Skip to main content
Log in

Effect of subarachnoid haemorrhage on trigeminovascular calcitonin-gene-related peptide and substance P of the rat dura mater versus cerebral vasculature

  • Published:
Acta Neurochirurgica Aims and scope Submit manuscript

Summary

While the presence of a robust perivascular neural network accompanying cerebral and dural blood vessels that contain various neuropeptides is well documented, the functional significance of this innervation is unclear.

Following experimentally induced subarachnoid haemorrhage (SAH) in animal models, immunocytochemical studies have revealed that changes occur in the staining intensity of some of these neuropeptides. This study compared the immunostaining intensity of calcitonin-gene-related peptide (CGRP) and substance P (SP) in cerebral and dural perivascular nerve fibers after SAH in the rat. Subarachnoid haemorrhage was produced by injecting 0.3 ml of autologous blood into the cisterna magna of male Sprague Dawley rats. Sham operated animals received an equal volume of buffered lactated Ringer's solution (pH 7.4). Changes in the immunostaining intensity of cerebral and dural vessels were evaluated by independent observers at 6, 24, and 48 hours after SAH. Immunostaining of CGRP was reduced in cerebral vessels at 6 hours and returned to normal by 48 hours. In contrast, CGRP immunostaining of dural perivascular nerve fibers was unchanged at all time periods examined. A marked decrease in SP immunostaining was documented at 6 hours in both the cerebral and dural vessels in all animals; at 48 hours, the staining intensity had returned to control levels.

These results support the idea that several subpopulations of trigeminovascular neurons containing CGRP, SP, or both project to cerebral and dural vessels. Since these subpopulations may be differentially activated in pathologic conditions, such as SAH or vascular headache, the potential exists for pharmacologic intervention of specific neuropeptides with the resultant abatement of a pathologic process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Andres KH, During MV, Muszynski K,et al (1987) Nerve fibers and their terminals of the dura mater encephali of the rat. Anat Embryol (Berl) 175: 289–301

    Google Scholar 

  2. Arbab MA-R, Wilklund L, Svendgaard NA (1986) Origin and distribution of cerebral vascular innervation from superior cervical, trigeminal, and spinal ganglia investigated with retrograde and anterograde WGA-HRP tracing in the rat. Neuroscience 19: 695–708

    PubMed  Google Scholar 

  3. Borges LF, Moskowitz MA (1983) Do intracranial and extracranial trigeminal afferents represent divergent axon collaterals? Neurosci Lett 35: 265–270

    PubMed  Google Scholar 

  4. Delgado-Zygmunt TJ, Arbab MA-R, Edvinsson L, Jansen I, Svendgaard NA (1990) Prevention of cerebral vasospasm in the rat by depletion or inhibition of substance P in conducting vessels. J Neurosurg 72: 917–925

    PubMed  Google Scholar 

  5. Edvinsson L (1985) Characterization of the contractile effect of neuropeptide Y in feline cerebral arteries. Acta Physiol Scand 125: 33–41

    PubMed  Google Scholar 

  6. Edvinsson L (1991) Innervation and effects of dilatory neuropeptides on cerebral vessels. Blood Vessels 28: 35–45

    PubMed  Google Scholar 

  7. Edvinsson L, Brodin E, Jansen I,et al (1988) Neurokinin A in cerebral vessels: characterization, localization and effects in vitro. Regul Pept 20: 181–197

    PubMed  Google Scholar 

  8. Edvinsson L, Copeland JR, Einso P,et al (1987) Nerve fiber containing neuropeptide Y in the cerebrovascular bed: immunochemistry radioimmunoassay and vasomotor effects. J Cereb Blood Flow Metab 7: 45–57

    PubMed  Google Scholar 

  9. Edvinsson L, Delgado-Zygmunt T, Edman R,et al (1990) Involvement of perivascular sensory fibers in the pathophysiology of cerebral vasospasm following subarachnoid hemorrhage. J Cereb Blood Flow Metab 10: 602–607

    PubMed  Google Scholar 

  10. Edvinsson L, Alafaci C, Delgado T,et al (1991) Neuropeptide Y and vasoactive intestinal peptide in experimental subarachnoid hemorrhage: immunocytochemistry, radioimmunoassay and pharmacology. Acta Neurol Scand 83: 103–109

    PubMed  Google Scholar 

  11. Edvinsson L, Egund N, Owman CH,et al (1982) Reduced noradrenaline uptake and retention in cerebrovascular nerves associated with angiographically visible vasoconstriction following experimental subarachnoid hemorrhage in rabbits. Brain Res Bull 9: 799–805

    PubMed  Google Scholar 

  12. Edvinsson L, Ekman R, Jansen I, McColloch J, Mortensen A, Uddman R (1991) Reduced levels of calcitonin gene-related peptide-like immunoreactivity in human vessels after subarachnoid hemorrhage. Neurosci Lett 121: 151–154

