Skip to main content
Log in

Structures of membrane proteins

  • Published:
The Journal of Membrane Biology Aims and scope Submit manuscript

Summary

The possible conformations of integral membrane proteins are restricted by the nature of their environment. In order to satisfy the requirement of maximum hydrogen bonding, those protions of the polypeptide chain which are in contact with lipid hydrocarbon must be organized into regions of regular secondary structure. As possible models of the intramembranous regions of integral membrane proteins, three types of regular structues are discussed. Two, the alpha helix and the beta-pleated sheet, are regularly occurring structural features of soluble proteins. The third is a newly proposed class of conformations called beta helices. These helices have unique features which make them particularly well-suited to the lipid bilayer environment. The central segment of the membrane-spanning protein glycophorin can be arranged into a beta helix with a hydrophobic exterior and a polar interior containing charged amino-acid side chains. Such structures could function as transmembrane ion channels. A model of the activation process based on a hypothetical equilibrium between alpha and beta helical forms of a transmembrane protein is presented. The model can accurately reproduce the kinetics and voltage dependence of the channels in nerve.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bamberg, E., Apell, H.J., Alpes, H. 1977. Structure of the gramicidin A channel: Distinction between the π(Loreore, d) and the β helix by electrical measurements with lipid bilayer membranes.Proc. Nat. Acad. Sci. USA 74:2402

    PubMed  Google Scholar 

  2. Bezanilla, F., Armstrong, C.M. 1975. Properties of the sodium channel gating current.Cold Spring Harbor Symp. Quant. Biol. 40:297

    Google Scholar 

  3. Birktoft, J.J., Blow, D.M. 1972. Structure of crystalline α-chymotrypsin. V. The atomic structure of tosyl α-chymotrypsin at 2 Å resolution.J. Mol. Biol. 39:63

    Google Scholar 

  4. Bridgen, J., Walker, I.D. 1976. Photoreceptor protein from the purple membrane ofHalobacterium halobium. Molecular weight and retinal binding site.Biochemistry 15:792

    PubMed  Google Scholar 

  5. Chothia, C.H. 1974. Hydrophobic bonding and accessible surface area in proteins.Nature (London) 248:338

    Google Scholar 

  6. Chothia, C.H. 1976. The nature of the accessible and buried surfaces in proteins.J. Mol. Biol. 105:1

    PubMed  Google Scholar 

  7. Cuatrecasas, P. 1974. Membrane receptors.Annu. Rev. Biochem. 43:169

    PubMed  Google Scholar 

  8. Goodall, M.C. 1973. Action of two classes of channel-forming synthetic peptide on lipid bilayers.Arch. Biochem. Biophys. 157:514

    PubMed  Google Scholar 

  9. Henderson, R. 1977. The purple membrane fromHalobacterium halobium.Annu. Rev. Biophys. Bioeng. 6:87

    PubMed  Google Scholar 

  10. Henderson, R., Unwin, P.N.T. 1975. Three-dimensional model of purple membrane obtained by electron microscopy.Nature (London) 257:28

    Google Scholar 

  11. Hille, B. 1975. Ionic selectivity of Na and K channels.In: Membranes. G. Eisenman, editor. Vol. 3; p. 255. Marcel Dekker, New York

    Google Scholar 

  12. Kennedy, S.J. 1976. Synthesis and characterization of membrane-active peptides having beta-helical structure: A new regular configuration proposed for polypeptide chains. Ph. D. Thesis, Indiana University, Indianapolis

    Google Scholar 

  13. Kennedy, S.J., Besch, H.R., Jr., Watanabe, A.M., Freeman, A.R., Roeske, R.W. 1977a. Properties of beta-helical ion channels.Biophys. J. 17:87a

    Google Scholar 

  14. Kennedy, S.J., Besch, H.R., Jr., Watanabe, A.M., Freeman, A.R., Roeske, R.W. 1977b. Beta-helical conformations of peptides and proteins.In: Peptides, Proceedings of the Fifth American Peptide Symposium. M. Goodman and J. Meienhofer, editors. p. 423. John Wiley & Sons, New York

