Skip to main content
Log in

Zur Wirkung von Harnsäure auf die B-Zelle des isoliert perfundierten Rattenpankreas

Effects of uric acid on the B cell in the isolated perfused rat pancreas

  • Original Contributions
  • Published:
Research in Experimental Medicine

Summary

Methylxanthines, such as caffeine and theophylline, show effects increasing the secretion of insulin. Perfusion experiments were intended to find out whether insulin secretion is even influenced by uric acid, which is chemically closely related. Besides, it was to be demonstrated that uric acid causes no damages to islet cell structures for it is well established that alloxan, which is chemically related to uric acid, produces necroses in B cells. Isolated rat pancreata were stimulated by glucose at concentrations of 100 mg/100 ml and 300 mg/100 ml. In part of the experiments uric acid was added to the perfusion medium at a concentration of 12 mg/100 ml. We found that uric acid has no influence on insulin secretion if it is stimulated by glucose at a concentration of 100 mg/100 ml. However, if B cells are stimulated by glucose at a concentration of 300 mg/100 ml insulin secretion is enhanced by the addition of uric acid by more than 100%. This indicates that this substance exhibits a glucose-potentiating effect. The characteristic dynamics of insulin secretion demonstrate together with light- and electron-microscopic investigations that uric acid causes a real additional secretion and no leaking of intracellular insulin as a result of destruction of islet cell structures by an effect of uric acid similar to that of alloxan.

Zusammenfassung

Es ist bekannt, daß die Methylxanthine Coffein und Theophyllin die Insulinsekretion positiv beeinflussen. Im Rahmen von Perfusionsversuchen sollte untersucht werden, ob die Inselzellfunktion auch dem Einfluß der chemisch eng verwandten Harnsäure unterliegt. Zugleich sollte eine Destruktion von Inselzellstrukturen durch Harnsäure ausgeschlossen werden, da die chemisch ähnlich configurierte Substanz Alloxan bekanntlich Inselzellnekrosen verursacht. Dazu wurden isolierte Rattenbauchspeicheldrüsen mit Glukosekonzentrationen von 100 mg/100 ml und 300 mg/100 ml stimuliert. In einem Teil der Fälle wurde dem Perfusat Harnsäure in der Konzentration von 12 mg/100 ml zugegeben. Es zeigte sich, daß Harnsäure die Insulinsekretion bei Stimulation mit Glukose in der Konzentration von 100 mg/100 ml nicht beeinflußt. Werden die B-Zellen jedoch mit einer Glukosekonzentration von 300 mg/100 ml stimuliert, so steigert Harnsäure die Hormonfreisetzung im Sinne eines glukosepotenzierenden Effektes um mehr als 100%. Anhand charakteristischer Sekretionsphänomene sowie lichtoptischer und elektronenmikroskopischer Untersuchungen konnte nachgewiesen werden, daß es sich hierbei um eine echte Mehrsekretion handelt und nicht etwa um einen Auslaufeffekt als Folge einer Destruktion von Inselzellstrukturen durch eine alloxanähnliche Wirkung der Harnsäure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literatur

  1. Ammon HPT, Steinke J (1972) Effect of 6-aminonicotinamide in insulin release and C-14 glucose oxidation by isolated pancreatic rat islets: difference between glucose, tolbutamide, and aminophylline. Endocrinology 91:33–38

    PubMed  Google Scholar 

  2. Ashcroft SJH, Basset JM, Randle PJ (1971) Isolation of human pancreatic islets capable of releasing insulin and metabolising glucose in vitro. Lancet 1:888–889

    PubMed  Google Scholar 

  3. Basabe JC, Lopez NL, Viktora JK, Wolff FW (1971) Insulin secretion studied in the perfused rat pancreas. II. Effect of glucose, glucagon, 3′5′adenosine monophosphate, theophylline, imidazole, and phenoxybenzamine; their interaction with diazoxide. Diabetes 20:457–466