    PubMed  Google Scholar 

  13. Edvinsson L, Ekman R, Jansen I,et al (1987) Calcitonin gene related peptide and cerebral blood vessel: Distribution and vasomotor effects. J Cereb Blood Flow Metab 7: 720–728

    PubMed  Google Scholar 

  14. Edvinsson L, Hara H, Uddman R (1989) Retrograde tracing of nerve fibers to the rat middle cerebral artery with true blue: colocalization with different peptides. J Cereb Blood Flow Metab 9: 212–218

    PubMed  Google Scholar 

  15. Edvinsson L, Rosendal-Helgesen S, Uddman R (1983) Substance P: localization, concentration and release in cerebral arteries, choroid plexus and dura mater. Cell Tissue Res 234: 1–7

    PubMed  Google Scholar 

  16. Edvinsson L, Uddman R (1981) Adrenergic, cholinergic and peptidergic nerve fibers in the rat dura mater-involvement in headache? Cephalalgia 1: 175–179

    PubMed  Google Scholar 

  17. Edvinsson L, Uddman R (1982) Immunohistochemical localization and dilatory effect of substance P on human cerebral vessels. Brain Bull 232: 466–471

    Google Scholar 

  18. Geppetti P, Biano ED, Santicioli P,et al (1990) Release of sensory neuropeptides from dural venous sinuses of guinea pig. Brain Bull 510: 58–62

    Google Scholar 

  19. Hanko J, Hardebo JE, Kahrstrom J, Owman C, Sundler F (1986) Calcitonin gene-related peptide is present in mammalian cerebrovascular nerve fibers and dilates pial and peripheral arteries. Acta Physiol Scand [Suppl] 552: 29–32

    Google Scholar 

  20. Hara H, Edvinsson L (1987) Perivascular innervation of the cerebral circulation: involvement in the pathophysiology of subarachnoid hemorrhage. Neurosurg Rev 10: 171–179

    PubMed  Google Scholar 

  21. Hara H, Nosko M, Weir B (1986) Cerebral perivascular nerves in subarachnoid hemorrhage: A histochemical and immunohistochemical study. J Neurosurg 65: 531–539

    PubMed  Google Scholar 

  22. Hara H, Weir B (1988) Pathway of nerves with vasoactive intestinal polypeptide-like immunoreactivity to the major cerebral arteries of the rat. Cell Tissue Res 251: 275–280

    PubMed  Google Scholar 

  23. Hardebo JE (1990) New pathogenetic aspects on migraine. Circ Metab Cerveau 7: 163–178

    Google Scholar 

  24. Hardebo JE, Arbab M, Suzuki N, Svengaard NA (1991) Pathways of parasympathetic and sensory cerebrovascular nerves in monkeys. Stroke 22: 331–342

    PubMed  Google Scholar 

  25. Hokfelt T, Johansson O, Kellerth JO (1977) Immunohistochemical distribution of substance P. von Euler US, Pernow B: substance P, Nobel Symposium 37. Raven, New York, pp 117–145

    Google Scholar 

  26. Huber GC (1989) Observations on the innervation of the intracranial vessels. J Comp Neurol 9: 1–25

    Google Scholar 

  27. Jackowski A, Crockard A, Burnstock G,et al (1990) The time course of intracranial pathophysiological changes following experimental subarachnoid hemorrhage in the rat. J Cereb Blood Flow Metab 10: 835–849

    PubMed  Google Scholar 

  28. Jessell TM, Iverson LL, Cuello AC (1978) Capsaicin-induced depletion of substance P from primary sensory neurons. Brain Res 152: 183–188

    PubMed  Google Scholar 

  29. Juul R, Edvinsson L, Fredriksen TA, Ekman R, Brubakk AO, Gisvold SE (1990) Changes in the levels of neuropeptide Y-LI in the external jugular vein in connection with vasoconstriction following subarachnoid hemorrhage in man: involvement of sympathetic neuropeptide Y in cerebral vasospasm. Acta Neurochir (Wien) 107: 75–81

    Google Scholar 

  30. Juul R, Edvinsson L, Gisvold SE,et al (1990) Calcitonin generelated peptide LI in subarachnoid hemorrhage in man. Signs of activation of the trigemino-cerebrovascular system? Br J Neurosurg 4: 171–180

    PubMed  Google Scholar 

  31. Keller JT, Marfurt CF (1991) Peptidergic and serotoninergic innervation of the rat dura mater. J Comp Neurol 309: 1–20

    PubMed  Google Scholar 

  32. Keller JT, Marfurt CF, Dimlich RVW,et al (1989) Sympathetic innervation of the supratentorial dura mater of the rat. J Comp Neurol 290: 310–321

    PubMed  Google Scholar 

  33. Keller JT, Mullen BG, Zuccarello M (1993) Dural neuropeptide changes after subarachnoid hemorrhage in rats. Brain Res Bull 31: 713–718

    PubMed  Google Scholar 

  34. Kimmel DL (1961) The nerves of the cranial dura mater and their significance in dural headache and referred pain. Chic Med Sch Q 22: 16–26

    PubMed  Google Scholar 

  35. Lauritzen M (1987) Cortical spreading depression as a putative migraine mechanism. Trends Neurosci 10: 8–13

    Google Scholar 

  36. Lee Y, Kawai Y, Shiosaka S,et al (1985) Coexistence of calcitonin gene-related peptide and substance P-like peptide in single cells of the trigeminal ganglion of the rat: immunohistochemical analysis. Brain Res 330: 194–196

    PubMed  Google Scholar 

  37. Liebermann AR (1976) Sensory ganglia. In: Landon DN (eds) The peripheral nerve. Chapman and Hall, London, pp 188–263

    Google Scholar 

  38. Linnik MD, Sakas DE, Uhl GR,et al (1989) Subarachnoid blood and headache. Altered trigeminal tachykinin gene expression. Ann Neurol 25: 179–184

    PubMed  Google Scholar 

  39. Liu-Chen LY, Gillespie SA, Norregaard TV,et al (1984) Colocalization of retrogradely transported wheat germ agglutinin and the putative neurotransmitter Substance P within trigeminal ganglion cells projecting to cat middle cerebral artery. J Comp Neurol 225: 187–192

    PubMed  Google Scholar 

  40. Luschka H (1850) Die Nerven der harten Hirnhaut. Laupp, Tübingen

    Google Scholar 

  41. Matsuyama T, Wanaka A, Yoneda S,et al (1986) Two distinct calcitonin gene-related peptide-containing peripheral nervous systems: distribution and quantitative differences between the iris and cerebral artery with special reference to substance P. Brain Res 373: 205–212

    PubMed  Google Scholar 

  42. Matsuyama T, Shiosaka S, Matsumoto M,et al (1983) Overall distribution of vasoactive intestinal polypeptide-containing nerves on the wall of the cerebral arteries. An immunohistochemical study using whole-mounts. Neuroscience 10: 89–96

    PubMed  Google Scholar 

  43. Mayberg MR, Zervas NT, Moskowitz MA (1984) Trigeminal projections to supratentorial pial and dural blood vessels in cats demonstrated by horseradish peroxidase histochemistry. J Comp Neurol 223: 46–56

    PubMed  Google Scholar 

  44. McCulloch J, Uddman R, Kingman TA, Edvinsson L (1986) Calcitonin gene-related peptide: functional role in cerebrovascular regulation. Proc Natl Acad Sci USA 83: 5731–5735

    Google Scholar 

  45. Morgenlander JC, Wilkins RH (1990) Surgical treatment of cluster headache. J Neurosurg 72: 866–871

    PubMed  Google Scholar 

  46. Moskowitz MA (1990) Basic mechanisms in vascular headache. Neurol Clin 8: 801–815

    PubMed  Google Scholar 

  47. Nozaki K, Okamoto S, Uemura Y, Kikuchi H, Mizumo H (1990) Vascular relaxation properties of calcitonin gene-related peptide and vasoactive intestinal polypeptide in subarachnoid hemorrhage. J Neurosurg 72: 792–797

    PubMed  Google Scholar 

  48. O'Connor TP, van der Kooy D (1986) Pattern of intracranial and extracranial projections of trigeminal ganglion cells. J Neurosci 6: 2200–2207

    PubMed  Google Scholar 

  49. Penfield W, McNaughton F (1940) Dural headache and innervation of the dura mater. Arch Neurol Psychiatry 44: 43–75

    Google Scholar 

  50. Ray BS, Wolff HG (1940) Experimental studies on headache. Pain sensitive structures of the head and their significance in headache. Arch Surg 41: 813–856

    Google Scholar 

  51. Saito A, Masaki T, Uchiyama Y, Lee T J-F, Goto K (1989) Calcitonin gene-related peptide and vasodilator nerves in large cerebral arteries of cats. J Pharmacol Exp Ther 248: 455–472

    PubMed  Google Scholar 

  52. Sakas DE, Moskowitz MA, Kontos HA, Kano M, Ogilvy CS, Wei EP (1986) Trigeminovascular fibers increase blood flow in cortical gray matter by axon reflex-like mechanisms during acute severe hypertension or seizures. Proc Natl Acad Sci USA 86: 1401–1405

    Google Scholar 

  53. Silverman J, Kruger L (1989) