Lie brackets are
[dn(p(x)), du(g(x))] = dm+a(p(x + n)q(x) — p(x)q(x + m))

+< Y pGla(j—m— Y p(j—m)q(j)>5m+n,o¢~

1<7<n 1<j<n
[dn(p(x)), ¢1=0.

Example 1:
{0} = ), Cdn+C¢,
melZ
[dr(r)n d,?] = - 2m5m+n,0¢ )
[do,¢]1=0.
Example 2:

g{x} = ) Cd,+C¢,

mel

3
[ds 431 = (0 = M)} 0+ ——Onsn,o8 »

[dm, ¢1=0.
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We see that §{x} is the Virasoro algebra, which is the universal central extension of
g{x}.

Wanglai Li [Li] proved the following result: The 1-dimensional central exten-
sion of g is unique up to a scalar multiple. In the rest of this section we determine
the universal central extension of g{0, 1}. Since g{0, 1} is perfect, its universal
central extension exists.

Generally, if a Lie algebra §) is perfect, its universal central extension can be
obtained as follows:

Consider AZ, the second exterior power of . Let I = AZ?h be the subspace
spanned by all of the elements

x ALy, z]+y Az, x]+zA[xy],
where x, y, zel). Let

A :hxh > A

be the canonical map
x> xAy=xAy+1.

Then A is the “universal” 2-cocycle for b, and b @ ( A2h/I) acquires a Lie algebra
structure through
AZ

I

[x+uy+v)l=[xy]+xAy wherex, yebh, uve

Now

_ Azb Azb

together with the restriction to § of the natural projection of § @ ( A2b/I) onto f is
the required universal central extension (see [G] or [MoPi]).
In our case,

g{0,1} = Y Cdi+ Y €d3.

mel mel

A?g{0, 1}
I

is spanned by
ANdL,dd), AN(dy,d), AdS,dY) Vm,nelZ.
The 2-cocycle condition gives us
N (dn, 47, &01) + R (d7, [d0, dn]) + A (AR, [dm, d2])
= ~ kR, dps) + n A (dR, dm+n)
=0 €Y
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forallmn,keZ. Let k= —m —nin (1). Then
nA@2sn d% ) =m+n)A @2, d%,).
Thus
_ A(d?,d%,)

n

¢3:

is independent of n, n + 0. Let k = 0 in (1). Then
AN@dR,d’)=0 VneZ.
From this, setting m + n =0 in (1), we have
N@d2,d2-,)=0 Vk+0.
Combining these results, we get
A (dn, d7) = MOpin 0t -
Again by 2-cocycle condition,
N (dm, [da, d01) + A (da, [d0, dn]) + A (A2, [dn, d3])
=k R (dm, disi) = kA Ay, dism) + (0 —m) A (d7, dpsn)
=0.
If m =0 in (3), then
kA, d) =(k+n)Ad),d7).
With k= —m — nin (3), we get
m—=n)A@yin d%m—r) =(m + n)( A (dh, d%) — A (d§,d°,)) .

Replacing m by 2m in (4), we obtain

@2m —n) R (dzm+n> 42 2m=n)

=(2m + n)( A (d3m, d°5,) — A (d}, d%,)) .
Replacing n by m + n in (4), we obtain
— 1A (dimtn> 42 2m—1)
=0C2m+n)( A (dp, d%n) — N (b0, A% m-n)) .

1

449

)

©)

4

©®)

Multiplying this by m — n and replacing the A (d}+,, d%,.—,) term using (4), we

obtain
- n(m - n) A (d%m+m d(l 2m—n)
= —2n(2m +n) A (dy, %) + Cm + n)(m +n) A (ds,d%,) .

(6)
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From (5) and (6), we get
—n(m—n)2m + n) A (3, d%2m) + 20(2m + n)(2m — n) A (d}, d°.,,)
=(2m +n)2m? A (d}, d%,) .
If2m+n+0,m—n=+0 m3+0,n+0, then
A (ds, d%50) — 2°A (2, d° ) 2N (dn, d%) | 27N (d,d2,)

m? m(m — n) n(n —m)

Thus
_ 7( (d21m’ d(lZm) -2 7( (driu d(lm)

mZ

¢2:

is independent of m, m = 0.
Finally, since

A (dm [dns 1) + A (dy, [y, dd) + A (i, [dm, 4, 1) =0,
a similar calculation as above shows that
(*) (k+n) 7 (d, d) = (k —n) R (do, dn+x)
forall n,keZ, and
AR (drm,dLom) = 2R (dp,dl,) 127K (d,dly) 1278 (dy,dl,)

