Skip to main content
Log in

Temperature dependence of the rate of reaction in thermal analysis

The Arrhenius equation in condensed phase kinetics

  • Special Review
  • Published:
Journal of thermal analysis Aims and scope Submit manuscript

Abstract

Special problems are encountered in modeling the temperature dependence of the kinetics of heterogeneous, condensed phase systems. In the division of the model for the reaction rate into two parts, a)f(α) which is physical (translational) and b)k(T) which is chemical (vibrational), complications arise in defining the temperature dependence of part a) which may take various mathematical forms and then in coupling it with the Arrhenius temperature dependence of part b). The role off(α) in thermal analysis systems is discussed. The concept of rate-controlling step is applied to the simplification of the temperature dependent term. The significance of the compensation effect in these systems is described and an heuristic rationalization for it is suggested. Maximum practical temperature ranges for thermal analysis experiments and the effect of temperature measurement imprecision on obtaining meaningful Arrhenius parameters are discussed. The WLF and other equations used to describe the temperature dependence off(α) are not found to couple compatibly with the Arrhenius equation.

Zusammenfassung

Bei der Modellierung der TemperaturabhÄngigkeit der Kinetik bei heterogenen, kondensierten Phasen treten spezielle Probleme auf. In der Unterteilung des Modelles für die Reaktionsgeschwindigkeit in zwei Teile: a)f(α) ist physikalisch (Translation) und b)k(T) ist chemisch (Vibration) treten bei der Definierung der TemperaturabhÄngigkeit von Teil a) und dann bei der Verknüpfung mit der Arrhenius-schen TemperaturabhÄngigkeit von Teil b) Komplikationen auf. Es wird die Rolle vonf(α) in thermoanalytischen Systemen besprochen. An einer Vereinfachung des temperaturabhÄngigen Termes wurde das Konzept des geschwindigkeitsbestimmenden Schrittes angewendet. Es wird die Bedeutsamkeit des Kompensationseffektes in diesen Systemen beschrieben und dafür eine heuristische Vereinfachung vorgeschlagen. Praktisch gesehen maximale Temperaturbereiche für thermoanalytische Experimente sowie der Einflu\ der Ungenauigkeit der Temperaturmessung für die erhaltenen Arrhenius-Parameter wird diskutiert. Die zur Beschreibung der TemperaturabhÄngigkeit vonf(α) benutzten WLF und anderen Gleichungen stellen keine KompatibilitÄt mit der Arrhenius-schen Gleichung her.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. H. Flynn, “The Arrhenius Equation in Thermal Analysis — An Evaluation and Critique”, Fifth Seminar in Memory of St. Bretsznajder, Plock, Poland, 20–22 September, 1989.

  2. K.J. Laidler, J. Chem. Education, 65 (1988) 250.

    Google Scholar 

  3. M.V. Smoluchowski, Z. Physik. Chem., 92 (1917) 129.

    Google Scholar 

  4. S. Arrhenius, Z. Physik. Chem., 4 (1889) 226.

    Google Scholar 

  5. See “Theory of Rate Processes”, S. Glasstone, K. J. Laidler and H. Eyring, McGraw-Hill, New York-London 1941.

    Google Scholar 

  6. S.W. Benson, “The Foundations of Chemical Kinetics”, McGraw-Hill, New York 1960. p. 67.

    Google Scholar 

  7. J. Sestak, J. Thermal Anal., 32 (1987) 325; also “Comprehensive Analytical Chemistry”, Vol 12 (ed. G. Svehla) Elsevier, Amsterdam 1984. p. 196.

    Google Scholar 

  8. J.J. Pysiak, “Regularities in the Thermal Dissociation of Solids” in “Thermal Analysis” (ed. Z Zivkovic) Copper, Bor Yugoslavia 1984. p. 239; J. J. Pysiak and B. Sabalski, Thermochim. Acta, 124 (1988) 235, 385; J. J. Pysiak, Thermochim. Acta, 148 (1989) 165.

  9. R. A. Agrawal, J. Thermal Anal., (an article accepted 1988); 34 (1988) 1141; 31 (1986) 73.

  10. J. Zsakó and N. Somasekharan, J. Thermal Anal., 32 (1986) 73.

    Google Scholar 

  11. H. Tanaka and N. Koga, J. Thermal Anal., 34 (1988) 685.

    Google Scholar 

  12. J. J. Pysiak, “Thermal Analysis” (Proceedings of 6th ICTA) 1 (1980) 35.

    Google Scholar 

  13. A. K. Galwey, Advances in Catalysis 26 (1977) 247.

    Google Scholar 

  14. O. Exner, Nature 227 (1970) 366, Collect Czech. Chem. Comm., 37 (1972) 1425. ibid. 38 (1973) 781.

    Google Scholar 

  15. J. E. Leffler, J. Org. Chem., 20 (1955) 1202.

    Article  Google Scholar 

  16. J. H. Flynn, J. Thermal Anal., 34 (1988) 367.

    Google Scholar 

  17. J. H. Flynn, Thermochim. Acta 37 (1980) 225.

    Article  Google Scholar 

  18. H. Vogel, Phys, Z. 22 (1921) 645; V. G. Tamman and W. Hesse, Z. Anorg. Allg. Chem., 156 (1926) 245; G. S. Fülcher, J. Am. Ceram. Soc., 8 (1925) 1164.

    Google Scholar 

  19. M. L. Williams, R. F. Landel and J. D. Ferry, J. Am. Chem. Soc., 77 (1955) 339.

    Google Scholar 

  20. H. Markovitz and L. Zapas in H. L. Anderson ed., AIP 50th Anniversary Physics Vade Mecum, American Istitute of Physics, New York, 1980, Sec. 13.17; H. Markovitz, ibid., sec 19.00.

    Google Scholar 

  21. M. Maciejewki, J. Thermal Anal., 33 (1988) 1269.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Flynn, J.H. Temperature dependence of the rate of reaction in thermal analysis. Journal of Thermal Analysis 36, 1579–1593 (1990). https://doi.org/10.1007/BF01914077

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01914077

Keywords

Navigation