Skip to main content
Log in

Diffusion theory and discrete rate constants in ion permeation

  • Topical Review
  • Published:
The Journal of Membrane Biology Aims and scope Submit manuscript

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  • Berkowitz, M., Wan, W. 1987. The limiting ionic conductivity of Na+ and Cl ions in aqueous solutions: Molecular dynamics simulation.J. Chem. Phys. 86:376–382

    Google Scholar 

  • Cooper, K. E., Gates, P. Y., Eisenberg, R. S. 1988. Surmounting barriers in ionic channels.Q. Rev. Biophys. 21:331–364

    Google Scholar 

  • Cooper, K. E., Jakobsson, E., Wolynes, P. G. 1985. The theory of ion transport through membrane channels.Prog. Biophys. Molec. Biol. 46:51–96

    Google Scholar 

  • Dani, J., Levitt, D. 1981. Water transport and ion-water interaction in the gamicidin channel.Biophys. J. 35:501–508

    Google Scholar 

  • Debrunner, P. G., Frauenfelder, H. 1982. Dynamics of proteins.Annu. Rev. Phys. Chem. 33:283–299

    Google Scholar 

  • Dijk, C. van, Levie, R. de (1985) An experimental comparison between the continuum and single jump descriptions of nonactin-mediated potassium transport through black lipid membranes.Biophys. J. 48:125–136

    Google Scholar 

  • Eisenman, G., Horn, R. 1983. Ionic selectivity revisited: The role of kinetic and equilibrium processes in ion permeation through channels.J. Membrane Biol. 76:197–225

    Google Scholar 

  • Eisenman, G., Sandblom, J. P. 1983. Energy barriers in ionic channels: Data for gramicidin A interpreted using a single-file (3B4S") model having 3 barriers separating 4 sites.In: Physical Chemistry of Transmembrane Ion Motions. T. G. Spach, editor. Elsevier Science, Amsterdam.

    Google Scholar 

  • Finkelstein, A., Andersen, O. S. 1981. The gramicidin A channel: A review of its permeability characteristics with special reference to the single-file aspect of transport.J. Membrane Biol. 59:155–171

    Google Scholar 

  • Frauenfelder, H., Wolynes, P. G. 1985. Rate theories and puzzles of hemeprotein kinetics.Science 229:337–345

    Google Scholar 

  • Gardiner, C. W. 1983. Handbook of Stochastic Methods. Springer-Verlag, New York

    Google Scholar 

  • Gates, P. Y., Cooper, K. E., Eisenberg, R. S. 1987. Diffusive flux through ionic channels.Biophys. J. 51:48a

    Google Scholar 

  • Gates, P. Y., Cooper, K. E., Eisenberg, R. S. 1988. Analytical diffusion models for membrane channels.In: Ion Channels. Vol. 2. T. Narahashi, editor. Plenum, New York (in press)

    Google Scholar 

  • Goel, N. S., Richter-Dyn, N. 1974. Stochastic Models in Biology. Academic, New York

    Google Scholar 

  • Hanggi, P. 1983. Physics of ligand migration in biomolecules.J. Stat. Phys. 30:401–412

    Google Scholar 

  • Hille, B. 1979. Rate theory models for ion flow in ionic channels of nerve and muscle.In: Membrane Transport Processes. Vol. 3, pp. 5–16. C. F. Stevens and R. W. Tsien, editors. Raven, New York

    Google Scholar 

  • Hille, B., Schwarz, W. 1978. Potassium channels as mutli-ion single-file pores.J. Gen. Physiol. 72:409–442

    Google Scholar 

  • Hladky, S. B., Haydon, D. A. 1984. Ion movements in gramicidin channels.Curr. Topics Membr. Transp. 21:327–368

    Google Scholar 

  • Hynes, J. T. 1985a. The theory of reactions in solution.In: Theory of Chemical Reaction Dynamics. Vol. IV, pp. 171–234. M. Baer, editor. CRC, Boca Raton