(**) m3 - m(mz _ n2) n(nz _ m2)

for all m, n + 0, m* + n®. Thus

2N (dym dL2m) — 2R (dm, dL))
4:1 = 3

m

is independent of m, m % 0.
Now we define

dh:=d) +% A (dy,dy) wherem =0,

~ 1
6:= dé _5 K(dg,dl—l)s

do:=d2 +% A (dy,d2) wherem £ 0,

~ 1
d8:=dg—§ W(d(l)9d(ll)a

and
§{0,1}:= Y CdL+ Y C€d5+ Céy + Ch, + Cs .

meZ meZ
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Proposition 2. §{0, 1} is the universal central extension of g{0, 1} and the Lie
brackets of §{0, 1} are

T m? —m
[drlm d ] (n - m)dm+n T5m+n,0¢1 )

- m(m — 1
(23, 801 = 3 s+ D, ot

[dy.d)] = MO+ 1,083 >
where ¢4, ¢&,, ¢4 are in the centre.

Proof. Clearly,

50,1} gg{O,l}G—)w,

and we have
(4%, d}]
=[dp,ds 1+ & (dy, dy)

=(n—m)dp+s 05 dm+n)  (using (x))

(I’l - m)( m+n —% A (dOa m)) +_ A (dO; drit-#n)

=(m—m) A dpi,, (provided that m+n=0),
[dy,d ]
=—2mdy+ A (d,d~,)

=—2mdi —m~A d},d,) + mm? — 1)%1;1 +mA d},dL)

(using (**) withn = 1)
m3 —m
12

We can verify the other two commutators similarly. So §{0, 1} is a Lie subalgebra
of {0, 1} & ( A*g{0, 1}/I). Moreover,

= —2md} +

5m+n,0¢1 .

[g{O 1} @M {0’ 1} @w]
= [g{O, 1}: g{O, 1}]
= §{0,1},

so §{0, 1} is the universal central extension of g{0, 1}. a
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5. Admissible Modules

Let h = g be a homogeneous Lie subalgebra and § =), _, bi. Then b, is an
abelian Lie subalgebra of h. A h-module V is called admissible if

(i) V =15 V> where b is the dual space of b, and
Vi={veV|X-v=4X)v VXeby}.
(i) dim(V,) < oo for all e bg.

For g{x}, I. Kaplansky [Kap] and I. Kaplansky and L.J. Santharoubane [KS]
proved the following result:

IfV =3, zCuisag{x}-module such that
dy-v,eCopsy YmkelZ,

di-v, 0, di-v,+0 VkeZ,

then there exists o, f € € such that
dyvi=(k+oam+ B4 VmkeZ.
In this section we prove similar results for g and g{0, 1}.
Proposition 1. Let V =Y, _, Cv, be a ¢{0, 1}-module such that
° 4L 0e€ Coprpy 90, € Copry
and
di-vp %0, dii-v +0

for all k e Z. Then there exists o, §, y € C such that

(i) dm-vic = (k + om + B)vmss.
(i) If o &+ 0, 1, then d2.v, = YOm+x for all m, k e Z.

If a =0, then
dr(p)z’vk=yvm+k Vm,keZ,
or
0 (k + B)y
Uy = — Vm, kel .
dm Uy k+m+ﬁvm+k m, K€
If a = 1, then
dr?l'uk = VYUm+x Vm,keZ s
or
k+m+
d,?,-vk=(—k+ﬂ—ﬁlzvm+k Vm,keZ.

Proof. (i) follows from the result of Kaplansky and Santharoubane’s quoted above.
(i) First we note by assumption,

dive=(°+a+ s %0, diivg=(k—a+ o1 %0,



Differential Operator Lie Subalgebras 453

for all k€ Z. So f + a¢ Z. Assume that dQ- v, = f(m, k)vpm+,. Then from

0 ;0 0 ;0
dmdn Uy = dn dmvk

and
[dm> dy 101 = (dmdy, — d7 dp)v
we obtain
{f(n,k)f(m,n+k)=f(m,k)f(n,m+k) M
nfm+nk)=f(nk)Yn+k+oam+ B)—f(n,m+ k)(k + am + B)
forallmn keZ.
Let k=0 in (1). Then
{f (n, 0).f(m, n) = f (m, 0) f (n, m) )
nf(m + n,0) =f(n,0)(n + am + B) — f(n, m)(am + B),
or
{f (n, 0) f (m, n) = f(m, 0) f (n, m) )
f(n,m)(oam + B) =f(n,0)(n + om + B) — nf(m + n,0) .

