Skip to main content
Log in

Microbial activity in the terrestrial subsurface

  • Reviews
  • Published:
Experientia Aims and scope Submit manuscript

Summary

Little is known about the layers under the earth's crust. Only in recent years have techniques for sampling the deeper subsurface been developed to permit investigation of the subsurface environment. Prevailing conditions in the subsurface habitat such as nutrient availability, soil composition, redox potential, permeability and a variety of other factors can influence the microflora that flourish in a given environment. Microbial diversity varies between geological formations, but in general sandy soils support growth better than soils rich in clay. Bacteria predominate in subsurface sediments, while eukaryotes constitute only 1–2% of the microorganisms. Recent investigations revealed that most uncontaminated subsurface soils support the growth of aerobic heteroorganotrophic bacteria, but obviously anaerobic microorganisms also exist in the deeper subsurface habitat. The microorganisms residing below the surface of the earth are capable of degrading both natural and xenobiotic contaminants and can thereby adapt to growth under polluted conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aelion, C. M., Swindoll, C. M., and Pfaender, F. K., Adaptation to and biodegradation of xenobiotic compounds by microbial communities from a pristine aquifer. Appl. envir. Microbiol.53 (1987) 2212–2217.

    CAS  Google Scholar 

  2. Alexander, M., Introduction to Soil Microbiology. John Wiley and Sons, New York 1977.

    Google Scholar 

  3. Balkwill, D. L., and Ghiorse, W. C., Characterization of subsurface bacteria associated with two shallow aquifers in Oklahoma. Appl. envir. Microbiol.50 (1985) 580–588.

    CAS  Google Scholar 

  4. Balkwill, D. L., Numbers, diversity, and morphological characteristics of aerobic, chemoheterotrophic bacteria in deep subsurface sediments from a site in South Carolina. Geomicrobiol. J.7 (1989) 33–52.

    Google Scholar 

  5. Barrio-Lage, G., Parsons, F. Z., Nassar, R. S., and Lorenzo, P. A., Sequential dehalogenation of chlorinated ethenes. Envir. Sci. Technol.20 (1986) 96–99.

    CAS  Google Scholar 

  6. Beloin, R. M., Sinclair, J. L., and Ghiorse, W. C., Distribution and activity of microorganisms in subsurface sediments of a pristine study site in Oklahoma. Microb. Ecol.16 (1988) 85–87.

    CAS  PubMed  Google Scholar 

  7. Belyaev, S. S., Wolkin, R., Kenealy, W. R., DeNiro, M. J., Epstein, S., and Zeikus, J. G., Methanogenic bacteria from the Bondyuzhskoe Oil field. General characterization and analysis of stable-carbon isotopic fractionation. Appl. envir. Microbiol.45 (1983) 691–697.

    CAS  Google Scholar 

  8. Boethling, R. S., and Alexander, M., Effect of concentration of organic chemicals on their biodegradation by natural microbial communities. Appl. envir. Microbiol.37 (1979) 1211–1216.

    CAS  Google Scholar 

  9. Bone, T. L., and Balkwill, D. L., Morphological and cultural comparison of microorganisms in surface soil and subsurface sediments at a pristine study site in Oklahoma. Microb. Ecol.16 (1988) 49–64.

    CAS  PubMed  Google Scholar 

  10. Bouwer, E. J., Rittman, B. E., and McCarty, P. L., Anaerobic degradation of halogenated 1- and 2-carbon organic compounds. Envir. Sci. Technol.15 (1981) 596–599.

    CAS  Google Scholar 

  11. Bouwer, E. J., and McCarty, P. L., Transformation of 1- and 2-carbon halogenated aliphatic organic compounds under methanogenic conditions. Appl. envir. Microbiol.45 (1983) 1286–1294.

    CAS  Google Scholar 

  12. Brockman, F. J., Denovan, B. A., Hicks, R. J., and Fredrickson, J. K., Isolation and characterization of quinoline-degrading bacteria from subsurface sediments. Appl. envir. Microbiol.55 (1989) 1029–1032.