    PubMed  Google Scholar 

  4. Beckett AG, Lewis JG (1960) Gout and the serum uric acid in diabetes mellitus. Quart J Med 29:443–457

    PubMed  Google Scholar 

  5. Brisson GR, Malaisse-Lagae F, Malaisse WJ (1972) The stimulus-secretion coupling of glucose-induced insulin release. VII. A proposed site of action for adenosine-3′,5′-cyclic monophosphate. J Clin Invest 51:232–241

    PubMed  Google Scholar 

  6. Burr IM, Balant L, Stauffacher W, Renold AE (1970) Perifusion of rat pancreatic tissue in vitro: Substrate modification of theophylline-induced biphasic insulin release. J Clin Invest 49:2097–2105

    PubMed  Google Scholar 

  7. Burr IM, Kanazawa Y, Marliss EB, Lambert AE (1971) Biphasic insulin release from perifused cultured fetal rat pancreas — Effects of glucose, pyruvate, and theophylline. Diabetes 20:592–597

    PubMed  Google Scholar 

  8. Collins-Williams J, Bailey CC (1949) Effect of uric acid in glutathione-deficient rabbits. P.S.E.B.M. 71:583–587

    Google Scholar 

  9. Conn JW, Louis LH, Johnston MW (1949) Metabolism of uric acid, glutathione and nitrogen, and excretion of “11-oxysteroids” and 17-ketosteroids during induction of diabetes in man with pituitary adrenocorticotropic hormone. J Lab Clin Med 34:255–269

    Google Scholar 

  10. Curry DL, Bennett LL, Grodsky GM (1968) Dynamics of insulin secretion by the perfused rat pancreas. Endocrinology 83:572–584

    PubMed  Google Scholar 

  11. Dunn JS, Sheehan HL, McLetchie NGB (1943) Necrosis of islets of Langerhans produced experimentally. Lancet 1:484–487

    Google Scholar 

  12. Dunn JS, McLetchie NGB (1943) Experimental alloxan diabetes in the rat. Lancet2:384–387

    Google Scholar 

  13. Dunn JP, Brooks GW, Mausner J, Rodnan GP (1963) Social class gradient of serum uric acid levels in males. JAMA 185:431–436

    Google Scholar 

  14. Fujimoto WY, Williams RH (1972) Insulin release from cultured fetal human pancreas. Endocrinology 91:1133–1136

    PubMed  Google Scholar 

  15. Grabner W, Worlicek H, Matzkies F, Fischer K (1976) Über den Einfluß von Harnsäure auf die Insulinsekretion am isoliert-perfundierten Rattenpankreas. 11. Kongreß der Deutschen Diabetesgesellschaft, Braunlage, BRD, Nr. 15

    Google Scholar 

  16. Grabner W, Riemann JF, Schuirer G, Worlicek H (1977) Influence of uric acid on insulin secretion and fine structure of isolated rat islets of Langerhans and isolated perfused rat pancreas. Diabetes 26:(abstr) 185

    PubMed  Google Scholar 

  17. Griffiths M (1950) The mechanism of the diabetogenic action of uric acid. J Biol Chem 184:289–298

    PubMed  Google Scholar 

  18. Grodsky GM, Batts AA, Bennett LL, Vcella C, McWilliams NB, Smith DF (1963) Effects of carbohydrates on secretion of insulin from isolated rat pancreas. Am J Physiol 205:638–644

    PubMed  Google Scholar 

  19. Grodsky GM, Landahl H, Curry D, Bennett L (1969) In vitro studies suggesting a two-compartmental model for insulin secretion. In: Falkmer S, Hellman B, Täljedal J-B (eds) The structure and metabolism of the pancreatic islets. Pergamon Press, Oxford, pp 409–421

    Google Scholar 

  20. Grodsky GM (1972) A threshold distribution hypothesis for packet storage of insulin and its mathematical modeling. J Clin Invest 51:2047–2059

    PubMed  Google Scholar 

  21. Grodsky GM (1972) A threshold distribution hypothesis for packet storage of insulin. II. Effect of calcium. Diabetes 21:584–593

