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Abstract. We establish an analogue of WeyΓs classical theorem for the asymptotics
of eigenvalues of Laplacians on a finitely ramified (i.e., p.c.f.) self-similar fractal
K, such as, for example, the Sierpinski gasket. We consider both Dirichlet and
Neumann boundary conditions, as well as Laplacians associated with Bernoulli-type
("multifractal") measures on K. From a physical point of view, we study the density
of states for diffusions or for wave propagation in fractal media. More precisely, let
Q(X) be the number of eigenvalues less than x. Then we show that ρ(x) is of the order
of xds/2 as x —» +00, where the "spectral exponent" ds is computed in terms of the
geometric as well as analytic structures of K. Further, we give an effective condition
that guarantees the existence of the limit of x~ds/2ρ(x) as x —> -hoc; this condition
is, in some sense, "generic". In addition, we define in terms of the above "spectral
exponents" and calculate explicitly the "spectral dimension" of K.

0. Introduction

In this paper, we will study the asymptotic behavior of the spectrum of the Laplacians
on some self-similar sets. This problem occurs naturally in the study of physical
phenomena, such as waves and diffusions, on fractal objects.

At first, we recall WeyΓs classical result. Let Ω be a bounded domain in En, with
boundary dΩ. We consider the following eigenvalue problem:

( Δu = - ku on Ω ,

\u\dΩ = ° >
n

where Δ = ]Γ) 02/dx2 is the Laplacian on Rn. It is well known that the eigenvalues
ι=l

- i.e., the scalars k such that (DE) has a non-trivial solution u - are non-negative and
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have finite multiplicity. Also they have only one accumulation point, namely +00.
And hence we can define the eigenvalue counting function:

ρQ(x) = #{k A: is an eigenvalue no larger than x} .

Of course, we are taking the multiplicity into account in the above definition. Then
WeyΓs famous asymptotic formula for the Dirichlet Laplacian is

Theorem 0.1. As x — > +00,

where \Ω\n denotes the n-dimensional Lebesgue measure (or "volume" ') of Ω and J$n

is the volume of the unit ball in Mn.

Remark. Weyl proved the above result under certain regularity conditions on the
domains in [Wl,2]. Now it has been shown for arbitrary bounded domains in Rn.
See Metivier [Me]. (See also Lapidus [La 1-3] and the references therein and at the
end of this introduction, for associated sharp error estimates (and related results)
expressed in terms of the "fractal" (Minkowski) dimension of the boundary of Ω.)

Our purpose in this paper is to obtain an analogue of the above result in the case
of Laplacians on fractal sets.

There have been many early works about diffusions on fractals in physics. They
were dealing, for example, with diffusions on percolation clusters and fractally
structured media, currents on fractal electrical networks, as well as transport in porous
media. For works in the physics literature on this subject, see in particular, Dhar [D],
Alexander-Orbach [AO], Rammal-Toulouse [RT], and the references therein; see also
the survey paper by Liu [Liu], as well as Havlin-Bunde [HB] and Chap. I, esp. pp. 40-
45 in Schroeder [Sc].

In mathematics, Kusuoka [Kul], Goldstein [G] and Barlow-Perkins [BP], have
defined and studied the "Brownian motion on the Sierpinski gasket." From their
probabilistic point of view, "Brownian motion" is defined as a renormalized limit of
random walks on the pre-gaskets (see Fig. 1), and the "Laplacian" is the infinitesimal
generator of "Brownian motion."

Later, Kigami [Kil] has defined the "Laplacian" on the Sierpinski gasket (S.G. for
short) as a kind of renormalized limit of finite-difference operators on the pre-gaskets.
We shall now briefly recall this analytical approach. Let the pre-gaskets {Gm}^=ι be
the sequence of finite graphs defined in Fig. la. The Sierpinski gasket is the closure
of (J Vm, where Vm is the set of vertices of Gm (see Fig. Ib and Example 2 in

ra>0

Sect. 3). The discrete Laplacian on Gm, denoted by Z\m, is a finite-difference operator
defined as follows. For /: Vm -» R and p e Vrn,

where Vrn^p is the set of vertices connected to p by an edge of Gm. Then the Laplacian
on the S.G. is defined as a limit of Δm by

Δf= lim Δmf.
m-̂ oo

Of course, the former probabilistic approach and this definition have treated the
same objects from different viewpoints.
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Fig. la. The Sierpinski pre-gaskets. q} = F3(p2) = F2(p3); q2

Fl(p2). b. The Sierpinski gasket
= F2(p,) =

Afterwards, these approaches have been extended to some classes of "finitely
ramified" fractals: nested fractals by Lindstr0m [Li] (see Example 5 in Sect. 3) and
postcritically finite (p.c.f. for short) self-similar sets by Kigami [Ki2]. As a result
of the latter work, the Laplacian on the S.G. defined above should be called "the
standard Laplacian on the S.G.," because it is now know that there are many other
"Laplacians" on the Sierpinski gasket.

Now, what happens to the asymptotic behavior of the eigenvalue counting function
on fractals? A natural analogue of Theorem 0.1 in that case could be stated as follows:

£0(x) = CdMd(Ω}x2
d

o(x2} as x oo , (0.1)

where Ω is a fractal set, d ~ dH is the Hausdorff dimension of Ω, ,^d is the d-
dimensional Hausdorff measure and Cd is a constant independent of Ω. (For notational
simplicity, we write "x —> oo" instead of "x —> +00" throughout this paper.)

Indeed, the physicist Berry made such a conjecture in [Bel,2]. Unfortunately, this
is wrong, as will be explained below.

The eigenvalues and eigenfunctions of the standard Laplacians on the S.G. have
been determined exactly by Shima [Sh] and Fukushima-Shima [FS] by means of
the eigenvalue decimation method introduced by Rammal-Toulouse [RT] and further
studied by Rammal [Ra]. According to their result,

0 < liminv ρϋ(x)x 2 < Iimsupρ0(α;)x 2 < oo , (0.2)
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log 9
where ds = - — - is called the "spectral dimension" of the S.G. In particular, there

exist positive constants c1 ?c2 such that c^3/2 < ρ0(x) < c2x
ds/2, for all x large

enough.
From the probabilistic point of view, this exponent ds was previously obtained by

Barlow and Perkins [BP] in the case of the S.G.
Before these mathematical works, physicists (Dhar [D], Alexander-Orbach [AO],

Rammal-Toulouse [RT], Hattori-Hattori-Watanabe [HHW]) had obtained this value of
the "spectral dimension" (also called "fracton dimension") from different points of
view.

Comparing (0.2) with (0.1), the following two facts are remarkable and suggest
several questions:
(1) ds — log 9/ log 5 is not equal to the Hausdorff dimension of the S.G., dH —
log 3 /log 2. How can we calculate the asymptotic order of the eigenvalue counting
function of Laplacians on fractals?
(2) The limit as x — >• oo of ρ0(x)x~ds/2 does not exist. In general, does this kind of
limit exist for Laplacians on fractals?

In this paper, we will give an answer to these questions for Laplacians on p.c.f.
self-similar sets defined in [Ki2] and which will be introduced in Sect. 1.

The Laplacian on a p.c.f. self-similar set K depends on the choice of a "harmonic
structure" (Dirichlet form) and a probability measure μ on K. In this paper, we assume
that μ is a Bernoulli (i.e., self-similar) measure.

Let ρQ(x) be the eigenvalue counting function of the Laplacian on K, with
Dirichlet boundary conditions. Our main result, Theorem 2.4, enables us in particular
to determine the asymptotic order of ρ0(x) as x — -> oo. More precisely, we show that
there exist positive constants cv and c2 such that

qz"^ < QQ(X) < C2X~^ , (0.3)

for all x sufficiently large.
Here ds, called the "spectral exponent of the Laplacian," is the unique positive

number such that

fV s = l, (0.4)

where the positive numbers ^τ are not the contraction ratios of K but are determined
by the harmonic structure and the probability measure μ.

As an example of application, we deduce from (0.4) that ds < 2 for (regular)
"finitely ramified fractals."

Moreover, we give an effective condition that guarantees the existence of the limit
of

_^ρ0(x)x 2 , as x —> oo.

Roughly speaking, our results show in particular that this limit exists (and is non-zero)
for "almost all" Laplacians on a given p.c.f. self-similar set K.

We also obtain analogous results for Laplacians with Neumann boundary condi-
tions (see Corollary 2.5).