Multiplying both sides of the second identity of (1) by (ak + B)(a(m + k) + ) and
using the second identity of (3), we obtain

nam+ k) + Y f(m+n0)(m+n+ak+ ) —(m+n)f(m+n+k,0))
=(a(m+ k) + B)(n+ k + om + B)(f(n,0)(n + ko + ) — nf(n + k, 0))
—(ok + )k + am + B)(f(n, 0)(n + a(m + k) + f) —nf(m +n+k,0). (4)
Letm= —1,n=11n (4). Then
(k=) +B)k+1—a+p)f(k+1,0)
= (ak + )k —a+ B)f(k, 0)
+ ((a(k — 1) + )k + B) + (1 —o)(B — @) f(1, 0)
— (a(k — 1) + B)(ak + B) (0, 0) . ©)
With k = —1 in (5), we get
(B—oa—=1)f(=1,0)—2(f —20)f(0,0) + (B —3a + 1)f(1,0)=0.  (6)
Letm=k=1,n= —11in (4). Then
(B+30—1)f(—1,00—2(f+20)f(0,0) + (B +a+1)f(1,0)=0. 7
Combining (6) and (7) we get
ol —a) f(0,0) = a(l — ) f(1,0).
We consider the following three different cases:

(a). « +0, 1.
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In this case, f(0, 0) = f(1, 0) and (5) becomes
(ak =1+ Pk +1—a+B)f(k+1,0)
= (ok + )k —a + B)f(k,0) + (1 — )(B — @) (0,0) . ®)

If 0¢aZ + B, then by induction on k and the fact f+ a¢Z, we get
f(k,0) =£(0,0) for all ke Z. Then by (3), we get

f(m,n)=f(0,00 VmneZ.

Now suppose al + =0, for some [€Z. Since f +a¢Z, =0, or [ 22, or
I<-2.
If I = 0, then = 0 and (8) becomes

k—1Dk+1—-a)f(k+1,0)=k(k— o) f(k,0) — (1 — ) f(0,0). ©)
With k= —1 in (9), we get
20f(0,0)=(1+ ) f(—1,0)—(1 — ) f(0,0) .

Hence

J(=1,00=/(0,0).
By induction on k we have

f(k,0)=1(0,0)
for all k < 1. With k = 2 in (9) we get
B-0/3,0=22-x)f(20 -1 —-9f(00).
By induction on k we have
(k=) f(k,0)=(k—1)2—a)f(20)—(k—2)(1 —=2)/f(0,0) (10)
for all k = 2. With n = —1, m = 2 in the second identity of (3), we obtain
20f(—1,2) =Qa — 1)f(—1,0) + f(1,0)
= 2af(0,0)

or

f(=1,2)=£(0,0).
With m = — 1, n = 2 in the second identity of (3), we obtain

—af(2,—1)=(—a+2)f(2,0) —2f(1,0) .
With these and by the first identity of (3), we get
—af(2,0)(0,0) = (2 — «) f(2,0)/(0,0) — 2/(0, 0)/(0, 0),

or

f0,0(f(2,0)—f(0,0)=0.

If £(0, 0) + 0, then f(2, 0) = f(0, 0). Then by (10), f(k, 0) = (0, 0) for all k € Z.
If (0, 0) = O, then (10) becomes

(k — ) f(k,0) = (k — 1)(2 — 2)f(2,0) (3Y)
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for all k = 2. Using this and letting n = 1, m = 2 in the second identity of (3), we get

20f(1,2) = —f(3,0) .

With this and the fact f(1, 0) = 0, and with m = 1, n = 2 in the first identity of (3),
we get (2, 0) f(3, 0) = 0. Hence by (11), (2, 0) = £(3, 0) = 0. These imply f(k, 0) =
0 =1(0,0) for all ke Z. Now by the second identity of (3),

f(n,m)=£(0,0)

forallmneZ.
If I = 2, then

ok +p+0
for all k < I, and by (8),
fUO)="-=f(1,00=/(0,0=""-".

From this and with m =1 and n=1 in the second identity of (3), we obtain
fU+1,0)=f(1, 0). Then by (8),

fGLO)=f(+1,0)=""-.

So f(k,0) = f(0,0) Vk € Z. Now by the second identity of (3) we obtain f(n, m)
f(0,0) for all m + L

If £(0, 0) =+ 0, multiplying both sides of the first identity of (3) by f(0,0)™!
f(n,07 ! =f(m, 0)" 1, we get f(m, n) =f(n, m) Vm, n e Z. Hence

f(m,n)=f(0,0) Vm,neZ.

