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The physical state space of quantum electrodynamics 

Detlev Buchholz 

II. Institut fUr Theoretische Physik, Universitat Hamburg 

F.R.G. 

Abstract: Starting from the fact that electrically charged 

particles are massive we derive a criterion which characte

rizes the state space of quantum electrodynamics. This cri

terion clarifies the special role of the electric charge 

amongst the uncountably many superselection rules in quantum 

electrodynamics and provides a basis for a general analysis 

of the infrared problem. Within this framework we establish 

the existence of asymptotic electromagnetic fields in all 

charge-sectors, find a general characterization of infra

particles and introduce a notion of asymptotic completeness. 

- --- ... --- ---
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1. Introduction 

In striking contrast to the excellent experimental confirmation of 

quantum electrodynamics, the understanding of its conceptual foun

dations is still only of a rather qualitative nature. Besides the 

well known infrared problems which one encounters in the inter

pretation of physical states at asymptotic times [1], the even 

more fundamental problem of defining a physical state space has 

not yet been solved in a satisfactory manner. It is the aim of the 

present contribution to clarify this point and to provide thereby 

a basis for a general discussion of the structure of quantum electro

dynamics. 

There are two related problems which one encounters in the definition 

of a state space. First, there exists the well known difficulty that 

physical states carrying an electric charge cannot be constructed 

by applying local field operators to the vacuum state. This fact 

can be traced back to Gauss' law which implies that the electric 

charge of a particle can be determined by measuring the total 

electric flux through an arbitrarily large sphere surrounding the 

particle [2,3J. 

The second complication, which is less frequently noticed although 

it has the same physical origin, consists in the fact that there 

exist uncountably many superselection sectors in quantum electro

dynamics. This may be seen from the following heuristic argument: 

choosing some Lorentz system, the observable ~ measuring the 

asymptotic electric flux-distribution in spatial directions n, IUI=1 
is given by 

<P(~)= ~im 1'"'2.· '!!·S(-<"·!l). ( 1. 1) 

.,. _,."" 
Here ~ is the suitably regularized electric field operator, and it 

is tacitly assumed that the limit can be defined on the states of 

interest. qp is a classical observable because it commutes with all 

local observables due to the principle of locality. Therefore it is 

represented in each superselection sector by some c-number function 
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'!!- <f'(!!.) describing the a,symptotic electric flux-distribution 

of the states in that sector. 

Now the only physical constraint imposed on the functions f is that 

the total flux Jdw<f("!!) must be a multiple of the electric charge. 

This indicates that there exists a tremendous number of superselection 

sectors in quantum electrodynamics corresponding to a variety of 

asymptotic flux-distributions ~ . In particular, one can generate 

a continuum of states belonging to sectors with different asymptotic 

flux-distributions <fA by acting on any charged state with all 

Lorentz transformations J\ . (The latter fact also explains the 

breakdown of Lorentz covariance in sectors describing charged states 
[4].) 

In the conventional field-theoretic treatment of quantum-electro

dynamics one simply ignores this abundance of sectors and selects 

in some arbitrary way a convenient subset of states. In the Coulomb

gauge (s], for example, this is done by constructing a non-local 

charge-Carrying field operator which generates states from the 

vacuum with a fixed asymptotic flux-distribution, (usually one 

chooses a spherically symmetric one). The resulting Hilbert-space 

consists then of a countable number of superselection-sectors which 

can be distinguished by their electric charge. 

It is less obvious how such a selection of states is achieved in the 

Gupta-Bleuler formalism (3]. There one constructs with the help of 

the local gauge-fields an indefinite metric ·space of unphysical 

vectors, which are expected to approximate the physical states in 

a suitable topology. Since the choice of this topology is highly 

ambiguous, it is not quite clear which physical sectors are actually 

obtained by this procedure. But the resulting physical Hilbert-space 

is always separable, so that it also contains an at most countable 

number of superselection-sectors with a discrete weight. 

Despite the fact that these field-theoretic settings do not include 

all superselection sectors, they cover all situations of physical 

interest. In fact it follows from the well-known "particle behind 
• the moon-argument of Haag and Kastler that even the states in a 
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single superselection-sector would be sufficient to deduce all the 

physically relevant information [6]. But the conventional field

theoretic settings are not a very convenient frame if one wants 

to express the fact that there exist sectors in quantum electro

dynamics with almost arbitrary asymptotic flux-distributions. Since 

we want to exploit this important feature which allows to choose 

the localization properties of charged states within certain limi

tations, we will use here the more flexible Haag-Kastler framework 

of local quantum theory (6]. In this framework a unified treatment 

of all superselection sectors of quantum electrodynamics is possible! 

Using the fact that the charged particles are massive, we will 

introduce in section 2 an equivalence relation between sectors of 

a given electric charge. The resulting concept of charge-classes 

is used in section 3 to select those charged states which have the 

best possible localization properties with respect to the vacuum. 

We propose to consider this set of states as the physical state 

space of quantum electrodynamics. In section 4 we will show that 

one can define on these states incoming and outgoing electromagnetic 

fields as limits of local observables. Using this result we will also 

obtain some information on the asymptotic observables which are asso

ciated with the charged particles. In particular we will find a 

general characterization of infra-particles and introduce a notion 

of asymptotic completeness which applies to quantum electrodynamics. 

With this input, we can show in section 5, that the sectors within 

a charge-class only differ by radiation fields which are induced 

by an infinite number of incoming respectively outgoing low-energy 

photons· (infrared-clouds). This result establishes the consistency 

of the underlying physical ideas. 

We conclude this introduction with a list of assumptions. The basic 

objects in our analysis are the local observables, which according 

to- the fundamental work of Haag and Kastler are known to embody all 

the relevant physical information. In quantum electrodynamics these 

observables are the electromagnetic field Ff~ and the electric current 

~~ ~ df F . In order to avoid the discussion of domain problems 
~ ~~ ' 
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we assume that these field-operators smoothed out with suitable 

(9 ---+ 6{.(0) of C*-algebras in-testfunctions generate a net 

dexed by the bounded regions b of Minkowski space. Thus each C((0) 

may be regarded as the algebra of all observables which can be 

measured within 0 . For unbounded regions 3L , the algebras of 

observables 0((~) are defined as the C*-inductive limits of the 

local algebras tt(0) with 0 c. ~, 

c .. 
tt (J<,) ~ U CH!9) , 

(:} c 3\, 

11. 2) 

and 0(::: O((fR.fl.) denotes the algebra of all local observables. We 

recall that observables in spacelike separated regions commute 

(locality) 

[OU!9, l , CJ[Ua, l] • 0 if 0, c v' 2 11 • 3) 

and that the Poincare transformations L induce automorphisms 

~ which respect the local structure of the net (covariance) 
c(L of 

orL(OtCvl) • CX.CL0). 11.4) 

The physical states in quantum electrodynamics are distinguished 

by the fact that they induce representations (rr ,~)of the algebra 

Cl on a separable Hilbert-space ~ which are invariant with re

spect to the space-time translations x = (t,~). This means that 

there exists a strongly continuous unitary representation x-+U(x) 

of the translations on ~ such that the operators 0 (x) implement 

the action of o( X 

n: (<><,lAl) • U(x) rc(A) Ul•)- 1 for A.m. 11 • 5) 

Moreover, the generators P 

spectrum condition, i.e. 

(P 01 ~) of U(x) satisfy the relativistic 

sp'U.c(p P2. ~ 0 1 Po ~ 0 } . 11 • 6) 
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If the representation Tt: is reducible, then the operators U (x) are 

not fixed by these conditions. It can be shown, however, that it is 

always possible to find operators Utx) e. n(O(.)- such that the spec

trum of the generators P has a Lorentz-invariant lower boundary1 ) 

in each factorial subrepresentation of rr [7], and this property 

fixes them uniquely. We will call representations exhibiting these 

properties positive energy representations. 