The rest of this paper is organized as follows. In Sect. 1, we provide some of
the necessary facts about p.c.f. self-similar sets. In Sect. 2, we state and prove our
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main results (Theorem 2.4 and Corollary 2.5) concerning the spectral distribution of
Laplacians on K. In Sect. 3, we illustrate our theorems by discussing several examples.
In Sects. 4-6, we then prove some key lemmas needed to establish our main results.
[In particular, in Sects. 4 and 5, we study the variational approach to the Dirichlet
and Neumann problems on K, as well as the consequences of (a refinement of) the
method of "Dirichlet-Neumann bracketing" in this context. Further, in Sect. 6, we
deduce from the self-similarity of K a basic scaling property of the Dirichlet form
(or "energy functional").] Finally, in an appendix, we define by means of the above
"spectral exponents" the "spectral dimension' of K and calculate it explicitly in
terms of the geometric and analytic structures of K.

We close this introduction by mentioning several related results and motivations
for the present work.

Barlow-Bass [BB1,2] have defined and studied a "Brownian motion" on the
Sierpinski carpet, which is an "infinitely ramified" fractal and hence not p.c.f. The
associated spectral dimension is shown to exist in [BB3,4] and computed numerically
in [BBS]. (See also the review paper [Ba].)

From the point of view of the spectral distribution, there is an analogy - pointed
out by Lapidus in [La4] - between the present situation and that of Laplacians on
bounded open sets Ω C Mn with "fractal" boundary dΩ. In the latter case, under
mild assumptions, the following sharp remainder estimate holds (see [Lai]):

dM

QQ(X) = φ(x) + O(x 2 ) as x —» oo , (0.5)

where φ(x) = (2π)~n J9n\Ω\nx
n/2 is the leading term in WeyΓs formula (0.1)

and D G (n — l,n) is the Minkowski dimension (also called Bouligand or "box"
dimension) - rather than the Hausdorff dimension - of the boundary dΩ. (This
estimate is also established for more general elliptic operators as well as for Neumann
boundary conditions in [Lai, Theorems 2.1-3 and 4.1, pp. 479-483 and 511]. A pre-
Tauberian form of (0.5) (for the trace of the heat semigroup) was previously obtained
for the Dirichlet Laplacian by Brossard-Carmona [BC]. See also [LF] and [La2].)
Further, in certain specific cases, the behavior of the asymptotic second term of the
eigenvalue counting function has been investigated by Lapidus-Pomerance in [LP1-
3]. In particular, the limit as x —> oo of (QQ(X) — φ(x))xdM//2 sometimes exists
and sometimes does not. (See esp. [LP2, Examples 4.3 and 4.5, Sect. 4.3], the main
example of [LP3], as well as Sects. 3-5 of the survey paper [La3]; see also [La4].)
Partly motivated by these results and work of Lalley [L], a specific conjecture has
been made by Lapidus in [La4] regarding the dichotomy for the existence of this
limit for Laplacians on open sets with (suitable) self-similar fractal boundary. (See
[La4, Conjecture 3, pp. 163-164, Sect. 4.4.1]. This conjecture was first made by the
second author during a plenary address to the Regional Meeting of the American
Mathematical Society held in Tampa, Florida, in March 1991 [La5].). The main result
that we shall establish in the present paper for Laplacians on p.c.f. self-similar sets
is very analogous to this conjecture. Further, it corrects, specifies and proves in this
situation the counterpart of this conjecture (also made at the aforementioned meeting
and stated in [La4, Conjecture 5, Remark 5.ll(b), (c), pp. 189-190, Sect. 5.2]) for
Laplacians on (suitable) self-similar fractals.

Finally, we note that in the terminology of [La 1-5], our work deals with the
vibrations of "drums with fractal membrane" rather than of "drums with fractal
boundary," studied in particular in [BrCa, LF, Lal-5, LP1-3, LM1-2].
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1. P.C.F. Self-Similar Sets

In this section, we will briefly introduce post critically finite (p.c.f. for short) self-
similar sets and Laplacians on them. The concept of p.c.f. self-similar sets is a
mathematical justification of the notion of "finitely ramified" fractals. According to
Hutchinson [Hu], a self-similar set is defined as a compact subset K of a Euclidean
space Wn such that

TV

K = \Jfi(K),
ι=l

where /1? /2, . . . , fN are contraction mappings from Rn to itself and TV is an integer
> 2. In this terminology, finitely ramified fractals are roughly thought of as the self-
similar sets K such that (J (/i(ί;ί)Π/J(/ί)) is a finite set. For instance, the Sierpinski

^jgasket, a well-known example of self-similar set, is finitely ramified. In fact, for the
Sierpinski gasket K, IJ (fτ(K) Π f3(K}) consists of three points.

τ?i.
On the other hand, it is known that a self-similar set can be considered as a quotient

space of one-sided shift spaces Σ = {1,2, . . . , JV}N by a quotient map π:Σ — >• K
defined by

where ω — ω^ω^ω^ . . . . In this manner, we can view a self-similar set as a purely
topological object without the a priori assumption that it is embedded in some
Euclidean space or that the mappings fi are contractions. This way of defining self-
similar sets is natural for studying analysis on fractals because, as we will see later,
Laplacians, Green's functions and Dirichlet forms depend only on the topological
structure but not on the specific choice of metric.

We now define the notion of self-similar structure.

Definition 1.1. Let K be a compact metrizable topological space and Σ be the one-
sided shift space defined by Σ = 5N, where S = {1, 2, . . . , 7V}N. Also, let Fτ, for
i = 1,2, . . . , TV, be a continuous injection from K to itself. Then, (K, 5, {F^}^)
is called a self-similar structure if there exists a continuous surjection π : Σ — > K
such that Fτ o π = π o i f or every i = 1, 2, . . . , TV, where i : Σ — > Σ is defined by

Remark 1. It is shown in [Ki2] that if (K, S, {FJ^) is a self-similar structure, then
for all ω — ω^^ω^ . . ., (~] Fω o Fω o . . . o Fω (K) consists of a single point and

n>l

that π is uniquely determined by {π(ω}} = p| F^ o F^ o . . . o F (ίQ.
n>l J

Remark 2. There is a more general definition of self-similar set as a quotient space
of Σ by an equivalence relation ~ such that α; ~ cι/ implies ^cj ~ icj7 for all
i = 1, . . . , TV. In this case, π is the natural projection map from Σ to Σ / ~. In this
setting, however, Σ / ~ is not always metrizable. See Kusuoka [Ku2] and Kameyama
[Ka].

Notation. Wm = {1,2, . . . , N}m is the collection of words with length m. For
w = w{w2 ...wm& Wm, we define Fw : K -> K by Fw = F o FW2 o . . . o FWm

and /fω = FW(K).

Next, we give the definition of a post critically finite (p.c.f.) self-similar structure.
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Definition 1.2. For a self-similar structure (K, 5, {FJ^), we define the critical set
W and the post critical set &> by W = π~l ( [J Fτ(K)nF (K)\ anά^ = \J σn(W},

where σ : Σ —> Σ is the shift map given by σ(ωlω2ω3 . . .) = ω2ω3 . . ., and σn denotes
the nth iterate of σ. Then a self-similar structure is said to be post critically finite
(p.c.f. for short) if ̂  is a finite set. Further, K equipped with this structure is called
a p.c.f. self-similar set.

The nested fractals introduced by Lindstr0m [Li] are p.c.f. self-similar sets. For
further examples of p.c.f. self-similar sets, we refer to Sect. 8 in [Ki2], as well as to
Sect. 3 below. Hereafter, we fix a p.c.f. self-similar structure (K, S, {FJ^). Also we
assume that K is connected, because oterhwise, K is totally disconnected and there
is no non-trivial diffusion (with continuous paths) on K. By Hata [Ha], a necessary
and sufficient condition for K to be connected is that for each pair (i, j), there exist
i,,i2, . . . , in e {1,2, . . . , N} such that i, = i, in = j and Flm(K) n Flm+ι(K) ± 0
for m = 1, 2, . . . , n — 1.

The next topic is a calculus on a self-similar structure, including Dirichlet forms,
Laplacians and Green's function.

Definition 1.3. VQ = π(^) and for m > 0,

vm= U ^W^))
w£Wm

The finite sets Vm are thought to be an approximating sequence of K. In fact it
is easy to see that Vm c Vm+l and K — the closure of V*, where V* = \J Vm. In
particular, VQ is thought of as the "boundary" of K. m>°

Remark. In the case of nested fractals, VG coincides with the set of essential fixed
points of K.

Constructing, first, a calculus on a finite set Vm, we will then obtain a calculus on
K through the natural limit as m -+ oo.