Il

If (0, 0) = 0, then f(n, m) = O for all m + I. From this and withm + 0, k =l in
the second identity of (1), we get

nfim+nl)=f(n,D)n+1+am+ f). (12)

With n=0and [ + am +  #+ 0 in (12), we obtain f(0,1) =0. Withm +n =0 in
(12), we obtain f(n, I) = 0 for all n > 0. Now (12) gives us nf(m + n, 1) = 0 for all
n>0and allmeZ. So f(n, 1) =0 =£(0,0) for all ne Z. We have proved that

fmn)=0=f(0,0) VmeZ.
The case of | £ —2 can be proved similarly. So for « # 0, 1, we have
fim,n)=£(0,00 VmneZ.

(b). «=0.
In this case f¢Z, and (3) becomes

{f (1, 0).f (m, n) = f(m, 0) f(n, m) (13)
Bf(n,m)=(n+ f)f(n,0) —nf(m+n,0),

and (5) becomes

(k+1+B)f(k+1,0)=(k+ p)f(k0)+ (1 +p)f(1,0) = ff(0,0). (14
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By induction on k, we obtain from (14) that

160 =210 - 0.0, (13
Thus
110 =~ 8r0.0+ 200,

Withn=1, m = —1 in (13), we get
fA,0f(=11)=f(-1,0)/(1,-1)

and
1+5 1
1,-1)=—+f(1,0)—-=1(0,0).
f( ) ; f(1,0) ﬁf( )
With n = —1, m = 1 in the second identity of (13), we get
r=tn=-E50,0+ 20,0,

Combining above results, we get

A+ B)f2(1,0) = (1 +28)f(1,0)£(0,0) + f?(0,0)=0,
or
(f(1,0) —f(0,0)((1 + ) f(1,0) — Bf(0,0)) =0 .

Hence

J(1,0)=1(0,0)

10,0 =£270.0.

If £(1,0) = £(0, 0), by (15), f (k, 0) = £ (0, 0) Vk € Z. Then by (13),
f(n,m)=1(0,0) VmneZ.
Iff(1,0) = 155 £(0, 0), by (15), f (k, 0) = 55 £ (0, 0) Vk € Z. Then by (13), we obtain

f(n,m)=n:'_1r:f_ﬁf(0,0) VmneZ.

or

(c). a=1
In this case f¢Z and (3) becomes

{f (n, 0)f (m, n) =f(m, 0) f(n, m)
S, m)m + ) =f(n,0)(n +m+ f) —nf(m+n,0),

and (5) becomes

(16)

fk+1,0)=1(k,0) + f(1,0) — £(0, 0) . 17)
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With k= —1 in (17), we get
f(=1,0)=2f(0,0)—f(1,0). (18)
Withn=—1,m=1 in (16), we get
f(=1L,0) /1, =) =f(1,0/(-1,1),

and
1
f1 D) = T (1.0 4 55 70,00,
Again, with n = 1, m = —1 in the second identity of (16), we get
__# _
f, =1 =554 10,0~ 5= 0.,0).

Combining above results, we have

(B=1f2(1,0=28/(1,0f(=1,0) + (1 + ) f*(~1,0)=0,

or
(B=1Df(1,0—(B+1Df(=1,0)(f(1,0)—f(-1,0)=0.
Hence
f(=1,0=/(1,0)
or

_b-1
(=10 =55 /,0).

Then from (18),
f(1,0)=7(0,0)

or

11.0--3E500.

Iff(1,0) =f(0, 0), by (17), f(k, 0) = f(0, 0) Vk € Z. Then by the second identity
of (16),

f(n,m) =£(0,0) Vm,neZ.

Iff(1,0) = %E £(0,0), by (17),f(k, 0) = # f(0, 0). Then by the second identity
of (16),

f(n,m)= -'f'—:l—i—il;-ﬁf(o, 0) VmneZ.

O

Remark. 1t is easy to check that the action of g{0,1} on V given by (i), (ii) in
Proposition 1 indeed make V into a g{0, 1}-module. Moreover, if y # 0, then V is
an irreducible g{0, 1}-module.



458 L. Chen

Now we suppose that V' =3, _, Cv, is a g-module and satisfies the following
conditions:

dh - v, € Co,, 4y for all m, keZ,reZgO,andd} cv, £0,dL, -0, = 0forallkeZ.

Since V is a g{0, 1}-module by restriction, by Proposition 1, there exists
a, B,y € € such that one of the following occurs:

(@ AV = (k + 0m + B)Vmsr, dme Ok = YWmss »
where § + a¢Z.