Amongst the positive energy representations in quantum electrodynamics 

there exists in particular the irreducible vacuum representation 

( l(
0

, ~0 ) of Ot . We assume that there is a continuous unitary re

presentation L ~ U(L) of the full Poincare group on :Jt!0 which implements 

the automorphisms c{L and leaves invariant the (up to a phase unique) 

vector S2 6 ~0 representing the vacuum state. Moreover, there is 

a subspace ';It~") c 'Je
0 1 describing states of a single photon, on 

which the Poincare transformations U(L) act like a direct sum of 

irreducible representations of zero mass. 

we mention as an aside, that starting from a local, covariant field 

such as Fr~ , there is a canonical way of constructing in the 

vacuum representation a net 0~~(b) of local algebras. This 

net satsfies the above assumptions and in addition duality [8], a 

powerful maximality condition invented by Haag [9]. It is therefore 

natural to consider the vacuum representation as the defining represen

tation of ct. 

1 l This result follows only from the spectrum condition and locality, 

so that it can be applied in a situation where the Lorentz 

transformations are not unitarily implemented. 
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2. Charge-classes 

A superselectionsector is defined as a class of unitarily equivalent 
irreducible representations of Gt , where. we restrict our attention 
to positive energy representations as defined in the Introduction. 
In view of the preceding discussion we must be prepared for a tremen
dous number of such sectors corresponding to different asymptotic 
electric flux-distributions, and there arises the question as to what 
distinguishes the electric charge from the other superselection rules 
in quantum electrodynamics. 

An answer to this question can easily be given in physical terms: 
the electric charge is tied to massive particles which move with a 
velocity which is less than the velocity of light. It is therefore 
possible to determine the total electric charge of a state by measure
ments in proper subregions of Minkowski-space, such as the lightcone 
V+. This is plausible if one notices that all charged particles which 
are described by a state will eventually enter that cone, provided 
they are not annihilated in pairs. On the other hand it is not pos
sible to determine the asymptotic electric flux-distribution in V+, 
because photons coming from the remote past cannot be observed in 
that cone, but they will in general affect the flux-distribution. 

The fact that the electric charge of a state can be determined in 
a lightcone but not its sector indicates, that the positive energy 
representations of G( can be combined into classes of represen
tations whose restrictions to the subalgebras ctCV++ a) are 
equivalent for all a E ~* . Each such class should contain re
presentations of a fixed electric charge but quite arbitrary asymp
totic flux-distributions. We will verify this assertion in the 
following analysis. 

Given any positive energy representation (rt ,~)of (X we consider 
its center,}:: rr(OC)-nlf({)t)1

, and the center of its restriction to 

OI.(V,• a) where a. IR~ is fixed,},.= n:(OttV,• alfn rr(CHV.• al)'. 
The following lemma is then a consequence of the spectrum condition 
for the translations U (x) in the representation rr • 

Lemma 2.1: i) The elements of ~+are invariant under arbitrary 
translations, Utx) l. U<.x)-'1 = l for Z E. } ..... 

ii) }. c }. 
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Proof: Let n be any positive timelike vector. Then it is obvious 

that Utl:.·l'l) a-... UH:·n r.f c ,: for t E. IR I so that the von Neumann 
algebra V, UU:.~n) '1+ UU:'·nr is Abelian. This algebra is, by con
struction~ stable under the automorphisms induced by the translations 
U(t·n). On the other hand we know from the spectrum condition (1.6) 
that the generator oft --?U(t·n) is positive. It then follows from 
a theorem of Borchers [10] that the elements of this algebra are 
point-wise fixed under the action of U(t·n), hence UH·n)l. UU:·I"lf 1

::: 2. 
for Z ~ }+ . This proves the first part of the statement, because 
the linear span of all positive timelike vectors n is 0<~. The second 
part is then an immediate consequence. QED 

Since 

spect 

} ... <:. } , one can decompose the representation Tt with re-

te } + [11], 

s d,..tp n: ~ 
•P a. 

1( = t 2. 1 I 

and the representations T(' ~ belong (for f-lo -almost all ~ ) to the 
class of positive energy representations. Moreover, since 

~+= Tt'(CX.(V++ a.))-n rt{O..(V,..+ a.)) 1 does not depend on a, it follows 
that the restrictions of the representations rr~ to the algebras 

OUV,•al, aeiR' are factorial. It is therefore sufficient 
to concentrate in the following on such representations. 

Now given any two such representations, it is clear that 

or disjoint representations 

they in

of the duce either quasi-equivalent 

algebras ot(V;• a). a. IR.,. . We shall see that in the present 
case one can replace in this general alternative the notion of 
quasi-equivalence by unitary equivalence. At this point it is 
essential that the model describes massless particles. 

This fact should imply that one can define asymptotic 

electromagnetic fields as LSZ-type of limits of local observables 
in the representations ( rr:, ~) of interest. If there is any reason
able way of constructing the outgoing field Fout, for example, it 
should generate a net (9- ~ 0"'"(0) o.I; von Neumann algebras on ~ 
which is covariant with respect to the action of the translations 
U(x) and which has in addition the following properties. 
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(These properties will subsequently be derived in the frame of the 

infrared minimal representations, cf. Thm. 4.1 below.) 

i) !!"' ,., (0) c lt (Clltv. +a))- if 0c.V.•a 

ii) ~ ·~· (0) c:. rr (Ottv •• b)) 1 
if & c:.V_+b 

c* 
iii) u 3"' ... ((9) = w-t has a cyclic vector in !f. 

6 
The first property follows from the physical meaning of F~~ 
and the second one amounts to Huygens' principle [12]. It is only 

the third property which requires some explanations. Since :y~t is 

generated by a free field, it is a realization of the algebra of 

canonical commutation relations, and it is therefore clear that 

:}:CJW.t- does not have any normal tracial state. Thus the von Neumann 

algebra 3=ou.t- is properly infinite, and since also i E; :f'o ... t-

it follows [11, Thm. 2.2.4]that there exist infinitely many iso-

t · v <r·~- · ~~ · h · · v• v • 1 me r~es ~ E:..., , l.EU.\1 w~t orthogonal ranges, ~.e. ~ J; O~j.: . 

Hence one must only choose some orthonormal basis(~· 1 · E n.l in ~ 
<>;;> • I. J I. U'~~ I.4A:. 

and the vector ~ = B 2.-'-·V~ 4>\. is then clearly cyclic for ~ 0 
• 

< 
After these preparations, we can now continue our analysis of those 

positive energy representations TC for which tt (Gc.LV,._+ d.)r is a 

factor. The following lemma, where we exploit the anticipated 

structural properties of .:f o..t , is the analogue of a result of 

Borchers [13]. 

Lemma 2.2: Let 

some b E. fR. If 
that V*V= 1 

E. rr(OltV.+al) 1
, E+ 0 be a projection. Then, for 

there exists an isometry V E rr ( {).( V +b) ) 1 
such • • and VV = E. 

Proof: Let b be such that (iJ_..+b) c:(V++c:l.)· Then it suf-

fices to establish the existence of a vector c;p e.~ such that q? 
is cyclic and E·~ is separating for the algebra rr(OlCV++b))~ 
Since in that case there exists another cyclic vector ~ E ~ for 

which (11. Thm. 2.7.9] 

(E~, B·E{?)= ({I,B {I) if B" ...-lOttV.•bl)-, 
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and it is then easy to verify that the isometry V defined by 

V · B \!! = B E q? for B" lf(OltV++bl)-

has the desired properties. 