    Google Scholar 

  15. Kennedy, S.J., Roeske, R.W., Freeman, A.R., Watanabe, A.M., Besch, H.R., Jr. 1977. Synthetic peptides form ion channels in artificial lipid bilayer membranes.Science 196:1341

    PubMed  Google Scholar 

  16. Kuntz, I.D. 1972. Tertiary structure in carboxypeptidase.J. Am. Chem. Soc. 94:8568

    PubMed  Google Scholar 

  17. Lee, B., Richards, F.M. 1971. The interpretation of protein structures: Estimation of static accessibility.J. Mol. Biol. 55:379

    PubMed  Google Scholar 

  18. Liljas, A., Rossman, M.G. 1974. X-ray studies of protein interactions.Annu. Rev. Biochem. 43:475

    Google Scholar 

  19. Mathews, B.W. 1976. X-ray crystallographic studies of protiens.Annu. Rev. Phys. Chem. 27:493

    Google Scholar 

  20. Ozols, J., Gerard, C. 1977. Primary structure of the membranous segment of cytochromeb 5.Proc. Nat. Acad. Sci. USA 74:3725

    PubMed  Google Scholar 

  21. Pauling, L., Corey, R.B. 1951a. The pleated sheet, a new layer configuration of polypeptide chains.Proc. Nat. Acad. Sci. USA 37:251

    PubMed  Google Scholar 

  22. Pauling, L., Corey, R.B. 1951b. Configurations of polypeptide chains with favored orientation around single bonds: Two new pleated sheets.Proc. Nat. Acad. Sci. USA 37:729

    Google Scholar 

  23. Pauling, L., Corey, R.B., Branson, A.R. 1951. The structure of proteins: Two hydrogenbonded helical configurations of the polypeptide chain.Proc. Nat. Acad. Sci. USA 37:205

    PubMed  Google Scholar 

  24. racker, E., Knowles, A.F., Eytan, E. 1975. Resolution and reconstitution of iontransport systems.Ann. N. Y. Acad. Sci. 264:17

    PubMed  Google Scholar 

  25. Ramachandran, G.N., Chandrasekharan, R. 1972. Conformation of peptide chains containing bothLore-residues andd-residues. I. Helical structures with alternatingLore-residues andd-residues with special reference toLore,d-ribbon andLore,d-helices.Indian J. Biochem. Biophys. 9:1

    PubMed  Google Scholar 

  26. Richards, F.M. 1977. Areas, volumes, packing and protein structure.Annu. Rev. Biophys. Bioeng. 6:151

    PubMed  Google Scholar 

  27. Segrest, J.P., Jackson, R.L., Marchesi, V.T., Guyer, R.B., Terry, W. 1972. Red cell membrane glycoprotein: Amino acid sequence of an intramembranous region.Biochem. Biophys. Res. Commun. 49:964

    PubMed  Google Scholar 

  28. Singer, S.J. 1974. The molecular organization of membranes.Annu. Rev. Biochem. 43:805

    PubMed  Google Scholar 

  29. Tomita, M., Marchesi, V.T. 1975. Amino acid sequence and oligosaccharide attachment sites of human erythrocyte glycophorin.Proc. Nat. Acad. Sci. USA 72:2964

    PubMed  Google Scholar 

  30. Tosteson, M.T., Tosteson, D.C. 1977. Glycophorin spans the bilayer.Biophys. J. 17:86a

    Google Scholar 

  31. Urry, D.W. 1971. The gramicidin A transmembrane channel: A proposed π(Lore,d) helix.Proc. Nat. Acad. Sci. USA 68:672

    PubMed  Google Scholar 

  32. Urry, D.W. 1972. A molecular theory of ion-conducting channels: A field-dependent transition between conducting and non-conducting conformations.Proc. Nat. Acad. Sci. USA 69:1610

    PubMed  Google Scholar 

  33. Urry, D.W., Goodall, M.C., Glickson, J.D., Mayers, D.F. 1971. The gramicidin A transmembrane channel: Characteristics of head-to-head dimerized. π(Lore,d) helices.Proc. Nat. Acad. Sci. USA 68:1907

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kennedy, S.J. Structures of membrane proteins. J. Membrain Biol. 42, 265–279 (1978). https://doi.org/10.1007/BF01870362

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01870362

Keywords

Navigation