+
(o T e
where . =0, B¢ Z.
k+m+
© o=t mot Pome, dieo =B

where o = 1, f¢Z.
Claim 1. y £ 0.
Proof. If y = 0, then dovy = 0 Vm, k € Z. Comparing
[d2, d07 vy = 2ndm - v = 20(k + 0(m + 1) + B) Vs nsr

with
(drid;? - dr?dri)'vk = dr?dr%u'vk =
we get
2nk +om+n) + B) Vpinsxr=0 VmnkeZ.
This is a contradiction. (]

Assume that dj,v, = f,(m, K)Vp4x, VM, k€ Z, Vr € Z 3. Since
[d}, d5] = —2mdyt ' — m?dy,
[dn, d31ox = (—2mfys 1 (m, k) — m> £, (m, K))Op s -
On the other hand
(dnds — dgdnyox = (f>(0, k) f(m, k) — £(m, k) 200, m + k) vy
So we have
=2mf,1(m, k) = f,(m, k)(m* + £2(0, k) — f2(0, m + k)) . (19)
Since
[dp, di 1= (Dndrih + (In2drsa+ -+ (On"dmss
[dp, du Jvi
=((Dnfi-1lm +n k) + ()n*fi2(m + k) + -+ - + (In"folm + 1, K)o nsc
On the other hand,
(drdy — dydr)ve = (fo(n, k) fu(m, n + k) — fu(m, k) fo(n, m + K)oy ns -



Differential Operator Lie Subalgebras 459

So we have
(Dnfr—1(m +n, k) + G)n* fr—z(m +n k) + - + ()n" fo(m + n, k)
= fo(n, k) fu(m, n + k) — f,(m, k) fo(n,m + k) . (20)
In particular, if r = 2 and m = 0, we get
Jo(n, k)(f2(0, n + k) — f5(0, k)) = 2nfy(n, k) + n? fo(n, k) .
By Claim 1, fo(n, k) & 0. So

1200, 1 + k) — £,(0, k) = 2n§;§: g +n? VnkeZ. 1)
Then from (19),
Foonm k) = fim, )28 i g 22)

fO(m’ k)
(@) fom, k) =1y, fi(n,k)=k+on+ B.
Claim 2. y = +1.

If y =1, then f(m, k) = (k + p) for all m, ke Z, re Z ».
If y = —1, then fy(m, k) = (=1)"""(k + m+ B) for all m, ke Z, r € Z .

Proof. In this case, (21) becomes

2n(k
n( +an+/3)+n2'

J2(0,n + k) — f2(0, k) = (23)

With k = 0 in (23), we get

70, m) — 150,00 = 2B o

With n + k = 0 in (23) and replacing n by —n, we get

£0,1) — f,0,0 =20 =¥ ) _ .

These imply that y =1 — 2a.
Now (22) becomes

k+om+f

f;‘+1(m5k) =f;'(m’k) 1-—20( Ef‘m*o
By induction on r, we get
k r
film, k) = (1 — 22) <—JI 2 ﬁ) ifm+0.

With m + n = 0 in (20), we have
(Dnfe=1(0, k) + (3)n?f-2(0, k) + - - - + ()n" fo(0, k)
=1 =20(fi(=n,n+ k) — f(—n,k))
=(1=20)*"(k+p+(1—)n) —(k+ B —oan)). (24)
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In particular, if » = 3 and k = 0, then

3n£5(0,0) + 3n?£,(0,0) + n°£5(0, 0)

= —1—_1—2—a(3[32n +3B(1 — 20)n2 + (1 — 30 + 302)n%).

Since n is arbitrary,

1
1= 22=/5(0,0) = ;=5 (1 = 3 + 37) .

Soax=0orl,andy=1—-2a¢=1o0or —1.
If y =1, then « = 0. With n =1 in (24), we have

(D) fr-10,k) + ) fr-1(0, k) + - - - + (;) fo(0, k)
=D+ +EE+B T+ + ()
By induction on r, we get
10, k) =(k+ B)" .

Hence
fimk)y=(k+p) VmkeZ, reZy.

If y = —1, then « = 1. With n =1 in (24), we have
(1) fi-100, k) + (3) fr-1(0, k) + - - - + (1) fo(0, k)
=(=1)*7"(k + By — (k + B — 1))
=D+ B+ G e+ By 2+ + (=1
By induction on r, we get
10, k) =(=1y" (k + By .
Hence,
fimk)y=(=1)""k+m+pB) VmkeZ, reZs,.
We complete the proof of Claim 2. O
(b) folm, k) = wridgs Srlm k) =k + .
Claim 3. f(m, k) =(—1)"'(k +m+ B) " '(k + p).
Proof. In this case, (21) becomes

1200, 1+ k) — £,(0, k) = TR+ B e

25)
With k = 0 in (25), we get

ﬁ@m—ﬁ@m=@%§@+w.
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With n + k = 0 in (25) and replacing n by —n, we get

£0,1) — £,(0,0) —zl”— n.