For the construction of the vector q, we pick a region (9 such 

that its closure {; C (V,..+ a.) n {V_ +b) and a vector~ E.~ which 

is cyclic for ~o~t- . Now since the spectrum condition holds for 

U{x) and since ~tM..t- is stable under the automorphisms induced by 

U(x) there exists a representation of the translations Otx) E s::o~t
satisfying the spectrum condition and inducing the same automorphism 

on ~01o1t- as U {x) [1 o]. Hence the vector ~:. e-H.~ , where H 
denotes the positive generator of the time-translations t~U(t), 

is also cyclic for ;o~o~.t- . Moreover, ~ is an analytic vector 

for H, therefore it follows from the Reeh-Schlieder theorem [14) 
that 4? is cyclic for each subalgebra U Ubc') ~oa.o.ttbl Utll'l-1 c W ... e 
if Jr is an open region of JR. tt. li'E J(' 

Now according to the properties of the net 6 _.,. g:ou.t((!}) one 

has Ulxl:J''o!lblU(<)"1 c 1t(OltV.+b))- for sufficiently large 

timelike x, hence <P is cyclic for Tt (OtLV++b))-. On the other 

hand, if B· E~= 0 for some .BE. 1t(Ol£.V+t-b))-, one gets for a 

whole neighbourhood Jf of the origin in fl~ 

B · E · ( U Utx) l""'*'tc,) Utxl-1 
· <J>] = 0 

1 
J<Jf 

because with our choice of 0 it follows that 

Ut<l :t'"t(blUltl"' c 1t(OUV.•a.)r" lt(OHV.+bl) 1 
if xis small. 

Thus B•E = 0, and since Tt(0ttV.p+-c1.))- is a factor, B = 0. Conse

quently E ·<P is a separating vector for Tt ( G((. V++ b))-;. and this 

completes the proof of the statement. QED 

~he already mentioned, sharpened alternative holding for positive 

energy representations is now an immediate consequence of this 

lemma. (See the Appendix of (2] for a similar argument.) 
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Proposition 2.3: Let 1( 1 , tr 2 be positive energy representations of 

0(. whose restrictions to ~(V++ a) are factorial. Then 

either 1t, ~t'll(V.•b)" 1t,h~.tV.+b) for bE. IR.~ 

or Tt1 ~ OttV.•bl ! lt~~ CltiJ.•b)for b~ R~ 
where the symbol b denotes disjointness. 

1t2 Proof: We must only show that the non-disjointness of Tt 
1 

and 

on O((V+,. a) implies the equivalence of these representations 

Ol(Vt+ b) for all bf: Ill* Now any subrepresentation lt~ of 

Tt ~ OttV +a.) is of the form 

on 

• • 
for A 0 Ot£V.•a.) Tt/ tA). 11:, (A) · E 

where 1: 0 tTl Otl V+ +a.)) 1 
1 

lemma it then follows that 

is a projection. From the previous 

lt' ~ and Tt 1 are unitarily equivalent 

on Ol('/++b) for some b. A similar statement holds for n
2

, hence 

if TC'1 ~Ott V+ • a.) and Ttl. f' Ot(V++ c1.) have equivalent subrepresen

tations, then 1r1 ~ 0'(('/++b) ~ tr1 ~ ()t(V++b). This result extends to 

arbitrary b because the representations 1t 1 and lt 
2 

are invariant 

with respect to translations. QED 

We can divide now the positive energy representations into charge

classes according to the following 

Definition: Let lt be a positive energy representation which is 

factorial on C;K. { V+) . The charge-class [lt'] of 1t consists of the 

set of positive energy representations lt
1 

for which 

lt, ~ Ottv. l "' lt ~ Ot( v.). (2. 2) 

(we conjecture that the representations 1t 1 are then equivalent to Tt. 

also on the algebra (X(V .. ). If this should not be the case, one 

must distinguish in the following analysis between the charge-classes 

[1t] and [1t] , respectively.) v. v_ 
It follows fror.1. the above proposition that the set of representations 

in a charge class (1t] is stable under taking direct sums and subre

presentations. 

- 11 -

We will see that the charge-classes are a useful tool for the de

scription of the localization properties of charged states. But be

fore we can enter into that discussion, we must consider the question 

of hOw the charge-classes differ from each other. According to the 

above heuristic remarks it is plausible that representations of 

different charges belong to different charge-classes. The converse 

is, however, not true: we will indicate below that there exists a 

variety of such classes describing representations of a given electric 

charge which differ by some background radiation field. 

Let us consider some irreducible positive energy representation . . oot 
(lt ,~) of OC and study the algebras s:"'" and ~ of the asymptotic 

electromagnetic field on ~- We call the expectations of elements 

of :Yi~ respectively j'~ in a state the (incoming respectively out

going) radiation fields of that state. Now because of the presence 

of charged particles there will be in general substantial differences 

between the radiation fields of different states which may cause the 

corresponding subrepresentations of the asymptotic algebras ~~ re

spectively ~out to be disjoint. But since 1't is irreducible the 

radiation fields of the states in ~ can be transformed into each 

other by the action of local observables. Thus we may say that the 

differences between these fields are of a dynamical origin. 

Let us compare next the radiation fields appearing in the charge 

class of n : using Huygens' principle and Lemma 2.1 one can show 

that the algebra ~o~*tV .. )- is a factor, and assuming that the 

algebras ~oY.t(V .. ) .. and ~i"'(V .. )- are isomorphic (which is clearly 

true if there exists a scattering matrix) it follows that ::Y'."lV_)
is a factor too. Therefore one can apply the arguments of Lemma 2.2 

and show that the states in ~ induce equivalent representations of 

the algebra ~ih lV .. )-. Since 1i"tV_Y·c:: 'Tt(OttV_))- this result can 

then be extended to all states belonging to the charge-class of Tt . 

Thus the various representations of the incoming electromagnetic field 

appearing in the charge-classes of Tt cannot be discriminated by 

measurements in V_. (An analogous statement holds for the outgoing 

electromagnetic field.) 
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It is straightforward now to exhibit representations of the same 

electric charge as n but belonging to different charge-classes: 

if (V is a vector-state with finite energy in the representation n 

one can add to it {by means of creation operators) any number of 

incoming low-energy photons such that the resulting states tv~ 

have about the same energy as CO . Hence each limit point ~ 1 of 

these states should induce a positive energy representation of ~ 

[15] which, by construction, has the same electric charge as Tt . 

Now there exist sequences of states for which2 ) 

for each 

a factor 

t•m ll(w~- w) ~ :Y'" (V_+ a.) II• 2. ., 

a ~ 8{~ , and taking into account that 

and that the free electromagnetic field 

(2. 3) 

5''"tv )- · - LS 

commutes with it-

self at timelike distances, it follows from this reLation that no 

limit point w 1 of the sequence w.,.. is a normal state of a:i~o~{V_)~ 

Hence the states W and w' do not belong to the same charge-class 

although they do have the same electric charge. 

In view of the above remarks it is clear that the states W and 

~~ differ by radiation fields which cannot be transformed into each 

other by the action of local observables. In order to stress this 

point we say that these states have different background radiation 

fields. Thus the charge-classes are not only labeled by the electric 

charge but also by such background fields. 

2 ) This statement can easily be verified because it refers only 

to the free electromagnetic field. 
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3. States of interest 

Up to this point we have considered in our analysis the whole set of 

physical states in quantum electrodynamics. Now we want to restrict 

our attention to the subset of states which do not have any back

ground radiation field. The charge-classes generated by this re

stricted set of states are expected to be uniquely characterized 

by their electric charge, and we will incorporate this idea in the 

subsequent selection criterion. Moreover, since the vacuum does not 

have a background field, we can take it as a reference state, and we 

will identify all other states of interest by their good localization 

properties with respect to the vacuum. The formal conditions characte

rizing these states are the following ones. 