    CAS  Google Scholar 

  13. Chapelle, F. H., Zelibor, J. L. Jr, Grimes, D. J., and Knobel, L. L., Bacteria in deep coastal plain sediments of Maryland: A possible source of CO2 to groundwater. Water Resourc. Res.23 (1987) 1625–1632.

    CAS  Google Scholar 

  14. Criddle, C. S., McCarty, P. L., Elliott, M. C., and Barker, J. F., Reduction of hexachloroethane to tetrachloroethylene in groundwater. J. Contaminant Hydrol.1 (1986) 133–142.

    CAS  Google Scholar 

  15. Dockins, W. S., Olson, G. J., McFeters, G. A., and Turbak, S. C., Dissimilatory bacterial sulfate reduction in Montana groundwaters. Geomicrobiol. J.2 (1980) 83–98.

    CAS  Google Scholar 

  16. Dunlap, W. J., McNabb, J. F., Scalf, M. R., and Cosby, R. L., Sampling for organic chemicals and microorganisms in the subsurface. EPA-600/2-77-176, U.S. Environmental Protection Agency, Ada, Oklahoma, 1977.

    Google Scholar 

  17. Ehrlich, G. G., Goerlitz, D. F., Godsy, E. M., and Hult, M. F., Degradation of phenolic contaminants in ground water by anaerobic bacteria. St. Louis Park, Minnesota. Ground Water20 (1982) 703–710.

    CAS  Google Scholar 

  18. Ehrlich, G. G., Godsy, E. M., Goerlitz, D. F., and Hult, M. F., Microbial ecology of a creosole-contaiminated aquifer at St. Louis Park, Minnesota. Devs ind. Microbiol.24 (1983) 234–245.

    Google Scholar 

  19. Fliermans, C. B., Phelps, T. J., Ringelberg, D., Mikell, A. T., and White, D. C., Mineralization of trichloroethylene by heterotrophic enrichment cultures. Appl. envir. Microbiol.54 (1988) 1709–1714.

    CAS  Google Scholar 

  20. Fliermans, C. B., Microbial life in the terrestrial subsurface of south-eastern coastal plain sediments. Hazardous Waste Hazardous Materials6 (1989) 155–171.

    CAS  Google Scholar 

  21. Fliermans, C. B., and Balkwill, D. L., Microbial life in deep terrestrial subsurfaces. BioScience39 (1989) 370–377.

    Google Scholar 

  22. Fogel, M. M., Taddeo, A. R., and Fogel, S., Biodegradation of chlorinated ethenes by a methane-utilizing mixed culture. Appl. envir. Microbiol.51 (1986) 720–724.

    CAS  Google Scholar 

  23. Francis, A. J., Slater, J. M., and Dodge, C. J., Denitrification in deep subsurface sediments. Geomicrobiol. J.7 (1989) 103–116.

    CAS  Google Scholar 

  24. Fredrickson, J. K., Garland, T. R., Hicks, R. J., Thomas, J. M., Li, S. W., and McFadden, K. M., Lithotrophic and heterotrophic bacteria in deep subsurface sediments and their relation to sediment properties. Geomicrobiol. J.7 (1989) 53–66.

    Google Scholar 

  25. Ghiorse, W. C., and Balkwill, D. L., Enumeration and morphological characterization of bacteria indigenous to subsurface environments. Devs ind. Microbiol.24 (1983) 213–224.

    Google Scholar 

  26. Ghiorse, W. C., and Wilson, J. T., Microbial ecology of the terrestrial subsurface. Adv. appl. Microbiol.33 (1988) 107–172.

    CAS  PubMed  Google Scholar 

  27. Harvey, R. W., George, L. H., Smith, R. L., LeBlanc, D. R., Garabenia, S. P., and Howes, B. L., Transport of bacteria through a contaminated aquifer, in: U.S. Geological Survey Program on Toxic Waste-Groundwater Contamination: Proceedings of the Third Technical Meeting. Ed. B. J. Franks. U.S. Geological Survey, Denver, Colorado. Report 87-109, 1987, B 29–35.

    Google Scholar 

  28. Hicks, R. J., and Fredrickson, J. K., Aerobic metabolic potential of microbial populations indigenous to deep subsurface environments. Geomicrobiol. J.7 (1989) 67–77.