Notation. Let U and V be sets.
(1) l(V) = {/ f:V -^ M}. We use (f)p or /p to denote the value of / G l(V) at
p 6 y. For p e F, χp G Z(^) is defined by

1 if ^ = P '
0 otherwise.

(2) Let A:l(V) -^ l(U) be linear, then we use Apq or (A)pq to denote the value
(AX) forqeV and peU. Note that £ A f = (Af)

(3) C(K) = {/ I / G /(K) and / is continuous on K}. The space C(K) is endowed
with the metric of uniform convergence on K. Note that it can be viewed as a subset
of l(V%) because the countably infinite set V* is dense in K.

Now we introduce a class of finite-difference operators on V0, which are discrete
Laplacians on the finite (non-empty) set VQ.

Definition 1.4. Let ^(VQ) be a collection of linear operators D from l(VQ) to itself
such that
(1) LD = D,
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(2) D is irreducible; that is, for each (p, q) G VQ x VQ, there exists a sequence {pi}
r^=l

with Pl=p,pn = q and Dpιp.+ι ^ 0 for alH = 1,2, . . . , n,

(3) Dpp < 0 and £ Dpq = 0 for all p e VJ,,
ςev0

(4) Dpq>Uifp^q.

D G ̂ (VJ)) induces finite-difference operators Hrn:l(Vrn) —> /(V^) as follows,
where r = (r l 5r2, . . . , rN) is thought of as representing a ratio of weights of
the subsets (Fl(K),F2(K), . . . , FN(K)). Note that for i = 1,2, . . . , AT, the map
Fτ: K —* Fi(K) is a homeomorphism; however, Fτ(K) and F^(K) may have different
"sizes."

Definition 1.5. Let D e 3$(V^ and let r = (r1? r2, . . . , rN) with each r^ > 0. We
define a linear operator Hm:l(Vm) —> /(V^) by

tfm= Σ ^*Λ

where ^:/(Vm) —> /(V0) is the natural restriction of / G i(V^) to ^(V^); that is,

Rw(f) = f°Fw and rw = r

wι

rw2 "'rwm

ΐorw = wιw2" wm Moreover, we write
^pf = (Hmf)pforpeVm.

For further arguments, it is important that the pair (D, r) be assumed to be invariant
under a kind of "renormalization." To introduce the desired "renormalization," we
divide Hm into four parts as follows:

t JTT
=

where Tm:l(VQ) -+ l(V0)9 Jm:l(V0) - l(Vm\V0) and Xm:l(Vm\V0) - l(Vm\V0).

Definition 1.6. (D, r) e 3&(VQ) x (0, 00)^" is called a harmonic structure if

D = λ(T-tJX~lJ)

for some positive λ > 0, where T = T1? X = Xl and J — J{. Further, if λ > ri for
i = 1,2, . . . , TV, then (Z7, r) is said to be a regular harmonic structure.

Remark. Let J^(D) = T - 1JX~1J, then ̂ : Jgf(yo) -> ^(V0). Hence the above
definition of harmonic structure is equivalent to the conditon that D is an eigenfunction
of the non-linear operator J^ with a positive eigenvalue. This operator ^ is a
kind of renormalization of finite-difference operators on V^. Essentially the same
renormalization equations have been considered by Hattori-Hattori-Watanabe [HHW],
Lindstr0m [Li] and Kusuoka [Ku2] in other approaches.

From now on, we focus our attention on a regular harmonic structure CD,r)
associated to a p.c.f. self-similar structure of K. It is natural to ask whether there
always exists a regular harmonic structure. Unfortunately, a general answer to this
question has not yet been found. For the nested fractals, however, there exists a
regular harmonic structure with equal ratio of weights r = (1, 1, . . . , 1). This result
is obtained (with a different terminology) by Lindstr0m in [Li]. See [Ki2] and Sect. 3
below for several concrete examples of regular harmonic structures.
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The natural discrete Dirichlet form associated with Hm is given by

&m(u,v)=XmtuHmυ

for u, v G l(Vm). By virtue of the invariance under renormalization, we have

Proposition 1.7. Let

,^ = {u I u G ί(Vϊ|c), (2m(u\v ,u\v ) has a finite limit as m — > 00} ,

where u Vm denotes the restriction of the function u to Vm .

Then ̂  is a dense sub space ofC(K). Moreover, for u, υ G ̂  , let

and

,̂ <f) /s # Hilbert space.

Next we define the harmonic functions associated with (&,^).

Proposition 1.8. A continuous function f on K is called harmonic if Hm^pf = Ofor

allm>\ and all p G ̂ m\V^0. Then
(1) The space of harmonic functions is contained in & '.
(2) For any ρ G l(VQ), there exists a unique harmonic function f such that /\VQ = ρ.

Moreover, f is also the unique solution of the following variational problem:

&(f, /) = min{^(ifc, u) u G & and U\VQ = ρ} .

Furthermore, for p G VQ, we denote by ψp a harmonic function whose values on VQ

coincide with χp.

Also, Green's function g is defined as follows.

Proposition 1.9. There exists a unique continuous function g on K x K such that for
all x G K and for every f G &* ,

where gx is defined by gx(y) = g(x,y). Further, g is a non-negative valued function,
gp = Qfor all p G l(VQ) and g(x, y) = g(y, x) for all x, y G K.

Note that all the concepts introduced so far are independent of the choice of a
measure on K. To define the Laplace operators, however, we will need to introduce
a measure on K. Hence, from now on, we will fix a (Borel) probability measure μ
on K such that
(1) μ(O) > 0 for all non-empty open sets O in K.
(2) μ is non-atomic; that is, μ(U) = 0 for every finite set U.

A familiar example of a measure satisfying the above conditions is the Bernoulli
measure μ which is characterized by

μ(Kw) = μWμW...μWm
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for all w = wlw2 »wm, where yf^,/^, . . . , μN are positive numbers such that
N

Σ μ>i = l (Note that μτ = μ(Fi(K)\ for i = 1, . . . , TV.)
ΐ=l

We need one more remark before giving the definition of Laplacians. For p G Vm9

we define ψm p as the unique continuous function on K such that

(2) ψm>p o Fw is harmonic for all w G Wm.

Obviously, {Ψmp}pevm ^ a partition of unity on K and if p £ Kw, then

^m,p = 0 on KW f°r a^ ^ G Wm. Hence, if we set μm = Σ Mm,p^p» where

μ^ p = / ^m p^μ and ^p denotes Dirac's measure at p, then μm converges weakly
K

to μ as m —» oo. And so μm on Fm can be thought of as a discrete approximation
of μ on K.

Definition 1.10. Let μ be a probability measure satisfying the above conditions. For
u G C(K), if there exists / G C(K) such that, as m —> oo,

sup \(A™u) -
p£Vm\Vo

where (A™u)p = Xrnμ^n

l

pHrn pu, then we define Δμu by Δμu = f . The domain
of Δ is denoted by & . Further, the operator Δ is called the Laplacian on K
associated with μ.

Remark!. Naturally, Δμ depends not only on the measure μ but also on the given
harmonic and self-similar structures on K.

Remark 2. Clearly, Δμ is a local operator, in the sense that (for / G &μ and x0 G K)
if / = 0 near x0, then so does Δ f.

Proposition 1.11. (%\&~} is a local regular Dirichlet form on L2(K,μ) and &)μ C

& C C(K).

For the definitions and fundamental results on Dirichlet forms, we refer to
Fukushima [Ful]. (See also Definition 4.1 below where is recalled the definition of a
Dirichlet form.)

Finally we state two results that are analogues of classical facts for the ordinary
Laplacian, Green's function and Dirichlet form on ("smooth" bounded domains of)
W1. At first, we give a formula for the solution of the Dirichlet problem for Poisson's
equation.

Theorem 1.12. Given f G C(K) and Q G l(V0), there exists a unique u G 3^ such
that

{u"v« = Q

Moreover, this function u is given by

u(x)= 5̂  Q(P)^P(X)- I g(χ,y)f(y)μ(dy).
K

In particular, v G C(K) is harmonic if and only ifve&μ and Δμv = 0.
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The second result is the counterpart of "Gauss -Green's formula" in this context.

Theorem 1.13. For u £ 3F and v G *2& , we have

uΔμυdμ ,

κ

where (dv)p is called the Neumann derivative ofvatpeV^ and is defined by

The above limit does exist if v G

2. Main Results; the Spectrum of Laplacians

In this section, we state and prove our main results about the asymptotic distribution
of the spectrum of the Laplacians defined in Sect. 1. We fix a p.c.f. self-similar
structure (K,S, {F^^) and a regular harmonic structure (D,r) on this p.c.f. self-
similar structure. Further, μ is an arbitrary Bernoulli measure on K (as defined after
Proposition 1 .9). Under these conditions, the Laplacian Aμ acts from & to C(K).