These imply that y = — 1. Hence (22) becomes
fre1m k)= —m+ k+ B)f,(m,k) where m=+0.
By induction on r, we get
Jim k) = (=1 (k + m+ B) ™' (k + B)

forallk,meZ,m % 0, and all r € Z ». Using this and withm = —1, n = 1 in (20),
we get

(D f-10, k) + (2) fr-20, k) + - - - + (1) fo(0, k)
=fo(, YS(=1L k+1) —fi(=1, k) fo(1, k — 1)
= (=1 ((k+ By —(k+5—-1))
=—((DED e+ BT+ OEDTAR BT+ ()
By induction on r, we obtain
S0, k) =(=1y""(k + B) .
Hence we complete the proof of the Claim 3. O

(m+k+p)y

(©) fom k) =—553—, filmk)=m+k+ p.

An argument similar to the one in (b) shows us that y = 1 and gives us the
following claim.

Claim 4. f,(m, k) = (k + m + B)(k + B) .

Using the fact that g is generated by di, dY, d%,,itis easy to see that if f,(m, k) is
defined as in Claim 2, Claim 3, and Claim 4, d},-v; = f,(m, k)v,,+, indeed gives
V a g-module structure. In summary, we proved the following proposition.

Proposition 2. Let V =Y, _, Cv.. Define dyv.:= f,(m, k)vnsy, for all m ke Z,
reZ >, where f,(m, k) are given by the following:

@) fo(m, k) = (k + BY,
(i) fo(m, k) = (=1~ (k + m + BY’,
(i) frGm, k) = (=1)"" (k + m + By~ ' (k + B),
(iv) fi(m, k)= (k + B) " '(k + m + ), where B¢Z.

Then V is a g-module and dliu £0, dlvk * 0. Conversely, ifV= Z Cuy, is
a g-module such that d;v, € Cv,+; and dliv +0, d} vy + 0, then the g-module
structure of 'V is given by one of (i), (ii), (iii) and (iv).
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Remark. Let p(x) = Zi a;x" € C[x]. Then any g-module becomes, by restriction to
8¢p(x)>» @ 9¢p(x)y-module. In particular, the g-module V of Proposition 2 gives rise,
by restriction, to a g,x)y-module. Precisely, we have g¢p(x)y-modules

Vl,ﬁ:= z ‘Evk 5
keZ
with d,,(q(x))ve = q(k + B) Vs »
Vz‘pl= Z (Elik 5
keZ
with d,(g(x))v, = — q(—k —m — B) vty
Vi p:= Z Co,
keZ
_ k+p
th d =—gq(=k—m—-f)———
with d,,(q(x))v, q( m ﬁ)m+k+ﬁvm+k,
and
V4’p = Z Cvk 5
keZ
m+k+p

with d,,(q(x))ve = qk + f)———— T Uk

where q(x) € (p(x)> m,keZ, and B¢ Z.

Proposition 3. Let f e C\Z. Assume that ky + f,...,k, +  are all the distinct
roots of p(x) which lie in Z + . Then

U:=Co, + -+ Cy,

is the unique maximal proper g(p(x)y-submodule in V, g, i=1,2,3,4. And V; 4/U,
i=1,2, 3,4 are all irreducible.

Proof. We prove only the case of V; 5. The proof of the cases of V; ;i = 2, 3,4 are
similar. First note that g¢px»U =0, so U is a trivial g¢p(x)y-submodule of V; g.
Now let K+0 be a proper g<p(x)>-submodule in Vi and let 0% X =
Z a;v; € K, where a; £ 0, i =1y,. . ., . If there exists k such that p(i, + ) £ 0,
then

0+ do(x/p(x))X = Z ai(i + B)’p(i + B)vie K

for all je Z »¢. Since
1 1 1

iy + iy + i
der| FF 2+ 4 PP o,

(+ Byt G+ )yt o G+ BT
all v;, € K. Then
dp(p(x))v;, = plix + B)om +, €K VmeZ,
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and K =7V, ,. This is a contradiction. So we must have p(i+ f)=0 for
i=1iy,...,I. Hence X e U. O

6. Highest Weight Modules

In this section, we discuss the highest weight modules of § and g{0, 1}. We also
define a contravariant forms on Verma modules and give some necessary condi-
tions for these forms to be non-negative.

Recall that we have an imbedding of § into a, by identifying dj, with
Y i Ejsm;. If we define L, =3%"_ (})(3) 'd,, then Lj is identified as
2. (J+ 3V Ejim,;in ay. Clearly, § = Z~mel,relgo CL};, + C¢. By straight calcu-
lation, we see that the commutators of g are

r+s i k
=0 \i+k=

) n r+s ‘ m r+s
+< Z (J"E) - X <J“‘§> )5m+n,o¢',
1<jsn 1<jsm

[L5,¢]1=0.
Define the anti-linear map

W:Ap = Gy
such that

w(Z liEi+m,i> = ZZEi,Hm: o(¢)=¢.