    Google Scholar 

  29. Hirsch, P., and Rades-Rohkohl, E., Microbial diversity in a ground water aquifer in Northern Germany. Devs ind. Microbiol.24 (1983) 183–200.

    Google Scholar 

  30. Jones, R. E., Beeman, R. E., and Suflita, J. M., Anaerobic processes in the deep terrestrial subsurface. Geomicrobiol. J.7 (1989) 117–130.

    CAS  Google Scholar 

  31. Jorgenson, B. B., Bacterial sulfate reduction within reduced microniches of oxidized marine sediments. Mar. Biol.41 (1977) 7–17.

    Google Scholar 

  32. Karl, D. M., Cellular nucleotide measurements and applications in microbial ecology. Microbiol. Rev.44 (1980) 739–796.

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Keswick, B. H., Sources of ground water pollution, in: Groundwater Pollution Microbiology, pp. 39–69. Eds G. Bitton and C. P. Gerba. John Wiley, New York 1984.

    Google Scholar 

  34. Kölbel-Boelke, J., Anders, E.-M., and Nehrkorn, A., Microbial communities in the saturated groundwater environment. II: Diversity of bacterial communities in a pleistocene sand aquifer and their in vitro activities. Microb. Ecol.16 (1988) 31–48.

    PubMed  Google Scholar 

  35. Kuhn, E. P., Colberg, P. J., Schnoor, J. L., Wanner, O., Zehnder, A. J. B., and Schwarzenbach, R. P., Microbial transformation of substituted benzenes during infiltration of river water to groundwater: Laboratory column studies. Envir. Sci. Technol.19 (1985) 961–968.

    CAS  Google Scholar 

  36. Kuhn, E. P., and Suflita, J. M., Anaerobic biodegradation of nitrogen-substituted and sulfonated benzene aquifer contaminants. Anaerobic Waste Hazardous Materials6 (1989) 121–133.

    CAS  Google Scholar 

  37. Kuhn, E. P., and Suflita, J. M., Sequential reduction dehalogenation of chloroanilines by microorganisms from a methanogenic aquifer. Envir. Sci. Technol.23 (1989) 848–851.

    CAS  Google Scholar 

  38. Kuhn, E. P., Suflita, J. M., Rivera, M. D., and Young, L. Y., Influence of alternate electron acceptors on the metabolic fate of hydroxybenzoate isomers in anoxic aquifer slurries. Appl. envir. Microbiol.55 (1989) 590–598.

    CAS  Google Scholar 

  39. Ladd, T. I., Ventullo, R. M., Wallis, P. M., and Costerton, J. W., Heterotrophic activity and biodegradation of labile and refractory compounds by groundwater and stream microbial populations. Appl. envir. Microbiol.44 (1982) 321–329.

    CAS  Google Scholar 

  40. Larsson, P., Okla, L., and Tranvik, L., Microbial degradation of xenobiotic, aromatic pollutants in humic water. Appl. envir. Microbiol.54 (1988) 1864–1867.

    CAS  Google Scholar 

  41. Lee, M. D., Wilson, J. T., and Ward, C. H., Microbial degradation of selected aromatics in a hazardous waste site. Devs ind. Microbiol.25 (1984) 557–565.

    CAS  Google Scholar 

  42. Lind, A.-M., and Eiland, F., Microbial characterization and nitrate reduction in subsurface soils. Biol. Fert. Soils8 (1989) 197–203.

    CAS  Google Scholar 

  43. Madsen, E. L., and Bollag, J.-M., Aerobic and anaerobic activity in deep subsurface sediments from the Savannah River Plant. Geomicrobiol. J.7 (1989) 93–101.

    CAS  Google Scholar 

  44. Matthess, G., The Properties of Groundwater. John Wiley, New York 1982.

    Google Scholar 

  45. Mayer, K. P., Grbic-Galic, D., Semprini, L., and McCarty, P. L., Degradation of trichloroethylene by methanotrophic bacteria in a laboratory column of saturated aquifer material. Water Sci. Technol.20 (1988) 175–178.