For simplicity, we will write & and Δ instead of <$ and Δμ, respectively.
First we formulate the eigenvalue problem of —Δ with (homogeneous) Neumann

boundary conditions and Dirichlet boundary conditions (for short, the Neumann and
Dirichlet Laplacians).

Definiton 2.1. For k G R and u e ̂ , if

Γ Δu = - ku ,

then k is said to be an eigenvalue of —Δ with Neumann boundary conditions and u
is said to be an associated eigenfunction. Also, if

Δu — — ku ,

then k is said to be an eigenvalue of — Δ with Dirichlet boundary conditions and u
is said to be an associated eigenfunction.

As we will see in Sect. 4, the eigenvalues of — Δ are non-negative and have finite
multiplicity and they have no limit point other than -hoc under either Dirichlet or
Neumann boundary conditions. Hence we can consider the associated (eigenvalue)
counting function.

Definition 2.2. The eigenvalue counting function of —Δ with Neumann boundary
conditions is given by

I k is an eigenvalue of —Δ with Neumann 1
/ > ,

boundary conditions, with k < x J

where each eigenvalue is counted according to its multiplictiy and #A denotes the
number of elements in the (finite) set A.

Similarly, we define £0(x), the eigenvalue counting function of —Δ with Dirichlet
boundary conditions.
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Obviously, Q(X) and ρQ(x) are non-decreasing and right continuous. Further, note
that 0(0) = 1, because 0 is the first Neumann eigenvalue (and K is connected),
whereas £0(0) = 0. (See Sect. 4.) We are interested in the asymptotic behavior of
ρ(x) and QO(X) as x —> oo. The following facts are crucial for obtaining our main
results.

Lemma 2.3. For all x > 0, we have

N / \ N

(1) Σ^oί^^j <Qo(x)<fa)<^
ι=l ^ ' i= 1

and

(2) ρQ(x) < Q(X) < ρQ(χ) + M ,

w/zere M = #(V0).

The proof of part (1) (resp., (2)) of Lemma 2.3 will be given in Sect. 5 (resp.,
Sect. 6). Part (2) will be proven by using a suitable refinement of the method of
"Dirichlet-Neumann bracketing" - as was done in [Lai] for regions with fractal
boundary - and by also taking into account the specific features of our present
situation, particularly the finite-dimensionality of the space of harmonic functions
on p.c.f. self-similar sets. Fukushima [Fu2] has obtained part (1) of Lemma 2.3 in the

special case of nested fractals where ri — 1 and μi = — for alH = 1,2, . . . , TV, so

that μ is the natural Hausdorff measure on K.
We now present our main results, which provide an analogue of WeyΓs theorem for

Laplacians on p.c.f. self-similar fractals. Our result for the Dirichlet problem is stated
in the following theorem, while the corresponding result for the Neumann problem is
given in Corollary 2.5 below.

Theorem 2.4. Under the above hypotheses, we have

-^s. _^s
2 <oc; (2.1)

i.e., there exist constants c l 5c 2 > 0 such that qx6*5/2 < £>0(x) < c2x
ds/2,for all x

large enough. Here, ds is the unique positive number such that

N

(2.2)

i N

Further, let 7- = J^Jor i = 1, . . . , N, so that £ ̂ s = 1. Then

N

(1) Non-Lattice Case: If the (additive) group ^ Zlog7^ is a dense subgroup 0/R,
then l=l

N \ °°ds / M ^ \ -1 r

lim ^o(x)x 2 ~ ( ~/^7^S^ oβ7^) / e~dstR(e2t)dt, (2.3)
x-oo V ^ Jϊ~i -00

ΛΓ /r μ \
where (R is bounded, right continuous and) R(x) := ρ0(x) — ̂  ̂ >0 -̂ 7-̂  x .

i=l V Λ /
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TV

(2) Lattice Case: If Σ Zlog7^ is a discrete subgroup 0/R (i.e., is equal to KL for
i=l

some h > 0), let T be its positive generator (i.e., the smallest such number h > 0).
Then

β0(x)=\Gl-±-\+o(l)\x* , (2.4)

where o(l) denotes a term which vanishes as x —> oo and G is a positive periodic
function with period T given by

(
N x -1 +00

-^7^1027 I ^ e~ds(t+3T>R(e2(t+jT)). (2.5)
/ v ' 1 ί-3 ' 1 / / _j x ' x '

i—\ ' j=—oo

Moreover, G is right continuous and bounded from above and away from zero.

The next corollary follows immediately from Theorem 2.4 and part (2) of
Lemma 2.3.

Corollary 2.5. Under the hypotheses of Theorem 2.4, exactly the same results hold
for ρ(x), the eigenvalue counting function for the Neumann Laplacian. Moreover, ds

is still given by (2.2) and, in the counterpart of (2.3)-(2.5), the functions R and G
involved are the same as in the case of ρ0(x).

We refer the reader to Sect. 3 (as well as to the appendix) for a discussion of
several examples illustrating our main results.

n

Remark 1. In the original WeyΓs theorem, the positive constant lim QH(X)X ^ has
z—»oo

a simple geometric interpretation; namely, it is expressed in terms of the volume
of the domain in En (see Theorem 0.1). Unfortunately, we do not have a similar
interpretation for the value of the limit in our non-lattice case. Actually, in view
of the results and examples in [LP3] and [La3] obtained-for regions with fractal
boundary, it may not be easy to find one. Nevertheless, our present results show that
in the non-lattice case, the proportionality "constant" involved in (2.3) is the same
for the Dirichlet and Neumann problems (see Corollary 2.5).

Remark 2. In the lattice case and when ds is not an integer, we conjecture that the
periodic function G(i) in (2.4) is non-constant, and hence that the limit in (2.3) does
not exist. Intuitively, these oscillations in the leading asymptotics of the spectrum
should be caused by the high symmetry of K (as well as of (D, r) and μ) which gives
rise to eigenvalues with large multiplicity. (Compare [LP2, Remark 4.7(b), p. 67].)
According to the result of Fukushima and Shima [FS], this conjecture is true for

the standard Laplacian on the Sierpinski gasket ί which, of course, corresponds to
V 1

the lattice case since then, rλ — ... = rN — 1 and μl = . . . = μN = — j . It

is noteworthy that when ds is an integer, the limit in (2.3) may exist even in the
lattice case. For example, if K is the Koch snowflake curve, equipped with its natural
Hausdorff measure μ, then K is isomorphic to the unit segment [0,1], equipped with
Lebesgue measure; hence ds = 1 and the limit in (2.3) exists.

Remarks. ("Spectral exponents".) In view of the above results, the positive number
ds defined by (2.2) determines the asymptotic order of the eigenvalue distribution of
the Laplacian. We will call ds "the spectral exponent of the Laplacian." It depends
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not only on the space K but also on the self-similar structure (/f, 5, {F^}^), the
harmonic structure CD,r) and the probability measure μ on K. In the case of the
Sierpinski gasket, the spectral exponent of the standard Laplacian, ds = In 9/ In 5,
has been called "the spectral dimension of the Sierpinski gasket." As was noted above,
however, there are many spectral exponents associated to a given p.c.f. self-similar
structure. In an appendix to this paper, we shall propose a notion of spectral dimension
corresponding to a specific choice of spectral exponent. (See Theorem A. 2.) Of course,
it will be equal to In 9/ In 5 in the case of the Sierpinski gasket.

Note that our (direct) definition of ds is very analogous to that of the "similarity
dimension" of a (strictly) self-similar set (e.g., [Fa, Sect. 9.2, esp. Theorem 9.3,
p. 118]); namely, ds is the positive solution of the equation

N

However, the coefficients 7- no longer represent the scaling factors of the similarity
transformations involved, but rather are now defined by 7^ = (μ^/λ)1/2, for

ΛΓ

i = 2, . . . , N. Finally, observe that in our case, ds < 2 because ]Γ 7^ < 1. This
N i=\

follows since (μiri/X) < μ{ and J^ μi = 1, where we use the fact that ri < X because
i=l

the harmonic structure is assumed to be regular, in the sense of Definition 1.6. Hence,
in the present setting, ds is an integer if and only if ds = 1, which is noteworthy in
view of Remark 2 above.

Remark4. Combining ideas of Kusuoka [Ku2] and Fukushima [Fu2], Kumagai [Kml]
has obtained the value of the "spectral exponent" for a special Bernoulli measure and
under certain rather technical conditions on the (regular or non-regular) harmonic
structure. After having learned about our present work, he then removed these
technical conditions in [Km2], still working with the above measure, and also
remarked that our methods and his could be combined to extend our main results
(Theorem 2.4 and Corollary 2.5 above) to non-regular structures, thereby allowing ds

to be greater than 2.