Criterion: Let w be a state inducing a representation {w-,3e) of Ot. 
4) is called an infrared minimal state (and tt an infrared minimal 

representation) if the following conditions are satisfied: 

i) Tt: is a positive energy representation. 

ii) lto a A E (Tt] for all Lorentz transformations A' 

iii) for each open, pointed spacelike cone 3 ).fc: IR."' there exists a 

representation l(/ E. [lt] such that 

n:.f ~ c5tt.f')" rr, ~ Cittf') (3 • 1) 

where rr 
0 

is the vacuum representation. 

It is obvious that the vacuum is an infrared minimal representation 

in the s-ense of this selection criterion, and we will now provide some 

heuristic a.r:guments to the effect that the criterion admits also states 

carrying an electric charge. The first condition needs no explanations, 

so let us consider the second one. This condition says that the states 

in the representations lt o 0( A and lt cannot be distinguished by a 

classical observable which can be determined in a lightcone. Since the 

3 ) It suffices to consider cones .:f of the form :f::. a+ U A·(!) where 
>.>O 

a f=; lR. *" and (!;I is an open double cone whose closure lies in the 

spacelike complement of the origin in Gt*. 
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electric charge is Lorentz invariant, this requirement should not 

exclude charged states, but we expect that it rules out states with a 

background radiation field. For the infrared minimal representations it 

is noteworthy that for each tt
1 

C ("'t] one has Tt
1 

o Q A E. ['rt o c(J\ 1 = [ lt] 
because Lorentz transformations map lightcones onto lightc9nes. This 

stability of the charge-classes under Lorentz transformations seems 

then to be the appropriate substitute for the in general lacking 

invariance of the individual representations [4]. 

The third condition of the criterion expresses the assumption that 

one can prescribe the shape of the asymptotic electromagnetic field 

of the infrared minimal states of a given charge. Of course, one must 

choose suitable data in order not to come into conflict with the first 

two conditions of the criterion. But taking classical electrodynamics 

as a guide, (which is legitimate in this context because all what 

matters is the behaviour of the field at infinity, which is essentially 

classical) it seems to be plausible that one can find states of a 

given electric charge which have finite energy and whose electro

magnetic field at time t is confined (in the sense of Cauchy-data) 

to some cone fc ~3 without giving rise to a background radiation 

field 4 ). Beca:se of locality, it would then not be possible to 

distinguish such a state from states in the vacuum representation by 

measurements in the causal complement JP' of the region (t,f) and this - ) 
is the content of relation (3.1). 

In a field-theoretic setting it should be possible to construct the 

infrared minimal states with the help of Coulomb-type field operators 

~C , which are formally related to the Fermi-field ~ and the 

vector-potential A~ in the Gupta-Bleuler formalism according to 

~< txl • hxl· exp ( io J d'j c1'tx-~l A,.t~\). (3. 2) 

The functions C/"' have to satisfy the equation 

4 ) In classical electrodynamics such background fields are connected 

with Cauchy-data which decrease more slowly than the Coulomb field, 

i.e. than I !1- 2 . 
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~~ c,. tx\ • 8 tx\ (3. 3) 

because ~e must be invariant under local gauge-transformations. 

Moreover, in order not to give rise to any background field, C~ should 

decrease in all directions of JR* at least like l.>q-3 ; this is the 

optimal behaviour which is compatible with this equation. The set 

of these functions C~ is stable under Lorentz transformations, and 

for any open spacelike cone ~ containing the origin of Minkowski 

space there exist functions Cf'- having support in ! . Therefore one 

may expect that the appropriately regularized field-operators ~c 
generate charged states from the vacuum which belong to the set of 

infrared minimal states. Yet since it is not quite clear whether 

one can give a rigorous meaning to the fields t}JC and since the 

concept of a charge class does not fit very well into a field

theoretic setting, we will use here the more intrinsic characteri

zation of infrared minimal states given in the criterion. 

We remark, as an aside, that our selection criterion leads also to 

a complete characterization of the physical state space in massive 

particle theories. It is evident that in such a theory the energy 

of a state can be determined in each lightcone of Minkowski space, 

similar to the electric charge in quantum electrodynamics. Therefore, 

the time translation operators 

rr (OH.V+) )-, and consequently 

formal a;gument see U 6].) This 

U(t) are elements of the algebras 

Tt(Ol(Vtll-; TT ((X)-. (For a 

implies that the notions of charge 

class and sector are synonymus in massive theories. Thus the second 

part of the cri·terion amounts to the condition that each repre

sentation rt of interest has to be invariant under Lorentz-trans

formations, and the third part means that ~ must be equivalent to 

the vacuum representation on the algebras O{(f') for each spacelike 

cone J' . It has recently been shown (without making any assumptions 

on charge-carrying fields) that all particle states in a massive, 

Poincare covariant theory fulfil these conditions [17]. 

We believe that the infrared minimal states constitute the smallest 

set of states which is stable under Poincare transformations and 

which contains charged states with optimal localization properties 
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relative to the vacuum. Therefore we propose to consider this set 

as the physical state-space of quantum electrodynamics. But we 

recall that this choice of states is merely a convention, which 

we adopt here because on the one hand these states -exhibit the 

basic features of quantum electrodynamics, and on the other hand 

they are a convenient starting point for a general structural analysis. 

In conclusion let us mention two other possibilities of choosing a 

physical state space which have been discussed in the literature. 

The first one amounts to picking from each charge class a particular 

representation and then taking their direct sum. This is what one 

does in a field-theoretic setting if one generates the physical 

states from the vacuum by means of a fixed Coulomb-field ~c . If 

the localization properties of the field ~c (i.e. the functions C~) 

are held fixed, it is, however, difficult to exploit locality in the 

analysis of the physical state space. Therefore we consider here 

states with arbitrary localization properties. This forces us to 

deal with many inequivalent representations, but if these represen

tations belong to a fixed charge-class, we know how they are re

lated, and this is an important additional piece of information 

embodied in our setting. 

The second alternative consists in selecting states which have a 

specific background field. That such a choice might have its virtues 

has been pointed out by Kraus et al. [18]. The basic idea in this 

approach is to add to the vacuum state a background field which is 

sufficiently strong such that the radiation fields which are pro

duced in collisions can be regarded as small perturbations of it. All 

states in such an infra-vacuum representation rr of G( are expected 
• 

to induce quasi-equivalent representations of the algebra generated 

by the incoming or outgoing electromagnetic field, respectively. So, 

in a sense, the asymptotic radiation fields are, in these represen

tations, decoupled from the momenta of the charged particles, and 

one may hope that this simplifies their description in collision 

processes [18]. 

- 17 -

Charged states could be obtained in this setting by applying the 

Coulomb-field operators ~c to the vector representing the infra

vacuum. We conjecture that the corresponding representations tt 
are equivalent to the infra-vacuum representation 'i" on the algebras 

• 
OtL-:1') for arbitrary spacelike cones :f 

'it t (')( (:f') " 'ii' J (')( ( :f')' • 
(3. 4) 

because the background field should make it impossible to discrimi

nate the asymptotic flux-distributions of these representations. 

(It is only the total electric flux on which the background field 

has no effects.) Hence with regard to the localization properties 

of the representations rr one would be in a situation similar 

to that discussed in [17] for massive theories, so from this point 

of view this scheme also looks attractive. 

Unfortunately, one does not yet have sufficient control on the 

properties of the infra-vacuum representations if to take them as 
• 

a starting point for an analysis of the infrared probiems in quantum 

electrodynamics. Moreover, it is to be expected that a discussion 

of the asymptotics of the charged particles (the infra-particle 

problem [19]) will be more difficult in these representations than 

in the infrared minimal representations, because one has to take into 

account the response of the charged particles to the background 

field. In view of these difficulties we have chosen to restrict 

our attention to the infrared minimal state~ because they describe 

the most transparent idealizations of actual experimental situations. 
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4. Scattering observables 

In this section we want to show how one can extract from the de

fining properties of the infrared minimal states information about 

the structure of the observables at asymptotic times. This_ question 

is intimately related to the infrared-problem, and we want to 

clarify here some of the basic facts concerning this matter. 