It is easy to check that  is an anti-involution of a.,. Particularly, w|; is an anti-
involution of § and

N AN A ,
ot2) =3 (142 Buyon =3 (15| Brns= L.

j Jj

Let
§k=gk fork*os
§o=go + C¢,
and
§+= Z §ka §—= z §k-
k>0 k<0
Then

§=6-@G DG+ .
Definition. Let U(§) be the universal enveloping algebra of § and A € §o*, the dual
space of §o. Let J(A) be the left ideal of U(§) generated by §. and

{X —AX) X €do} ,

where we identify 1 with the identity of U(g). M(A):= U(§)/J(A) is called
a Verma module. Any quotient of M(A) is called a highest weight module of § of
highest weight A.
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By the Poincaré-Birkhoff-Witt theorem, M(A) has basis

ks k k ki, s,
L= . LZ» L% ... L%, ,

where
k 122 ’gkj’sj, 1§]§n, nEZgo,

and v is the i image of 1 in M(A).

Note that [Ly, LS] = an,, forallneZ and seZ »,. We decompose M(A) as
a sum of eigenspaces of Ly in the following.

For any u € C, define

M*:= {ue M(A)|Lou = pu} ,

ie. M* is the eigenspace of Lo of eigenvalue .
Since

Lo-Lb . Ll by Lo,
kll 1 kﬂ Sy kl 1 kl 5
=A—Mms, +(n—Usp-1y+---+s)) L .. . L. . L2 ... L2y,
for any basis element of M(A), where A = A(Ly), it is easy to see that M(A4) =
soM* *and M* = Cv, . If N © M(A)is a proper §-module, then NnM* = 0.
Hence M (A) is indecomposable and contains a unique maximal proper submodule

N(A).Let V(A):= M(A)/N(A). Then V (A)is the unique irreducible highest weight
module of highest weight A. Hence we proved the following proposition.

Proposition 1. () M(A) =Y, ., M*"* M* = Cv.,and M(A) is indecomposable.
(i) M(A) has a unique proper maxzmal submodule N(A) and V(A)=
M(A)/N(A) is the unique irreducible highest weight module of highest weight A.

Define a total order < on {L,,|meZ,reZo}u{¢} as follows:

L, <L
iff
m<n
or
m=n, r<s.
And

Lé<¢ <L) VkeZ.
Then an element of U(§) is a linear combination of elements of the form
R=L% Ik, . L% @y°.. . (Lé¢'L. . L, 1)

where L~, <L Lk:js <L, ¢< L,lll <---= Lf:. For u € M(A), define {u) to
be the coeﬂicwnt of the hlghest weight vector v in the expansion of u with respect
to M(A)=Y, ez M A=k If we extend the anti-involution @ of § to U(g) by

o(XY)= w(Y)a)(X) then we have {w(R)v > = (Rv, ) provided that ALY eR
fork=0,1,2...and A(¢)e R.
Proposition 2.

(i) Assume that A(L§)eR for all ke Z >0 and A(¢) e R. Then M(A) carries
a unique contravariant hermitian form (-, such that {vy,v4 ) =1;
(i) M* ", MA*S =0ifk +1;
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(iii) ker{-,-> = N(A). Hence V(A) carries a unique contravariant hermitian
form such that {v, v) = 1 and this form is non-degenerate, where v = v, + N(A).

Proof (1), (u) For any monomials P(v,)=L k‘ Lk_] vy and Qvy)=

_,l L‘_,u+, define {(P(v+), Q(v+)):= (w(P)Q(v+)> This is a well defined
contravanant hermitian form on M(A) (see [S,KR or MoPi]). Moreover,
(P(v+), Q+)) =0,ifjy+jo + - +jsFiy+ia+ "+

(iii). By definition,

ker{-,-> = {ue M(A)|<u, wd> =0 VweM(4)}.