Remark 5. When TV = 2, the lattice case occurs if and only if log 72/ log 7j is rational;
i.e., if and only if 7! = 7f for some positve integers p and q. Clearly, a similar
criterion holds when N > 2.

Proof of the Main Results. The rest of this section is devoted to the proof of
Theorem 2.4. First, for a given integer n > 1, we define a collection of words with
various length, Λn C (J Wm, by

m>l

Λn = [w = w,w2 ...wm\ (ΊWlW2...WrnJ
ds >an> Ίd

w

s} ,

where α - minfrf s,^ s, . . . , 7^} and 7^ = ~fwΊW2 --ΊWrn (An analogous set
was introduced by Moran in [Mo].) The following facts are easily deduced from the
definition.

Lemma 2.6.

(1) an > 7^ > αn+1 for all w G Λn
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and

(2) U Σw = Σ and Σw n Σw, = 0 for w, w' e Λn wzfA w ^ w' ,

kωk+l . . . .

Lemma 2.7. Lef A C \J Wm satisfying \J Σw = Σ and Σw Π Σw, = 0
m>l υ GΛ

/0r i(;,t(/ G Λ. w/ί/i w φ w' . Then given /:[0,oo) — >• M and positive constants

]V

(1) // /(x) > /(α,x) , ίΛe/i /(x) >

where aw - aWιaW2 . . . aWm for w = wλw2 ...wm.

N

(2) // f ( x ) = Σf(aix), then f(x)=Σf(awx).

m C U Wτ > and

ί=ι
N

(3) // f ( x ) < Σ /(«t^> ' then

^=l

{
use an induction on n(Λ). First, if n(Λ) = 1, then obviously Λ = {1, 2, . . . , TV} and
so the claim holds. Next if n = n(Λ) > 1, then, for u> = w^ ^n ^ ^n n ^» we

can see that {^^2 . . . ̂ n-iJJjLi C Λ. Further, we note that the assumption implies

TV

a X a X '

And so, if we let

/ /n-! \ \

Λ'= I An I IJwΛ] \J{wlw2...wn_l w = Wlw2...wneWnΓ}Λ},
i=\

then it follows that Af satisfies the same conditions as A, n(Af) = n(Λ) - 1
and ^ f(a

w

χ^ — Σ f(a

w

χ^' Hence by the induction hypothesis, we have

Σf(χ) >
The proof of (2) and (3) is entirely similar. D

If we now combine Lemma 2. 6 and Lemma 2.7, Lemma2.3-(l) implies

< 6(t) <

Since ρ0 and ρ are non-decreasing, we have

2
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On the other hand, by Lemma 2.7-(2), we have

^Γ Ί^s = i an(i this implies #(Λn)an > 1 > #(Λjan+l.

Hence we have

2

Replacing t by to ds , we obtain

2 2 2
<n x, ~nTi~v ^ r> s. -~n~T< anρ0(ta ds ) < αn£>(tα d;

2 n—^— (n I 1)

Now we choose t so that £0(αds t) > 0. For x £ [ta ds , to ds ],

-¥ <Γ^c r 7 " "(n+1)^^

Therefore, we have

^S1 2 dg cί^

This implies immediately (2.1) from Theorem 2.4:

0 < lim inv ρ()(x)x 2 < lim sup QO(X)X 2 < oo .
x-^oo x-^oo

To establish the refined results stated in Theorem 2.4, we need the following well-
known renewal theorem from probability theory.

The Renewal Theorem (Feller [Fe]). Let v be a B or el probability measure on [0, oo)
00

such that f xv(dx) < oo. Let u £ L^R) be such that u(x) —* 0 as x\ —> oo. Suppose
o

that z is a bounded measurable function which satisfies the renewal equation
00

r
z(x) = u(x) + z(x- t) v(dt), for x G E, (2.7)

o

and such that z(x) —> 0 as x —> — oo.
Then

(1) Non-Lattice Case: If the support of v does not lie in any discrete subgroup ofR,
then the limit z(oc) = lim z(x) exists and

x—>oo

oo \ —1 +00

ί ίI xv(dx) I / u(x)dx .
J I JI
0 ' -

(2) Lattice Case: If the support of v lies in some discrete subgroup 0/R, then ifT is
the "greatest common divisor" of the support of v, the limit G(t) = lim z(t + nT)

Γ . , n— >OG
exists for every t and

1 +~
G(t) = xv(dx) u(t + JT) .

(1
= I xv(dx)

U /
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Remark 1. The above version of the renewal theorem is a slight modification of the
classical renewal theorem [Fe, Theorem 2.1, p. 349], which follows easily from the
proof given in [Fe] as well as from [Ru, Theorem 9.15, pp. 219-220]. Note that in
[Fe], the "lattice case' is called the "arithmetic case.")

Remark 2. Lalley [L] has used the renewal theorem in a related context in order to
study the asymptotic behavior of certain geometric counting functions associated with
self-similar fractals in Rn.

N

Lemma 2.8. Let R(x) = ρQ(x) - ^ £0(7*2χ)> where 7i = (r^/λ)1/2; then R(x) is a

non-negative bounded function and, for some kl > 0, R(x) — 0 on [0, &J.

Proof of Lemma 2.8. By Lemma 2.3-(l), R(x) is non-negative. Also by Lemma 2.3,

N N

ι=l ι=l

Hence R(x) < MN. Finally, let kλ be the smallest eigenvalue of —Δ with Dirichlet
boundary conditions. Then it is easy to show that kl > 0. (See Sect. 4.) Therefore
£0(7?#) = 0 (since 7^ < 1) and hence ρ0(x) — 0 on [0, fcj. This implies that R(x) — 0

End of the proof of Theorem 2.4. We let z(t) = e~iάs ρ0(e2t), u(t) = e'tds R(e2t) and
N d (

v(dt) = Σ 7 S6_ l o 2^ (dί), where δ is the Dirac point mass at x. Observe that v
ί=ι ^ d V

is a probability measure since by definition of ds, we have JZ 7t

 s = 1; ^^^ (2.2) or
\ i=ι

(2.6). Then, using (2.6) again, we immediately deduce the renewal equation (2.7):

z(χ) = u(x) + I z(x — t) ι/(df) .

Further, it is easy to check that the assumptions of the above renewal theorem are
satisfied. Thus Theorem 2.4 is now a direct consequence of the renewal theorem. D

3. Examples

This section is devoted to examples illustrating our results. In each example, item
(I) describes the self-similar structure, item (II) describes harmonic structures and in
item (III), we discuss various properties of the spectral exponents of Laplacians. In
the appendix, we shall revisit several of these examples from the point of view of the
spectral dimension.

Example 1 . Interval
(I) For i = 1, 2, the maps Fτ: R — » R are contractions defined by

Fl(x)=^x and F2(x) = \ x + \ .

Let K = [0, 1]. Then (K, {1,2}, {F1? F2}) is a p.c.f. self-similar structure. In fact,

^={12,21}, i=π(12) = π(2i),

^={1,2}, 0 = π(i) and 1 = π(2) .
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[Here and thereafter, we use the following convention. Given a symbol s, we denote
by s the constant infinite sequence associated with this symbol s. For example,
1 = 1111....]

(Π)

D = ~ > r = (α, 1 - α) ,

with 0 < a < 1. Then (Z), r) is a regular harmonic structure where λ = 1.
(Ill) For a Bernoulli measure μ, let μλ = β and μ2 = I — β with 0 < /3 < 1. The
spectral exponent ds of the Laplacian given by (D, r) and μ is characterized by

(α/3) * +((l-α)(l-/?)) * = 1. (3-D

Consequently, ds = 1 if and only if α = β, and ds < 1 otherwise. Further, we are
in the lattice case if and only if log((l - a) (1 - /?))/ log(α/3) is rational.

Example 2. Sierpinski Gasket (Fig. 1)
(I) Given an integer TV > 2, consider the standard unit TV-simplex in R
vertices {p1? . . . , pN} and edges of length 1. For i — 1,2, . . . , TV, Fi \
R^"1 is a contraction defined by

Fi(x)=\(x-pi)+pl.