Our main result in this context is that asymptotic electromagnetic 

fields F"' and r·~ can be defined as LSZ-type of limits of 

suitable local observables in all infrared minimal representations. 

For the proof of this assertion it is essential that there exist 

representations in a given charge-class which are localized in 

spacelike cones. This fact enables us to extend the results of [12] 

(where the existence of asymptotic electromagnetic fields has been 

established for the vacuum representation n. 1 to all representations 

of interest. 

Let F= F* 4i 0(. be any local observable such that 1t
0
(F) connects 

the vacuum with a single photon state. In addition we assume that 

the function )( _... «)((F)!. F(X) is smooth in the norm-topology 

on Ol and that its Fourier-transform is sufficiently regular at the 

origin in a sense made precise in (12] 51 . Then we define for each t. € R 

Fttfl: -1t·Jdw £('!!l'J. Flt,t·!!) (4. 1) 

where dw: dwt!!\ is the normalized, invariant measure on the unit 

sphere .S , f('h \ is a real, smooth function on cSI. and '() denotes .. - . 
differentiation with respec~ to the time-translations. The obser-

vables Ft(f) are designed to approximate the asymptotic electro

magnetic fields in the limit of large t. In order to improve the 

convergence of these sequences it is necessary to take suitable 

time-averages of F-l lf) 1 as for example {ttl> -1 ) 

S) Since the representations of interest are locally normal with 

respect to no these two conditions can be met by extending the 

local algebras, if necessary. 

'Fttfl= 
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t+ t.-1~1 

___j_ 
t .. 1~1 

J cl~' Ft, ( il . 
t 

(4 .2) 

It then follows from [12] that these sequences converge for t ...,... too 
(in the sense of strong resolvent convergence) in the vacuum repre

sentation to asymptotic fields which have all properties expected 

from a smoothed out, free maSsless field. Actually, this has only 

been demonstrated for the case f = ~ , but the argument in (12] 

is valid for arbitrary smooth functions f. Amongst the properties 

of the asymptotic fields which are of relevance here we mention that 

4-t• ... lt,(i't<ti).Q.. el". £C~J1t.lFl Q 
t-+t• \. 

(4. 3) 

- . ~«l where ~ is the proJection onto the single-photon space ~ 
0 

and 

~ is the momentum operator in the vacuum representation. Further

more, 

s- 2•.., 1t ( < ~(fl 4:.... . e. _ ... 
.r:; tE'l - 'Ftt£\- t'f:~ t£'1) 

.. ·e. ·~·i (4.4) 

where> is a phase-factor. Hence the exponentials of the asymptotic 

fields have the familiar Weyl-commutation relations. 

In order to establish the existence of these limits for all infrared 

minimal representations k we proceed as follows: first we pick 

some pOinted, spacelike cone ~ with apex at the origin of Minkowski 

space and a representation tr:f E" [tt J which is equivalent to l(
0 

on d( ( ~/). Then we exploit the simple geometrical fact that there 

exists some open set L. C. S2. such that {!) .. + (t, t, ~) C :f I for each 
bounded region 6cV and sufficiently large positive t. Hence if 

1 -
we choose in the defining relation (4.1) any function f with sup-

port in L., and an observable FE 0,{(9
1

) it follows that 

Ft<£) ,-Cllf') for large t. Because of the equivalence of Tt:f 
and 1'C

0 
on Cl( f') it is then clear that. the strong limit 



s- li ... 
~ ... -
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lff( ed~,<fl) I 4. 5 I 

exists. Moreover, since the representation ~~is invariant under 

translations this result extends to observables F which are loca

lized in arbitrary bounded regions b c: R"' . By the same token one 

finds that for functions f,f' with support in I: the commutation 

relations (4.4) hold in the representation T(/with the same ' 

as in the vacuum representation. Hence we have established the 

existence of outgoing electromagnetic fields in the representation 

Tt :f , w~ose momentum transfer is 1 however 1 restricted to the set 

{p:-=-- E I: } , as can be seen from relation (4.3). 

_ 1e1 -
Now we exploit relation (2.2) relating the representations within 

a c{!s.rge-class 1 if F " Olt~) we have by construction 

e; Ftlfl 4i t3ttc!l+ V+) for positive t, and since Tt:r 4i ( Tt J 
it follows from relations (2.2) and (4.5) that the limit 

~- li.., t- wte'Ftlfl) 14.61 

exists if supp f e- I: This argument holds for eaCh choice of 

the cone~ , and i7 is then clear that the limit (4.6) exists 

for smooth functions f which have support in sufficiently small 

regions generating some covering of s 2
. 

After having established the existence of asymptotic fields FM(f) 

for these special functions we will now extend this result to 

f = ~; the corresponding fields F••t1): F•"* can then be used 

to generate the local algebras of the outgoing electromagnetic 

field. Since it is not clear to us whether the limit (4.6) exists 

if f = 1, we define FM by exploiting the linearity of F•ut(f) 

in f and the c-number commutation relations 

order to illustrate this idea let us assume .. 
exists. Then, if L. f. s1 is a partition of 

• • 
of s

2
, we could write 

of free fields. In 

for a moment that Fo..A: 

unity for a covering 

. F""~ ' .,, e. c ? . 
cF 0 ""t(f.) 

e 
,F•"~ti,) 

e. 14.71 
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where t' is some phase-factor. Now if the regions in the covering 

of s 2 
are sufficiently small then each operator on the right hand 

side of (4.7) exists, and we can interpret this relation as the 

"F-
definition of e.." . we must only verify that this definition 

is consistent, i.e. that it does not depend on the choice of the 

partition of unity. 

~F·~ 
According to these remarks we define ~ as the limit 

s - t.:.n n l ~· · 
t ...... 

where 
I 

~ is given by 

r" .tu.... 
t-+-

J:'ttf,) 
e, 

1<.>.( e. i.F*tf,) 

Co>o ( e.< F~ tt.) 

e.'F*tf~)) 
14.81 

e•"Fttf.) )I 
/f'ttf•') 

(4. 91 

and ~. is the vacuum state. Using the commutation relations (4.4) 

for functions f,f' which both have 

region £ c St. as well as the fact 

support in a suffiCiently small 

that because of locality 

L e. •"F .. m 'Ft <f'l 
e 1· 0 

if t is large and f,f' have disjoint supports, it is 

the limit {4.8) indeed does not depend on the chosen 

I 4 • 1 o I 

easy to pr~~that 

partition ~ft•.i. 

We now define a net 6-+ a:'Ml") 6 ) of von-Neumann algebras in 

1f{0C )-by ~etting for each double cone b1 and sufficiently re

gular observables F 
. F··~ 

:f' .. t l 04 ) " t e • · ' F" F* £ 
l" all (D.) l . ( 4. 11 I 

The algebras for arbitrary regions ~ are then obtained by addivity . 

6 I ..,.._t 
An unambiguous, but more clumsy notation would be I.T 1t l(g). 



1 
I 
I 
I 
I 
i 
i ,. 
" § 

: 
~ 

~ 

~ 
~ 

~ 

i 
"" 
~ 

Applying the 

that the net 

- 22 -

arguments in [12] it is straightforward to 
b-- s:-~~(0) is local and covariant with 

verify 

respect 
to the action of the translations U(x). Moreover, if 
we get by construction 

(?cV.•d. 