    PubMed  Google Scholar 

  22. Grodsky GM, Fanska RE (1975) The in vitro perfused pancreas. Methods Enzymol 39:364–372

    PubMed  Google Scholar 

  23. Grunert RR, Phillips PH (1951) Uric acid diabetes in the rat. PSEBM 76:642–645

    Google Scholar 

  24. Lacy PE, McDaniel ML, Fink CJ, Roth C (1975) Effect of methylxanthines on alloxan inhibition of insulin release. Diabetologia 11:501–507

    PubMed  Google Scholar 

  25. Lambert AE, Junod A, Stauffacher W, Jeanrenaud B, Renold AE (1969) Organ culture of fetal rat pancreas. I. Insulin release induced by caffeine and by sugars and some derivatives. Biochim Biophys Acta 184:529–539

    PubMed  Google Scholar 

  26. Lambert AE, Kanazawa Y, Halter JB, Orci L, Rouiller C, Renold AE (1970) Insulin release from fetal and newborn rat pancreas in vitro: role of the adenyl cyclase system. Acta Diab Latina 7:229–261

    Google Scholar 

  27. Landgraf R, Kotler-Brajtburg J, Matschinsky FM (1971) Kinetics of insulin release from the perfused rat pancreas caused by glucose, glucosamine, and galactose. Proc Natl Acad Sci USA 68:536–540

    PubMed  Google Scholar 

  28. Malaisse WJ, Malaisse-Lagae F, Mayhew D (1967) A possible role for the adenylcyclase system in insulin secretion. J Clin Invest 46:1724–1734

    PubMed  Google Scholar 

  29. Malaisse WJ, Malaisse-Lagae F (1970) A possible role for calcium in the stimulus-secretion coupling for glucose-induced insulin secretion. Acta Diabetol Lat 7:509

    Google Scholar 

  30. Malaisse WJ (1973) Insulin secretion: multifactorial regulation for a single process of release. Diabetologia 9:167–173

    PubMed  Google Scholar 

  31. Malaisse WJ, Malaisse-Lagae F, Van Obberghen E, Somers G, Devis G, Ravazzola M, Orci L (1975) Role of microtubules in the phasic pattern of insulin release. Ann NY Acad Sci 253:630–652

    PubMed  Google Scholar 

  32. Martinez C (1950) Influencia de algunos compuestos puricos y pirimidicos sobre la diabetes aloxanica. Rev Soc Argent Biol 26:89–98

    PubMed  Google Scholar 

  33. Montague W, Taylor KW (1968) Pentitols and insulin release by isolated rat islets of Langerhans. Biochem J 109:333–339

    PubMed  Google Scholar 

  34. Montague W, Cook JR (1971) The role of adenosine 3′:5′-cyclic monophosphate in the regulation of insulin release by isolated rat islets of Langerhans. Biochem J 122:115–120

    PubMed  Google Scholar 

  35. Sussman KE, Vaughan GD, Timmer RF (1966) An in vitro method for studying insulin secretion in the perfused isolated rat pancreas. Metabolism 15:466–476

    PubMed  Google Scholar 

  36. Tomita T, Scarpelli DG (1977) Interaction of cyclic AMP and alloxan on insulin secretion in isolated rat islets perifused in vitro. Endocrinology 100:1327–1333

    PubMed  Google Scholar 

  37. Vance JE, Buchanan KD, Williams RH (1971) Glucagon and insulin release — Influence of drugs affecting the autonomic nervous system. Diabetes 20:78–82

    PubMed  Google Scholar 

  38. Whitehouse FW, Cleary WJ (1966) Diabetes mellitus in patients with gout. JAMA 197:113–116

    PubMed  Google Scholar 

  39. Worlicek H (1979) Harnsäure und Insulinsekretion, Dissertationsschrift, Friedrich-Alexander-Universität, Erlangen, BRD, pp 50–143

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Worlicek, H., Grabner, W. & Riemann, J.F. Zur Wirkung von Harnsäure auf die B-Zelle des isoliert perfundierten Rattenpankreas. Res. Exp. Med. 178, 165–175 (1981). https://doi.org/10.1007/BF01851491

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01851491

Key words

Schlüsselwörter

Navigation