The TV-Sierpinski gasket is the unique (non-empty) compact set satisfying

N

1, with

Then (K, {1,2, . . . , N}, {Fi}ί=l 2 N) is a p.c.f. self-similar structure. In fact,

W = U {kί, Ik} , i (p^) = π(W) = π(ώ),

^= {1,2, . . . , JV} and pk = π(k) for fc = 1,2, . . . , N,

where (pfcp^) denotes the midpoint of pk and plt

(Π)

/-(TV-1) 1

1 -(TV - 1)

\ 1

1 \

1 -(TV-I)/

Then (jD, r) is a regular harmonic structure where λ =
TV + 2

TV
[For TV = 2, K is an interval as in Example 1 above, whereas for TV = 3, K is the
S.G. discussed in the introduction and represented in Fig. Ib. Note that in Example 1,
we chose r = (1/2,1/2) whereas in the present case, we take r = (1,1); this explains
why here λ = 2 instead of λ = 1.]
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(III) The spectral exponent ds of the Laplacian given by (D,r) and a Bernoulli
measure μ is characterized by

N ' - • ' = ! . (3.2)

We deduce from (3.2) that ds < 2 log N/ log(7V+2) and the equality holds if and only

if μ is the normalized Hausdorff measure where μτ = —: for alH = 1,2, . . . , N. This

latter situation, that of ordinary 7V-Sieφinski gasket, is that studied by Fukushima-
Shima in [FS]; clearly, it corresponds to the "lattice case" (in our present terminology)
and hence according to Theorem 2.4 and Corollary 2.5, for the associated Dirichlet and
Neumann Laplacians, not only does (2.1) holds - as was already shown in [FS] - but
also (2.4) holds, where the periodic function G defined by (2.5) is non-constant since
by [FS], χ-ds/2ρ(χ) does not converge as x -> oo. This value, 2logN/\og(N + 2),
will be called "the spectral dimension" in the appendix.

It is noteworthy that the Hausdorff dimension of K is equal to log N/ log 2 and
that for N > 2,

2 log TV log TV

log(TV + 2) log 2

Example 3. Modified Sieφinski Gasket (Fig. 2)
(I) Let {Pι,P2,Pτ} be the vertices of a regular triangle in C and let

PA = \ (P2P3) > Ps = \ (P1P2) > Pβ = \ (P2P3)

Further, let the contraction F%: C —> C be defined by

'•-pi)+pι for z = 1,2,3

for i = 4,5,6,

where z e £ and the parameter a satisfies ^ < a < ^. The unique compact set K c C
6

which satisfies K = [j Fτ(K) is called the modified Sieφinski gasket (M.S.G. for
2 = 1

short). It is easy to check that (K, {1,2, . . . , 6}, {Fί}ι=ι 2 6) is a p.c.f. self-similar
structure. In fact,

W = [J {kί, mk, ml, Ik} , qkm = π(kί) = π(mk)
k<l<m

and qlrn = π(mi) = π(ίk) for each triple (A:, /, m) such that k < I < m and
k + l + m = 9. Also, ^= {1,2,3} and pk = π(k) for k = 1,2,3.

The Hausdorff dimension of the M.S.G., denoted by dH, is the unique positive
number which satisfies

3adH +3(1 -2afH = 1.

(Π)

D =
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with t > 0. Then (D,r) is a harmonic structure and it is regular if and only if

-l + >/2Ϊ
0 < t < .

(Ill) Of course, we could choose any Bernoulli measure μ on K. However, we now
focus on the normalized Hausdorff measure, where μλ — μ2 = μ3 = adH and
μ4 = μ5 = μ5 = (1 —2ά)dH, because this measure seems natural from the geometrical
point of view. Then the spectral exponent ds of the Laplacian given by CD, r) and μ
is characterized by

+ 3
λ

= 1 (3.4)

It is remarkable that there are no particular relations between α and t and so these two
parameters are mutually independent. In such a case, as was mentioned in Remark 3
of Theorem 2.4, we cannot use an expression such as "the spectral dimension of the
M.S.G."

Finally, we note that for a fixed harmonic structure (i.e., for a fixed t and hence
λ), we are clearly in the "non-lattice case" for "almost every" a (in any reasonable
sense).

q24 P4 q34

Fig. 2. Modified Sierpinski gasket

Example 4. Hata's Tree-like Set (Fig. 3)
This tree-like set was introduced by Hata in [Ha].

(I) For a complex number β satisfying

1 and I m / ? / 0 ,

= (\-\β\2)z+\β\2.

we define two contractions on C by

η (*) = /?* and

The unique compact set K satisfying

is called Hata's tree-like set. (K, {1,2}, {Fτ}i=l^) is a p.c.f. self-similar structure. In
fact,

& = {112,21}, g = π(112) = τr(2i),

^={1,2,12}, P l =π(i) , p2 = π(2) and p 3 =
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(Π) _ -i

DJ~{>Γ}

\ a-'

with 0 < a < 1. Then (D, r) is a regular harmonic structure where λ = 1.
(Ill) The spectral exponent ds of the Laplacian associated with (£>, r) and a Bernoulli
measure μ is given by

(μva) (3.5)

Next, if we choose α = \β\ and the normalized Hausdorff measure μ (with μl — adπ

and μ2 = (1 - a2fH), then (3.5) becomes

(o/^fί+^ΊΓ _|_ (Q _ Q/2)dfί+1)"^~ = l . (3.6)

Now, since dH, the Hausdorff dimension of K, is the unique positive number such
that oidfl + (1 - a2)dπ — 1, we obtain the following remarkable relation between ds

and dH:
Ίrl

(3.7)
*H 1

Also in this case, the dichotomy between the lattice or non-lattice case, respectively,
is that log a/ log(l — a2) is rational or not.

Fig. 3. Hata's tree-like set

Example 5. Nested Fractals
(I) The "nested fractals" introduced by Lindstr0m in [Li] are p.c.f. self-similar sets
CftΓ, {1,2, . . . , TV}, {Ft}l=lt2t_ίN) such that

K C Mn for some n,
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the contractions Fi are α -similitudes of W1 with the same scaling ratio a (that is, for
all x,y G Mn, \Fτ(x) — Fτ(y)\ = a\x — y\, where | | is the Euclidean distance and
0 < GL < 1), and they have strong symmetry.

Further, recall that the Hausdorff dimension dH of K is given by

(3.8)
log a

(II) Using the strong symmetry of K, Lindstr0m [Li] has shown that there exists a
symmetric decimation invariant random walk on VQ. In our terminology, this implies
that there exists a regular harmonic structure CD,r) with r = (1,1, . . . , 1) and
"renormalization constant" λ.

(Ill) If we take, for example, the normalized Hausdorff μ, where μi = — for

i = 1,2, . . . , AT, then we deduce from (2.2) in Theorem 2.4 that the spectral exponent
ds of the associated Laplacian is given by

, _ 21ogΛΓ

"* log(7Vλ)

We thus recover a result obtained by Fukushima [Fu2] in the case of the normalized
Hausdorff measure. From the probabilistic point of view, the corresponding asymptotic
order for the trace of the heat semigroup associated with "Brownian motion" on K
was obtained earlier by Lindstr0m in [Li]. Note that in this situation, we are always
in the "lattice case" since μϊrl/X = 1 /NX for alH = 1, . . . , AT, and thus it follows
from Theorem 2.4 that (2.1) and (2.4) hold; in particular, as x —> oo, we have for the
associated Dirichlet Laplacian,

G-Z-+o(l)\x 2 , (3.10)

where G is the positive periodic function of period T = 1/χ/A/Ά given by (2.5).
Now, according to Fukushima [Fu2], the integrated density of states for nested

fractals is defined by

Λ&x) = lim βϋ((N\)lx)INl , (3.11)
I— >oo

where / G N. It thus follows immediately from Theorem 2.4 that the limit in (3.11)
exists and is given by

A (3.12)

In the above, our results are stated for the Dirichlet Laplacian. According to
Corollary 2.5, however, exactly the same results hold for the Neumann Laplacian;
in particular, if Λ^(x) is defined by (3.11) with ρ0 replaced with ρ, the analogue of
(3.10) and (3.12) holds for ρ(x) 3X\&Ar(x), respectively, where G is the same periodic

do
/ I \

function as for the Dirichlet problem. In particular, Λ^(x) — Λ$(x) = G(^ log xj x 2 .
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4. Dirichlet Forms and Dirichlet-Neumann Bracketing

In this section, we introduce the method of Dirichlet-Neumann bracketing according
to Metivier [Me] and Lapidus [Lai, Sect. 4,1 pp. 490-497]. It originally treats more
general situations of spectrum of certain self-adjoint operators on Huberts spaces. In
this paper, however, we confine our interest to Dirichlet forms. First we recall the
definition of Dirichlet forms. (For the theory of Dirichlet forms, see, e.g., Fukushima
[Ful].) Let X be a locally compact separable metric space and let v be a regular
Borel measure on X such that v(O) > 0 for all open sets O C X.