~""~t~~>l c: rr(ouv •• al)- (4. 12) 

and if b c v_ +b it follows from locality' that 

S:""t l0) c: tr (OUV.+bl)'. I 4 .131 

which is Huygens' principle. (These are the structural relations 
anticipated in Sect. 2.) Hence we get 

Theorem 4.1: Let ( 1[' ,~) be an infrared minimal refresentation. 
Then there exists a local, covariant net b ~ ':f'OU {(!)) on 3G which 
is generated by the outgoing (free) electromagnetic field and 
satsfies 

i) 

ii) 

:}:"··~t0) c ,.(ouv .... a))

<,¥••t(0) c 1t (Ol(V.•bl) 1 

if 

if 

0 c v .... a. 

bc:V_+b 
(A similar statement holds for the incoming field.) 

Let us now turn to a discussion of the asymptotic observables 
which are sensitive to the massive particles. According to the 
general ideas of Araki and Haag [20], it should be possible to 
obtain these observables as time-limits of suitable averages of 
almost local observables C E dt , such as 

t> · Jdlv h(~) · Clt,t.'!), (4. 14) 

where h is a function which has support in the region 1'£.) <. -f 
1 

and 
C annihilates the vacuum state, i.e. W

0
{C* C):: 0. Unfortunately, we 

are not aware of a rigorous argument establishing the existence of 
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any reasonable limit of these sequences in quantum electrodynamics, 
and it is conceivable that one has to proceed in a rather indirect 
way in order to gain control on the limits (as in the case of the 
electromagnetic field). 

One may, however, expect from the asymptotic localization proper-
ties of the observables (4.14), as well as from the fact that out
going massive particles will eventually enter each cone V .. • cl 

1 
that for any reasonable definition of the algebra m olol.t of all 
massive observables at positive asymptotic times in a representation Tt 
one has 

m•..t c:: (\ rr ( Ol(Vt• a))
• (4. 15) 

This relation ~nd Huygens' principle imply that mow:l- c a:-ow.t I 
where ~owt: (} ~QI.It-(fO) . Hence we obtain for the algebra 
o.ou.t ~ !t._t J' an,""'tof all outgoing observables the inclusion 

Clt ... ~ c: s: ... t- v :r ... t ~ 
(4. 16) 

It follows from this relation that the algebra ~out is reducible 
if l'ou.l-.- has a center (which is to be expected if 1t is an infrared-
minimal 

ot•..t 
representation). In that case the asymptotic observables 
do not yield 

states, and the same 

a complete characterization of the physical 
is true for Olih . Hence a scattering matrix 

cannot uniquely be fixed in quantum electrodynamics by the condition 
that it induces a mapping of the outgoing observables onto their 
respective incoming counterparts. These difficulties are related 
to the -well known fact that there does not exist an asymptotic 
position operator for the charged p~rticles in quantum electro
dynamics. 

There should, however, exist for each 4. 4i Rlf- sufficiently many 
observables in {).(V++A) in order to completely determine the properties 
of the outgoing massive particles in the states of interest. More
over, it seems to be a reasonable assumption that all observables 
in an irreducible infrared-minimal representation ~ , which are 
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commensurable with rt(OtlV++.a.\), are contained in ~out(V ... +a.)- 7 l. 

This property, which may be regarded as a weak form of asymptotic complete

ness, guarantees that the algebra Tt. (Ott V+ +a.))- contains the full 

information about the outgoing massive particles. Far later reference 

we give the following 

Definition: Let Tt. be an infrared minimal representation. Tt has 

the property of weak asymptotic completeness if 

TC lOt('/+))'= :J:•wk(V_)- and Tt (OUv_\) 1
: '!'i"(V+l~ 

In order to substantiate this concept we will now show that weak 

asymptotic completeness holds for the vacuum representation (r0 ,~0). 
In the proof we will make the assumption that in quantum electrodyna

mics there exist only massive charged particles and that in collisions 

of low-energy photons (with total energy below the pair creation 

threshold) no infrared-clouds of photons are produced. More precisely: 

all vectors in JG0 with total mass below some sufficiently small thre

shold mass f>O should belong to the Fock-spaces of incoming and 

outgoing photons respectively, i.e. 

Er ~. c:. [ '!''" .Q.] n [:roo~ .Q.]' (4' 17) 

where E'l"' denotes the projection onto the vectors in 'Jf
0 

with total 

mass smaller than J4' . From this assumption we get 

Proposition 4. 2: 1t
0 

has the property of weak asymptotic complete

ness. 

Proof: It has been shown in (12] that the subrepresentation of the 

outgoing electromagnetic field on (:;o~oo.t .Q.)is equivalent to the

Pock-representation. Therefore we can apply the arguments in [21] 
establishing the timelike duality relation 

( WowklV+). E"~t)' = g:-•u~lV_)-- E·~~ 

7 ) The inclusion 3='o .... t-(V_+ a) c 1t(OttV++ a))1 
always holds because 

of Huygens principle. 
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where E' 0"'t E ~o"'t 1 
is the projection onto [.!fo~.at Q] . Now if 

X e Tt(Ol(V~))'c :p•ttv.>' 
and consequently there exists 

E""~XE..,. ~ X""~- Eou~. 

then E••t·X·E""t E (:r••~tV.>·E••t)' 
some xo\lt E ~ovt (. V _ )- such that 

XX~ In order to see that : we proceed as follows: according to 

relation (4.17) the vector 

(J- x••t) .Q. ~(X- E••t_x••• ).Q. = (~- E•"')·X .Q. 

has a minimal mass which is larger than ,... 
1 

and the same holds for 

(Xit- xouttt).Q_.. Therefore the Fourier transform of 

t -+ Kl~\ =(!d., [n:.(ottlA l), (X- X""'l) .Q.) 

are the time-translations) vanishes in (- f4, 1'4-). If in 

A E O:.(V+) then K<tl vanishes for t > 0 which implies 

that its Fourier-transform i( (W) is the boundary value of an -
(where act 
addition 

analytic function, hence K (W) vanishes everywhere. It then follows 

that (X- xout)~ ~ 0 I and since the vacuum is separating for 

1( {0(.(. V \) 1 we arrive at X= X out: • This shows that 
0 ,._ I t 

lt
0

{0l(V+)) • 3" 0
"' lV_)-, and by an analogous argument we get 

1t0 (0ltV_\) 1 = :f';• (V+ )- QED, 

Because of this result we expect that weak asymptotic completeness 

holds for all irreducible infrared-minimal representations in 

quantum electrodynamics, and we will later make use of this hypo

thesis. We conclude the present section with some remarks on the 

infra-particle problem in quantum electrodynamics [19]. A detailed 

analysis of this subject can be found in [22] and we want to refine 

some of these results in the present setting. 