Clearly ker{-,-) is a proper submodule of M(1). Moreover, if V < M(A) is
a submodule and P(vi)eV, Q(vy)e M(A4), then w(Q)P(v.)eV. So if V is
a proper submodule of M(A), then (@w(Q)P(v+)) =0, ie. (P(v+),Q(v4)) =0.
Hence P(v;) € ker{-,-> and V < ker{-,-). So we proved that

ker{-,-> = N(A).
O

An important question is when (-, ) is non-negative on M(A), hence positive
definite on V(A). For Virasoro algebra §{x}, D. Friedan, Z. Qiu, and S. Shenker
[FQS], and R. Langlands [L] gave a necessary condition for the corresponding
form {-,-> on Verma module to be non-negative. P. Goddard, A. Kent and D.
Olive [GKO] proved that the condition is also sufficient. For §, even though we
still do not know examples for which {-,-) are non-negative on M(A), we can
prove the following necessary condition. First, for ce R, h = (hg, hy, hy,...) e R®,
we define an infinite real matrix A(h, ) as follows:

A(h, c) = (Aij(]la C))i,j =1,2...»

itj /3 ; 1 l 1 i+j
Ayl = 3 (’ v )@ (=1 = Dherjor = (—2-> c.

Aij(h, c) = Aj(h, o) .

Proposition 3. Let A € §o* be such that h; = ALY eR VieZ soand c = A(¢) e R.
Then a necessary condition for {-,- ) to be non-negative on M(A) is that A(h, c) is
positive semidefinite.

where

Clearly,

Proof. For (ao, ay, ...,a,)e R™" 1 if {-,-) is non-negative, then

<(=i 1)%’(:; aiLi_l)u+>go,

<U+, Z z aiaj[Lil: L‘il]v+> 20 .

i=1j=1

ie.
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Since
; ) i /i i\ /1 . 1\i+i
Ll =% (") 5 ) (=v = nLs = (5) e,
=0 l 2 2
iti g 1\ 1\itJ
ZZ%%’(Z( l]>(§> ((‘l)l_l)hiﬁ—t—('z‘) C)%
i =0
This is
Z Z aiainj(h’ 020,
i
or
do
a
(a a; ... a 0 ...)A(h ) =0
a,
0

So A(h, c) is positive semidefinite.
Finally, we consider the highest weight modules of §{0, 1}. Take
{Ln, LY|Vme Z}u{¢}
as a basis. Then
§{0,1} = Y CL,+ Y CL)+C¢,

meZ meZ
and
1
[Lrin Lr}] = (n - m)Lr];x+n - '1-2'(m3 + 2m)5m+n,0¢ 5
(L3 L8] = nLG 40 = 2 Omsnof
[Lr(r)n LI?] = - m5m+n,0¢ .
Let
1
Lm = - LI}I _§5m,0¢ 3
A *'—-LO—-lé ¢
m — m 2 m,0% »
fr=—1¢.
Then

3 —m

m
[Lm’ Ln] = (n - m)Lm+n + T5m+n,0¢l s

(Lo, An] = —nApm+in >
[Ama An] = m5m+n,0¢1 3

0.

L. Chen
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and
w(Lm) = L—m, (o(Am) = A-—m5 (1)(431) = ¢1 .
Let
d{0, 1}, = Z CL, + Z CA4,, ,
m>0 m>0
§{0,1}_ = Z CL, + Z C4,,,
m<0 m<0
and
§{0, 1}0 = CLO + CA() + C‘tl .
Then

§{0, 1} = §{0, 1}, ®§{0,1}o ® §{0, 1} - .

For A € g{0, 1}o*, as in the case of §, we have Verma module M(A4), the unique
maximal proper submodule N(A) and V(A):= M(A)/N(A). Moreover, if

h:= A(Ly), a:= A(Ay), c:=A(¢)eR,

there exists a contravariant hermitian form {-,-> on M(A) such that
ker{-,-» = N(A).

Proposition 4. Let
§{0,1} = Y CL,+ ) CA,+C¢,
meZl

melZ
Ae(CLy + CAy + Céy)*,

be such that
h=A(Lo), a=A(4p), c=A(t)eR.

Then a necessary condition for {-,- > to be non-negative on M(A) is

(@) (h,0)2(0,1),
or
(i) (h,c)=(hy*,cw) Mm20,
where
Bres (m+3)r—(m+2)s)?*—1
"o 4(m + 2)(m + 3) ’
Cop = 6 1<ssr<<m+1

C(m+2m+3)
And for any given (h, c) satisfying (i) or (ii),
—J2hc£a <\ /2hc.

Proof. The conditions (i) and (ii) on (k, ¢) are given by [FQS] and [L]. For any
given pair (h, c) satisfying (i) and (ii), since Va € R,

AL-y+ad-g)os[(Loy +2d_y)v: > 20,
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we have
2h + 20a+ a?c 20,
or
20a = — 2h — o%c .
Thus
ag—"ﬁ—ff VaeR .
o 2
ag—ﬁ—E VaeeR ..
)
Define f(a):= — 2 — % and let
h ¢
"W)=—=—==0.

Wegeta=iﬁand

O
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