Definition 4.1. Let F be a dense subspace of L2(X, v) and let E be a non-negative
symmetric bilinear form on F. Then (E, F) is called a Dirichlet form on L2(X, v) if
(1) For a > 0, let Ea(u,υ) = E(u,v) + a(u,v)v, where (u,v)^ = / uvdv. Then,
(F, Ea) is a Hubert space. x

(2) Markov Property: For every u G F, let

{ I if u(x) > 1,

0 if u(x) < 0,

u(x) otherwise.

Then, ΰ e F and E(ύ, u) < E(u, u).

Remark 1. It is easy to see that if (F^E^) is a Hubert space, then so is (F,Ea) for
each α > 0.

Remark2. If (E,F) is a Dirichlet form on L2(X,v), then (F,L2(X,v),Ea) is a
variational triple. See, e.g., [Lai, Sect. 4.1.A, p. 491] for the definition of a variational
triple.

Next we formulate the eigenvalue problem associated with a Dirichlet form.

Definiton 4.2. Let (E, F) be a Dirichlet form on L2(X, if). If

ίL/\U^ V) == r\t\U^ ^ / T /

for all v G F, then k is called an eigenvalue of (E, F) and u is called an eigenfunction
belonging to k.

Throughout this section, (F, F) denotes a Dirichlet form on L2(X, v). Further we
assume that the natural inclusion map from the Hubert space (F,Ea) into L2(X,v)
is a compact operator. Then it follows from some well-known facts about self-adjoint
operators that the eigenvalues of (F, F) are non-negative and of finite multiplicity
and that the only accumulation point is -f oo.

In this case, the eigenvalues are characterized by the Max-Min principle.

Proposition 4.3. Let {A^jJ^ be the sequence of eigenvalues of (E,F), written ac-
cording to multiplicity and so that 0 < kn < kn+l for n = 1,2, . . . . Then

where, for B C L2(X, v), Sa(B) - {u G B Π F Ea(u, u) < 1} and dτ - dτ(B) is
defined by

di = inf ί sup inf \\x — y\\L2(X^ Y is an i-dimensional subspace of L2(X, z/)\ .
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Remark. Obviously, if B C Y where Y is an n-dimensional subspace of L2(X, v),
then di(B) = 0 for i > n.

The above result yields immediatley an expression for the eigenvalue counting
function.

Proposition 4.4. Let us define the eigenvalue counting function ρ(x\ F, F) by
ρ(x\ F, F) = #{i I ki < x}. Then

Q(X\ F, F) = #{ί > 0 I d^S^F)) >(x + αΓ1/2} .

Now we consider another Dirichlet form (F7,F7) on L2(X, v} such that F' is
a closed subspace of F and Ef — E\F/xF,. The method of Dirichlet-Neumann
bracketing gives a relation between ρ(x;F,F) and £>(x;F7,F7). By Proposition 4.4,
it is easy to see that

Theorem 4.5.
ρ(χ E',F')<ρ(χ E,F). (4.1)

To estimate the difference between Q(X\ F, F) and ρ(x\ E1', F7), we shall need the
following refinement of the method of Dirichlet-Neumann bracketing:

Theorem 4.6. [Me]

ρ(x; E, F) - ρ(χ E'', F') = 7V(x; E, F, F7) - dim(F7 Π Zx), (4.2)

where Zχ = {u \ u G F, E(u, v) = x(u, v)v for all v £ F7} and

N(x\ F, F, F7) - #{i I ̂ _!(5α(^)) > (x + αΓ1/2} .

Remark L Theorem 4.6 is established in [Me, Proposition 2.7, p. 138]. (See also [Lai,
Proposition 4.3, p. 493].)

Remark 2. The above refinement of the method of Dirichlet-Neumann bracketing
provided by Theorem 4.6 was needed in [Lai] to obtain sharp remainder estimates for
the spectral asymptotics of elliptic operators on open sets with fractal boundary and
will also be necessary in the present paper. (For the original method - which makes
use of a special case of inequality (4.1) rather than of the more precise equation (4.2)
- we refer to Courant and Hubert [CH] or Reed and Simon [RS].)

We will use the following special case of Theorem 4.6 in the next section.

Corollary 4.7. 7/dimF/F7 < +00, then, for all x,

ρ(x\ F7, F7) < ρ(χ F, F) < ρ(x\ F7, F7) + dim F/F7. (4.3)

Remark. The reason why we shall be able to apply Corollary 4.7 is that on a p.c.f.
self-similar set, the space of harmonic functions is finite dimensional.

Proof. First, assume that F7 Π Zx — {0}. Let G be the orthogonal complement
of F7 in F with respect to the inner product F^ ,-) and let p\F —>> G be the
natural projection. As F7 Π Zx = {0}, it follows that kerp|z = {0}. Hence
άimZx < dimG = dim F/F7. And so by the remark following Proposition 4.3,
N(x; F, F, F7) < dim F/F7. Using Theorem 4.6, we thus have

Q(X\ F, F) < Q(X\ F7, F7) + dim F/F7.

Now, note that {x F7 Π Zx ^ {0}} is a countable set because it coincides with the
set of eigenvalues of the Dirichlet form (F7, F7). Also ρ(x\ F, F) and ρ(x\ F7, F7) are
right continuous. Therefore the above inequality holds for all x. D
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5. Laplacians and Dirichlet Forms; the Proof of Lemma 2.3-(2)

In this section, we will relate eigenvalue problems for Laplacians to eigenvalue
problems for Dirichlet forms and prove Lemma 2.3-(2). Recall that (K, S, {FJ^)
is a self-similar structure and (&,3Γ) is a Dirichlet form on L2(K, μ) constructed by
means of a regular harmonic structure CD,r). Also Δμ is the Laplacian associated

with (D, r) and μ. The domain of Δμ is denoted by & .

Now, the eigenvalue problem for the Dirichlet form (<^,^") on L2(K, μ) turns out
to be equivalent to the eigenvalue problem for the Laplacian Δμ with homogeneous
Neumann boundary conditions as follows.

Proposition 5.1. For k G R and u G ̂ ,

%(u, v) = k(u, v)L2(K^}

for all v G & if and only if u £ &μ and

( Δμu = -ku,
\ (du)p = 0 for all peVQ.

Proof. First, assume that for all v G ̂  ,

g(u, v) = k(u, v)L2(K^μ} .

Then letting v — gx, we have by Proposition 1.9,

u(x) = ]P u(p)ψp(x) + k g(x, y)u(y)μ(dy) .

ptvQ

 J

κ

Using Theorem 1.12, the above equation implies that u G & and Δu = —ku.
Therefore, by Theorem 1.13, we can see that

for all v e & . Hence we have (du)p = 0 for all p e VQ.

The converse follows immediately from Theorem 1.13. D

For defining the homogeneous Dirichlet boundary conditions, we introduce a new
Dirichlet form (2^?^ζ) as follows.

Proposition 5.2. Let ̂  = {u G & \ U\VQ = 0} and let ̂  = &\<%x<% τhen (%o,tf>)

is a local regular Dirichlet form on L2(K, μ). Further, for k G R and u G ̂ ,

&Q(u, v} = k(u,

for all v G ̂  z/α^J only ifue&Q =

Δμu = — ku ,

Proof. Note that J^ = ̂  + H, where H is the set of harmonic functions, and that
dim if = #(VQ). Hence it is easy to check that ̂  is dense in L2(K,μ). Further, the
other conditons follow immediately from the definition of (<%,.̂ ). And so (<%,^ζ) is
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a local regular Dirichlet form on L2(K, μ). The proof of the second part of the above
proposition is similar to that of Proposition 5.1. D

Now we proceed to give the proof of Lemma 2.3-(2). By the above propositions,

Q(X) = Q(X\ %, &) and ρ0(x) = Q(X\ ^0, Jξ) ,

where we use the notation of Proposition 4.4. And thus we can apply the method of
Dirichlet-Neumann bracketing if the natural inclusion map ̂  <—> L2(K, μ) is shown
to be a compact operator.

Lemma 5.3. There exists a positive constant C such that, for all u G 3^,

C\\u\^<%(u,u)+ \\u\fc,

where \\u\\ ̂  = sup \u(x)\ and \\u\\2 = // u2dμ.
\K

Proof. By Proposition 1.9, we have

\l ry ( O^ Q^} \/ f y(u Ui "-^ \f y(Q u}\ —' 7/Γ^C) — 'ί/lIZ?)

where ΰ(x) = ]Γ u(p)ψp(x). Also by Propositon 1.9, &(gx,gx) = g(x,x) Hence
we have

where Cl = sup g(x, x).