First we recall that in each factorial positive energy representation 

n of a local net there·exist unique translation operators U{x) 

whose generators have joint spectrum with a Lorentz invariant lower 

boundary (7]. Moreover, if Tt is an infrared minimal representation 

one has Utx) !fO'olt: U()(')-1 : ,g:o.,.* 1 and consequently there exist 

translation operators uo ... t::(.)('\ • :r·ut- inducing the same 
~ 
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action on ~0~ as U(x) L1o]. Using the fact that ~out is 
generated by a free massless field it is then easy to prove 

Proposition 4.3: There exists a unique decomposition 

oot 
Ut~) ~ u3' tlC) 

ol)~ 
Umtn 

Uout .,..out-where }(~ a:' (X') e. 'I' and 

nuous, unitary representations 

U .. ~ 

x-u;txl~; ~··t' 
of the translations. The 

are coriti

spectrum 
of the generators of 3= (.x) is equal to V + 
of :;-out; , and the spectra of U;;Ztx) and 

Lorentz invariant lower boundary. 

in each subrepresentation 

Utx) have the same 

(For an explicit construction of U •• ~ :J' (X) see (22]. I 

Let us focus now on representations ( Tt 
1 
~) where states consisting 

of a single charged particle and any number of photons appear. 
Thinking of quantum electrodynamics it is reasonable to assume that 
the states in~ which are attached to an arbitrarily small neighbour
hood of the lower boundary Hm:. fp: p'l.=m\ p

0
>0} of spU contain this 

particle and that by adding sufficiently many photons to these states 
one obtains all states in ~ with masses below some threshold mass 
M > m. This means that 

EM 'dG c:: [~in Etn.S 'dG 1 n [ ~·u~ EmtS ~ 1 14. 18 I 

for any S > 0 , where E .:l denotes the 

states with total mass smaller than l 
consequence that the lower boundary of 

the rest of the spectrum . 

projection in ~ onto the 

. It is then an immediate 

sp u:- is isolated from 

.. ~ 
Proposition 4.4: Let U11't(X) be the translations defined in the 
preceding proposition. Then 

oot 
H c .sr u'IR 

'" 
(This property Uoul 

of 'll(.lX) 

c H'"U ir' P
1

2:. M2
, p0 >0} 

has been suggested in (22].) 
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These results show that energy and momentum of the outgoing photons 
and charged particles, respectively, are commensurable observables. 
Moreover, the charged particles have a definite mass m. It is also 
note'worthy that 

.. ~ 
U'ffi tX) E n n:(OtlV, • a)f 

a (4. 191 

if weak asymptotic completeness holds for K , hence the charged 
particles have all properties expected on physical grounds. 

The famous infra-particle problem in quantum electrodynamics consists 
now in the fact that every state on ~ describing particles which 
carry an electric charge also contains photons. This implies that 
these particles do not correspond to a discrete eigenvalue of the 
full mass-operator P 2 , they are infra-particles [19]. The fact that 
there is no way of removing all photons from these states can be 
expressed using the concept of charge-classes: there exists no re
presentation in the charge-class of Tt where the mass-operator has 
a discrete eigenvalue. This suggests the following general characte
rization of representations including infra-particles. 

Criterion: An infrared-minimal representation T[ includes an infra
particle of mass m if 

'l..L 
out 

i) sp m (respectively "' sp 'U. 'ltl I contains the hyperboloid Hm 
with discrete weight. 

ii) the transla·tions U-t have continuous spectrum about Hm in each 
representation 'Tt<f E. ( lt 1 , 

That electrically.charged particles appear as infra-particles in a 
field-theoretic setting can be understood from the following heuristic 
argument: each charged particle with mass m and momentum about f 
produces an electric flux-distribution, which at sufficiently large 
distances from the particle (such that one can apply classical 
physics) has the form 

<pf (!!) 
1 = e·l'n 

( p' + .,.,.,, ) ~/:z. 

((p,., )'~ .., ... )112 --
(4. 20) 
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where~ denotes the direction in which one looks. Thus charged 

single particle states with different momenta produce different 

asymptotic flux-distributions. On the other hand it follows from 

locality that all states in a factorial representation ~ of Ct 
have the same asymptotic flux-distribution ~K . Therefore each 

state describing a charged particle with momentum about ~ must 

(for almost all 9) also include some radiation field which adds to 

the asymptotic flux-distribution ~l of the bare particle to give 

the net flux-distribution f~ fixed by the representation. Since 

the radiation field carries some (though arbitrarily small) energy, 

it is clear that no such state can have a precise mass. 

From the same argument it follows also that if one changes the 

momentum of a charged particle by a local operation from e to i say, 

one inevitably produces also some radiation field wich induces the 

asymptotic flux-distribution Cf1 ('!!)- 'fp (!l) . This is exactly what 

one expects from classical electrodynamfcs. 

Finally we remark that one can determine the asymptotic momentum 

of a charged particle by measuring the electric flux emanating from 

it. One must only wait long enough, until all hard photons have 

separated from the particle such that its momentum stays essentially 

constant. Then the electric flux-distribution should have the form 

(4.20) in a large region about the particle (provided no background 

radiation field is present) , and from this one can read off the 

momentum of the particle. The fact that one can determine the 

asymptotic momentum of a charged particle far away from its actual 

localization region, indicates that this observable should be commen

surable with all other asymptotic observables which are sensitive to this 

particle. Hence the asymptotic momentum should be an element of the 

centre of 'ltl0 "':t (respectively 3f(.irt ) . This result is consistent with 

the conjecture made in [22) that in a situation w~ere all massive 

particles carry an electric charge, mo~ and nt"" should be 

Abelian algebras generated by the asymptotic particle momenta. 

We emphasize that in these qualitative arguments only Gauss' law, 

locality and the coherence of states within a sector have been used. 

This indicates that the above features of electrically charged 

particles are independent of the detailed dynamical structure of 

quantum electrodynamics, so that one may hope to establish them 

rigorously in the present general setting. 
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5. Radiation fields 

After this survey of the structure of the scattering observables 

in quantum electrodynamics, we are now in a position to determine 

the relation between the representations within a charge-class. we 

shall see that these representations describe states which differ 

only by some radiation field, so in particular they carry the same 

electric charge. This shows that the heuristic ideas which led us 

to the concept of charge-classes are consistent. 

Now let (n:,'ltl be any positiveenergyrepresentation. If (Tt
1

,'de-t) 

is an element of the charge-class of n there exists some isometry 

V from ~ onto~ such that 
1 

V·11:1 l A) ' 1t (A). V for A E et(V+-)' (5. 11 

and using the invariance of Tt and Tt-l under translat·ions we get 

II rr1 (A) It' II Tt (A lll for each A E 0(, . Thus we may consider tt
1 

as a representation of 1t <0{), and we can drop in the following 

the symbol Tt. . Then we proceed in analogy to [2] : first we 

replace ('Jt. .. ,'te.cl by some equivalent representation r acting on ~. 

't (A) " V lrlA) y- 1 
for A E (l(,. (5. 2) 

From relation (5.1) we get 

t lAl = A if A ,.. OttV+-), (5. 3) 

and the invariance of Jt-t under translations implies that 

t 0( X (A) : U,_l~l . t (A l . U,_t• y 1 (5. 4) 

where X ~ U rlJC) is some continuous unitary representation of 

the translations on ~ . Then we define a transported representation 

xr of et by 

1
0 lA) ~ rtxl- ~ · t (A l · rtx) tar A ' dt. (5 .5) 
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where rtxl = Ulxl·U(xf1 
, and U<xl denotes the 

plementing ft X . It is obvious that .the unitaries 
cocycle equation 

translation im

r(x) satisfy the 

rtx•:~l = rtKl· II(• ( rl1>) (5. 6) 

and that t-+ r(X) is strongly continuous. Moreover, it follows 
from relations (5.3) to (5.5) that •,..(A\: A if A£ Ot,(V +x} 

0 + > and consequently 

rtxl ~ tHV.)'o OClV.•,d'. (5. 7) 

So for each representation f with the properties (5.3) and (5.4) 
one can construct a cocycle f' satisfying (5.6) and (5.7). Conversely, 
given r it follows from (5.5) that one can reconstruct ~ by 

0 (A) = n- e~m rtxl. A· rtxl-i A £ ClL (5 .8) 

where x tends to the infinite past, i.e. X •lXI-+- (X;). 
0 -

Let us now assume that weak asymPtotic completeness holds for the 
representation lt . Then (Xt V+)1= ~ 0 '-'t lV_ )- , hence the cocycle r has values in the algebra u 3=out<.v +a.)- generated by the out-... -going free electromagnetic field. This means, in view of relation 
(5.8), that all states in the representation ~ 
the states in the representation Tt by changing 
radiation fields. We summarize these results in 

can be obtained from 

their outgoing 

the following 

Proposition 5.1: Let (~ ,~) be an infrared minimal representation 
for which weak asymptotic completeness holds. Then each strongly 
continuous, unitary cocycle r on~ for which 

i) rtx + ~) : rtK) · C(X ( rl)l) 

ii) X-+ u,.ll<)5 rtx). Ulx) fulfils the spectrum condition 

iii) rtx) E. ';foul(V.f if )( E V. 
induces a representation dE [1t] given by 

ivl f(A): n- t;.., roc1· A· rt~1-~ A e. 0C 
)( 
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for x tending to the infinite past. In fact, each representation 
lt'

1 
e [tt] is equivalent to a representation 6" obtained this way. 