    CAS  Google Scholar 

  46. McNabb, J. F., and Dunlap, W. J., Subsurface biological activity in relation to groundwater pollution. Ground Water13 (1975) 33–44.

    Google Scholar 

  47. Mihelcic, J. R., and Luthy, R. G., Degradation of polycyclic aromatic hydrocarbon compounds under various redox conditions in soil-water systems. Appl. envir. Microbiol.54 (1988) 1182–1187.

    CAS  Google Scholar 

  48. Nelson, M. J. K., Montgomery, S. O., O'Neill, E. J., and Pritchard, P. H., Aerobic metabolism of trichloroethylene by a bacterial isolate. Appl. envir. Microbiol.52 (1986) 383–384.

    CAS  Google Scholar 

  49. Ogawa, I., Junk, G. A., and Svec, H. J., Degradation of aromatic compounds in groundwater, and methods of sample preservation. Talanta28 (1981) 724–729.

    Google Scholar 

  50. Ogunseitan, O. A., Tedford, E. T., Pacia, D., Sirotkin, K. M., and Sayler, G. S., Distribution of plasmids in groundwater bacteria. J. ind. Microbiol.1 (1987) 311–317.

    CAS  Google Scholar 

  51. Ou, L.-T., Thomas, J. E., Edvardsson, K. S. V., Rao, P. S. C., and Wheeler, W. B., Aerobic and anaerobic degradation of aldicarb in aseptically collected soils. J. envir. Qual.15 (1986) 356–363.

    Google Scholar 

  52. Parker, J. H., Smith, G. A., Fredrickson, H. L., Vestal, J. R., and White, D. C., Sensitive assay, based on hydroxy fatty acids from lipopolysaccharide lipid A, for gram negative bacteria in sediments. Appl. envir. Microbiol.44 (1982) 1170–1177.

    CAS  Google Scholar 

  53. Parkes, R. J., Methods of enriching, isolating, and analyzing microbial communities in laboratory systems, in: Microbial Interactions and Communities, vol. 1, pp. 45–102. Eds A. T. Bull and J. H. Slater. Academic Press, London 1982.

    Google Scholar 

  54. Phelps, T. J., Ringelberg, D., Herick, D., Davis, J., Fliermans, C. B., and White, D. C., Microbial biomass and activities associated with subsurface enviroments contaiminated with chlorinated hydrocarbons. Geomicrobiol. J.6 (1988) 157–170.

    CAS  Google Scholar 

  55. Phelps, T. J., Fliemans, C. B., Garland, T. R., Pfiffner, S. M., and White, D. C., Methods for recovery of deep terrestrial subsurface sediments for microbial studies. J. microb. Meth.9 (1989) 267–280.

    Google Scholar 

  56. Phelps, T. J., Raione, E. G., White, D. C., and Fliermans, C. B., Microbial activities in deep subsurface environments. Geomicrobiol. J.7 (1989) 79–91.

    Google Scholar 

  57. Rengpipat, S., Langworthy, T. A., and Zeikus, J. G.,Halobacteroides acetoethylicus sp. nov., a new obligate anaerobic halophile isolated from deep subsurface hypersaline environments. System. appl. Microbiol.11 (1988) 28–35.

    Google Scholar 

  58. Rogers, J. E., Riley, R. G., Li, S. W., O'Malley, M. L., and Thomas, B. L., Microbial transformation of alkylpyridines in groundwater. Water, Air, Soil Pollut.24 (1985) 443–454.

    CAS  Google Scholar 

  59. Sargent, K. A., and Fliermans, C. B., Geology and hydrology of the deep subsurface microbiology sampling site at Savannah River Plant, South Carolina. Geomicrobiol. J.7 (1989) 3–13.

    Google Scholar 

  60. Scow, K. M., Schmidt, S. K., and Alexander, M., Kinetics of biodegradation of mixtures of substrates in soil. Soil Biol. Biochem.5 (1989) 703–708.

    Google Scholar 

  61. Shaw, N., Lipid composition as a guide to the classification of bacteria. Adv. appl. Microbiol.17 (1974) 63–108.

    CAS  PubMed  Google Scholar 

  62. Sinclair, J. L., and Ghiorse, W. C., Distribution of aerobic bacteria, protozoa, algae and fungi in deep subsurface sediments. Geomicrobiol. J.7 (1989) 15–31.