Now note that u G H. As H is finite dimensional, the norms || H^ and || ||2 are
mutually equivalent. Therefore, there exists a positive constant C2 such that, for all

Nloo < C2lNl2 < C2(\\U\\2 + \\U - U\\2> '

Since || H^ > || ||2, we obtain, for some C3 > 0,

Since \\u\\^ + \\u - ΰ]}^ > \\u\\OQ9 the proof of Lemma 5.3 is complete. D

Lemma 5.4. The natural inclusion map J^ °-> L2(K^ μ) is a compact operator.

Proof. Let U be a bounded set in & with respect to the inner product (?(u, v) +
/ uvdμ. Then by Lemma 5.3, there exists a positive constant A such that, for all
K
u G E7, IHloo < A. Hence [7 is uniformly bounded.

On the other hand, using Proposition 1.9, we have

Hence we deduce that

max \ψ~\X) — fψr)\y)\ \u\x) — u\y)\.

Since ίf(#x - p27,^ — ^y) = g(x,x) + g(y,y} — 2g(x,y) and ̂ (u.u) are bounded,
we conclude that U is equicontinuous.

Thus it follows from the Ascoli-Arzela theorem that U is relatively compact in
C(K). And hence U is relatively compact in L2(K, μ). D
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Proof. Lemma 6.1 and the definitions imply (1) and (2) immediately.

(3) Let U C & be bounded in (<f ,./)- Then, for each i = 1,2, . . . , TV, £/• =
{/ o J^ / e [/} is a bounded set in (£f,j^"). And so it is relatively compact in
L2(K, μ). Hence U is relatively compact in L2(K, μ).

(4) Let / be an eigenfunction of the Dirichlet form ( ,̂ ̂ ) with eigenvalue fc. Then

by the definitions, for all g e & ,

N TV

Hence we have for any /ι G

Therefore, for each i,gi = f o Fτ is an eigenfunction of the Dirichlet form
II . IY>

with eigenvalue -̂ -1 k. The converse is obvious and hence we have
Λ

Using Theorem 4.5, the above proposition implies a part of Lemma 2.3-(l), that is

N (^)<Σ>(τ

To obtain the remaining part, we introduce another Dirichlet form on L2(K, μ).

Proposition 6.3. Let jf = {/ | / G J^, f\Vι = 0} and let %Q = ̂ xjξ.

(1) (^, Jζ) w α /oc^/ regular Dirichlet form on L2(K, μ).

The proof of this proposition is entirely similar to that of Proposition 6.2.
Finally, we deduce from Theorem 4.5 that

Σ
Hence we have completed the proof of Lemma 2.3-(l).

Appendix: The Spectral Dimension

In Sect. 2, we have established a formula to calculate the spectral exponent ds

of a Laplacian Δμ associated with a self-similar structure (K, {1,2, . . . , TV},

{Fτ}i=l 2 j Λ τ ) > a regular harmonic structure (D,r) and a Bernoulli measure μ on
K. The formula is
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Remark. It follows from the above proof that the inclusion map & <—> C(K) is a
compact operator.

Finally, using Corollary 4.7, we have

because #(%) is finite and dimJ^/J^ = άimH = #(VQ). Hence we obtain Lemma
2.3-(2).

6. Scaling Property of Dirichlet Forms; the Proof of Lemma 2.3-(l)

In this section, we will prove Lemma 2.3(1). The key is a kind of scaling property of
the Dirichlet form (<§f, ,̂ ), as given below.

Lemma 6.1. For u, υ G &*,

N

Proof. By Definition 1.5 (and with the obvious simplified notation),

^m(uoFl,voFl) = -λm Γ r-lt(Rw(uoFi))D(Rw(voF%)).

Note that Rw(f o F^ — Riwf', hence the above equality implies

N N

λ Σ r^%m(u ° *> o FI) = - λm+1

ι=\ τ=

In view of Proposition 1.7, we complete the proof by letting ra — >• oo. D

Remark. This kind of scaling property of Dirichlet forms on self-similar sets was first
established by Fukushima [Fu2] for nested fractals.

Now we introduce a new Dirichlet form on L2(K, μ).

Proposition 6.2. Let & be defined by

& = {/:tf\Vi ->R\fori = l,2,...,N,foFi = fion K\V0for some fτ e ̂ } .

Let & be a nonnegative symmetric form on ̂  defined by

N

ι=l

Then
(1) ̂  c & and % = ^Vxjτ

(2) (^^) is a local regular Dirichlet form on L2(K, μ).

(3) The natural inclusion map 3^ <—* L2(K, μ) is a compact operator.
N
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/ f 11
where 7i = \ -^~ for i — 1,2, . . . , TV. In this appendix, we will obtain a relation

V
between this spectral exponent and the so-called spectral dimension. We will fix a self-
similar structure and a regular harmonic structure and think of the spectral exponent
as a function of μ. And so we write ds = ds(μ). Fist we will define the similarity
dimension of the harmonic structure.

Definition A.I. The unique positive number S which satisfies

I (*)'-•
is called the similarity dimension of the harmonic structure (D, r).

Then we deduce the following theorem from an elementary calculation.

Theorem A.2.

25
max{ds(μ):μ is a Bernoulli measure on K} = — , (A.3)

u -f- 1

where the maximum is attained only at the Bernoulli measure μ such that

, / o r i = l , . . . , J V . (A.4)
V Λ /

The positive number
29

< 4 = ' (A-5)

defined by (A. 3), with S given by (A. 2), is called the spectral dimension of the harmonic
structure (D,r).

Proof We can determine the maximum of ds(μ) as a function of (μ1? . . . , μN),
N

subject to the constraints ]Γ μi = 1, μτ > 0(ί — 1, . . . , TV), by using the method of
i=l

Lagrange multipliers. D

Remark 1. Clearly, we always have d^ < 2. Further, d^ — S if and only if 5 = 1.
(This is of interest in view of Remarks 2 and 3 following Corollary 2.5.)

Remark 2. Fujita [Fjl,2] has studied generalized diffusions on an interval associated
with self-similiar measures and has obtained the corresponding relation between the
similarity dimension and the spectral dimension as above. This result indicates that
our relation could be extended to generalized diffusions on fractals.

Remarks. Our results suggest certain formal analogies with the interesting work of
Strichartz [Stl,2] on the "Fourier asymptotics of (self-similar) fractal measures" in
W1.

Now we revisit some of the examples discussed in Sect. 3. (For simplicity, we
number the examples in the same way as in Sect. 3.)

Example!. (Interval.) For the harmonic structure (D,r) where

D=l _1 J and r = (α, 1 - α) ,

the similarity dimension is 1. Hence the spectral dimension of (D, r) is 1.
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r 3
Example 2. (Sierpinski Gasket.) For the harmonic structure CD, r), -̂  = -. Hence the

A 5
similarity dimension is log 3/(log 5 — log 3) and the spectral dimension is log 9/ log 5.
This value is the so-called "spectral dimension of the Sierpinski gasket."

More generally, for the TV-Sierpinski gasket studied in Example 2 of Sect. 3, we
r TV

have -1 = — , and hence
λ TV + 2

^ * 2l°£N

log(TV + 2) - log TV 5 log(TV + 2) '

Example4. (Hata's Tree-like Set.) For the harmonic structure (D,r), where

I
I α

1 -1 0 I and r = (α, 1 - α2),

0 α

the similarity dimension is given by

as + (1 - α2)5 = 1.

If we choose a. = \β\, then 5 equals the Hausdorff dimension dH, where the
contractions are

Fλ(z) — βz and F2(z) = (1 — \β\2}z + \β\2 .

Further, the Bernoulli measure which gives the spectral dimension of (D, r) is the
natural (normalized) Hausdorff measure with respect to the above contractions. In this
case, we have already stated the relation between the similarity dimension and the
spectral dimension in Sect. 3; namely, (A.5) yields

d*s = — , (A.7)

as was obtained in (3.7).

Example 5. (The Nested Fractals.) For the harmonic structure (D, (1,1, . . . , 1)), the
similarity dimension is given by

l^rr AT

(A.8)
logλ

Hence, by (A.5), the spectral dimension d^ is given by

ύ log(TVλ)' v '

where the corresponding measure μ is characterized by μi = —:, for i = 1, . . . , TV.

In particular, we recover formula (3.9) obtained in Example 5 of Sect. 3. Note that in
this case, μ is the natural (normalized) Hausdorff measure on K.
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