We remark that this result can be used to 
of the superselection 

cohomology-classes of 

sectors belonging to 

the cocycles r S) 

give a characterization 

[~] in terms of the 

In conclusion we want to demonstrate that there exist uncountably 
many disjoint irreducible physical repFesentations carrying a given 
electric charge. This substantiates the statements made in the 
Introduction. To simplify the discussion we will restrict our 
attention to representations of zero electric charge which are 
induced by the well-known asymptotic coherent photon states. (So 
these states can be defined on the algebra of the interacting 
electromagnetic field.) For the construction of these representa
tions we will use the formalism developed above and exhibit suitable 
cocycles r: in the vacuum representation ( ~~~~0 ). 

F~ 'ld Let be any outgoing free electromagnetic f~e -operator which 
is affiliated to ~o"'tl V_ )- . Then for each E > 0 

,. - £i. or ( F""~) 
-t E ~·u~ (V. )" 

00 

ddt 
w~ = e, 0 (5. 9) 

is a unitary operator, and one can define the cocycle 

r tMl= w .. <( <w-~) 
£ l X E 

E <f•ultV_)- u r•ul(V_u)- (5.10) 

which is clearly unitary and strongly continuous in x. rt'is easy 
to verify that the corresponding representation ~t is given by 

1'E(A)= W.A·\l-~ E E A Ed, ( 5. 11 I for 

8 ) r and f" I belong to the same cohomology-class if 
r'tx): y. rtx). r( (V-~) for some unitary v E 'f""t(V_)-. 

)( 
The corresponding representations Q and r' are then 
equivalent. 
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hence it is unitarily equivalent to the vacuum representation. Yet 

if one proceeds to the limit £ _. 0 and chooses an operator Fou~ 

such that 11(H-'t·1.) ... i.fowt"\\tends to infinity (which implies that 

(Q, W, ~) tends to zero), then the resulting representation '(0 

turns out to be disjoint from the vacuum representation. 

For the proof establishing the existence of ~0 the following 

remarks may suffice: since Fout. is a free field one can show by 

an explicit calculation that for each XE.iR* the limit s-lim r:lx)Q 
t_..O c;. 

exists, the convergence being uniform on bounded regions of (R! 

Taking also into account that ~ lX)·A .Q.: A· ~(.)() Q for 

A. E (9{. l V.,) n Of.lV+ + )() (because of Huygens' principle) as well 

as II rf lX) II : 1 it then follows that 

s- ti... rt tx l : r.tx) 
f~O 

exists. Hence ro is a continuous, unitary cocycle, and since 

r.tx) E &•u~lV_)- if )( E y_ one can define 

r.tA)· 'tl- l<'WI r.txl ·A. r txl-i 
X o '"' at 

(5. 121 

( 5. 13 I 

for X tending to the infinite past, which is the desired represen

tation. 

It follows from the cocycle equation for ro and the defining 

relation (5.13) that the translations in the representation Gio 
are given by UolX): rolX)· Utx) where U£.x) are the translations 

in the vacuum representation. Since ro is continuous it is also 

clear that X __.p.U tx) is continuous, and using the fact that the 

spectrum conditio~ holds for U!x) and that 

Utx)=s-ti.., • € -+o 
retX)· Ulx) 

one finds that .sp1.J,
0 

C:: \j+. 

= s- e.·.., Wf Ulx) W;1 , 
· E _,.0 

(5. 14 I 
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In order to verify that ¥- is irreducible one proceeds as follows: 
(J 0 out: 

first one extends to by continuity to the algebra ~ 

generated by the outgoing electromagnetic field. Using the c-number 

commutation relations for these fields it then follows that for 

each field Flout. which is affiliated to :J:"oulolb) 

where 

r· 

•F'"ut) 
1 

LF'out 
r.( ~ : ~ . e 

e.... e 
l-+0 

jell ett. (Q. [ F 1 ""~ « (F""t)] .Q.) 
0 , ' -t 

(5. 15 I 

(5. 16 I 

is a phase-factor. Hence fo acts like a coherent state represen

tation on the outgoing electromagnetic fields, so in particular 

fo(~ouk:(.(!))): ~out((,) for each bounded region C, From this 

one gets r.u:x.l-:;, 3:'•ut-, anct since folOl<.V+l)= OlLV+) 
one arrives at 

QO ( Ol) I c: OllV+) 
1 

" a:·"\ v_) 
1
• (5. 171 

It then follmvs from the weak asymptotic completeness of the vacuum 

representation (Proposition 4.2) and the fact that ~(V+)- is a 

factor that fo is irreducible. 

Now if ~ would be equivalent to the vacuum representation there 

would exist a unitary operator Wa ~ :Fout(V_ )- such that 

..,. (A)= W A W -i · for A E 0(. . (This follows again from 
IJ 0 0 0 

weak asymptotic completeness and the fact that To(A )=A if 

A E. ~ ( V t) . ) As a consequence the vacuum state (.J
0 

and the 

coherent state (.J0 
11 'to would both induce the Pock-representation 

of the algebra ~o~t (12]. But using relation (5.15) and (5.16) one 

can exclude this possibility if \I(H-i.E·i.r~ Fout QJI tends to infinity 

for £. -+-0 [23], hence with such a choice of Fout the representation 

(o is disjoint from the vacuum representation. By a similar argument 

one can also show that two representations ijo and do' , say, are 
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disjoint if they are built from operators F"'M and F'ouk , 
respectively, for which ft(H- (t·i r 1. (F ... t- F'""tl.Q.II tencts to 
infinity if E-+ 0 . It is then clear that there exist uncountably 
many disjoint representations in the charge-class of the vacuum 
representation. 
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6. Conclusions 

Using the concept of charge-classes we have characterized a set of 
states which seems to be appropriate for a general discussion of 
the structure of quantum electrodynamics. In contrast to the con
ventional field-theoretic settings, where one selects in some 
arbitrary way a separable space of states, we have taken into 
account an uncountable number of superselection sectors. As was 
demonstrated, this enlargement of the state-space has conceptual 
as well as technical advantages. In particular, one gains some 
flexibility i~ choosing the localization properties of charged 
states. 

Amongst the various questions which have not been answered in this 
analysis let us mention the two perhaps most interesting ones: 
first, it would be desirable to uqderstand better the structure 
of the asymptotic observables m'h and aon:wt which are associated with 

the massive particles. This would help to clarify the question 
as to which concepts are appropriate for the description of charged 
particles at asymptotic times [22]. As was indicated, the solution 
to this problem seems to depend only on Gauss' law and not on the 
detailed dynamical structure of quantum electrodynamics . 

The second question which deserves further study is related to the 
concept of charge-classes. In order to see that the labels of these 
classes have, as expected, the meaning of a charge, one should show 
that there exists a composition law of charge-classes (charges can 
be add~d) and t'hat to each charge-class there exists a conjugate 
class (to each charge there exists an opposite charge} . A solution 
of this problem would generalize the fundamental results Of 
Doplicher, Haag and Roberts (2) (see also (17]) on the superselection 
structure of theories with short-range forces to the case of quantum 
electrodynamics. 
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