    Google Scholar 

  63. Smith, G. A., Nichols, P. D., and White, D. C., Fatty acid composition and microbial activity of bentic marine sediments from McMurdo Sound, Antarctia. FEMS Microbiol. Ecol.38 (1986) 219–231.

    CAS  Google Scholar 

  64. Suflita, J. M., and Miller, G. D., Microbial metabolism of chlorophenolic compounds in ground water aquifers. Envir. Tox. Chem.4 (1985) 751–758.

    CAS  Google Scholar 

  65. Suflita, J. M., Liang, L., and Saxena, A., The anaerobic biodegradation ofo-, m- andp-cresol by sulfate-reducing bacterial enrichment cultures obtained from a shallow anoxic aquifer. J. ind. Microbiol.4 (1989) 255–266.

    CAS  Google Scholar 

  66. Taylor, J., and Parkes, R. J., The cellular fatty acids of the sulfate-reducing bacteria,Desulfobacter sp.,Desulfobulbus sp. andDesulfovibrio desulfuricans. J. gen. Microbiol.129 (1983) 3303–3309.

    CAS  Google Scholar 

  67. Thorn, P. M., and Ventullo, R. M., Measurement of bacterial growth rates in subsurface sediments using the incorporation of tritiated thymidine into DNA. Microb. Ecol.16 (1988) 3–16.

    CAS  PubMed  Google Scholar 

  68. Thurmann, E. M., Organic Geochemistry of Natural Waters, pp. 14–18. Nijhoff/Dr. W. Junk, Boston 1985.

    Google Scholar 

  69. Veldkamp, H., Ecological studies with the chemostat, in: Advances in Microbial Ecology, vol. 1, pp. 59–94. Ed. M. Alexander. Plenum Press, New York 1977.

    Google Scholar 

  70. Vogel, T. M., and McCarty, P. L., Biotransformation of tetrachloroethylene to trichloroethylene, dichloroethylene, vinyl chloride, and carbon dioxide under methanogenic conditions. Appl. envir. Microbiol.49 (1985) 1080–1083.

    CAS  Google Scholar 

  71. Ward, T. E., Characterizing the aerobic and anaerobic microbial activities in surface and subsurface soils. Envir. Tox. Chem.4 (1985) 727–737.

    CAS  Google Scholar 

  72. Webster, J. J., Hampton, G. J., and Leach, F. R., ATP in soil: a new extractant and extraction procedure. Soil Biol. Biochem.16 (1984) 335–342.

    CAS  Google Scholar 

  73. Wilson, J. T., McNabb, J. F., Balkwill D. L., and Ghiorse, W. C., Enumeration and characterization of bacteria indigenous to a shallow water-table aquifer. Ground Water21 (1983) 134–142.

    Google Scholar 

  74. Wilson, J. T., Noonan, M. J., and McNabb, J. F., Biodegradation of contaminants in the subsurface, in: Ground Water Quality, pp. 483–492. Eds C. H. Ward, W. Giger and P. L. McCarty, John Wiley, New York 1985.

    Google Scholar 

  75. Wilson, J. T., and Wilson, B. H., Biotransformation of trichloroethylene in soil. Appl. envir. Microbiol.49 (1985) 242–243.

    CAS  Google Scholar 

  76. Wilson, B. H., Smith, G. B., and Rees, J. F., Biotransformation of selected alkylbenzenes and halogenated aliphatic hydrocarbons in methanogenic aquifer material: A microcosm study. Envir. Sci. Technol.20 (1986) 997–1002.

    CAS  Google Scholar 

  77. Zimmerman, R., Iturriaga, R., and Becker-Birch, J., Simultaneous determination of the total number of aquatic bacteria and the number thereof involved in respiration. Appl. envir. Microbiol.36 (1978) 926–935.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kaiser, J.P., Bollag, J.M. Microbial activity in the terrestrial subsurface. Experientia 46, 797–806 (1990). https://doi.org/10.1007/BF01935528

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01935528

Key words

Navigation