    Google Scholar 

  • Hynes, J. T. 1985b. Chemical reaction dynamics in solution.Annu. Rev. Phys. Chem. 36:573–597

    Google Scholar 

  • Jakobsson, E., Chiu, S.-W. 1987. Stochastic theory of ion movement in channels with single-ion occupancy. Application to sodium permeation of gramicidin channels.Biophys. J. 52:33–52

    Google Scholar 

  • Jordan, P. C. 1984. The total electrostatic potential in a gramicidin channel.J. Membrane Biol. 78:91–102

    Google Scholar 

  • Kramers, H. A. 1940. Brownian motion in a field of force and the diffusion model of chemical reactions.Physica 7:284–304

    Google Scholar 

  • Latorre, R., Miller, C. 1983. Conduction and selectivity in potassium channels.J. Membrane Biol. 71:11–31

    Google Scholar 

  • Läuger, P. 1973. Ion transport through pores: A rate theory analysis.Biochim. Biophys. Acta 311:423–441

    Google Scholar 

  • Läuger, P. 1987. Dynamics of ion transport systems in membranes.Physiol. Rev. 67:1296–1331

    Google Scholar 

  • Lecar, H. 1981. Single-channel conductance and models of transport.In: The Biophysical Approach to Excitable Systems. W. Adelman and D. Goldman, editors. Plenum. New York

    Google Scholar 

  • Levitt, D. G. 1978. Electrostatic calculations for an ion channel: II. Kinetic behavior of the gramicidin A channel.Biophys. J. 22:221–248

    Google Scholar 

  • Levitt, D. G. 1982. Comparison of Nernst-Planck and reaction-rate models for multiply occupied channels.Biophys. J. 37:575–587

    Google Scholar 

  • Levitt, D. G. 1986. Interpretation of biological ion channel flux data: Reaction-rate versus continuum theory.Annu. Rev. Biophys. Biophys. Chem. 15:29–57

    Google Scholar 

  • Levitt, D. G. 1987. Exact continuum solution for a channel that can be occupied by two ions.Biophys. J. 52:455–466

    Google Scholar 

  • Rodger, P. M., Sceats, M. G., Gilbert, R. G. 1988. Stochastic models for solution dynamics: The friction and diffusion coefficients.J. Chem. Phys. 88:6448–6458

    Google Scholar 

  • Schulten, K., Schulten, Z., Szabo, A. 1981. Dynamics of reactions involving diffusive barrier crossing.J. Chem. Phys. 74:4426–4432

    Google Scholar 

  • Skinner, J. L., Wolynes, P. G. 1980. General kinetic models of activated processes in condensed phases.J. Chem. Phys. 72:4913–4927

    Google Scholar 

  • Tomlins, B., Williams, A. J. 1986. Solubilisation and reconstitution of the rabbit skeletal muscle sarcoplasmic reticulum K+ channel into liposomes suitable for patch clamp studies.Pfluegers. Arch. 407:341–347

    Google Scholar 

  • Urban, B. W., Hladky, S. B. 1979. Ion transport in the simplest single file pore.Biochim. Biophys. Acta 554:410–429

    Google Scholar 

  • Urry, D. W., Ventkatachalam, A., Spisni, R. J., Bradley, T. L., Prasad, K. U. 1980. The malonyl gramicidin channel: NMR-derived rate constants and comparison of calculated and experimental single-channel currents.J. Membrane Biol. 55:29–51

    Google Scholar 

  • Weiss, G. 1986. Overview of theoretical models for reaction rates.J. Stat. Phys. 42:3–36

    Google Scholar 

  • Yellen, G. 1987. Permeation in potassium channels: Implications for channel structure.Annu. Rev. Biophys. Biophys. Chem. 16:227–246

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cooper, K.E., Gates, P.Y. & Eisenberg, R.S. Diffusion theory and discrete rate constants in ion permeation. J. Membrain Biol. 106, 95–105 (1988). https://doi.org/10.1007/BF01871391

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01871391

Key Words

Navigation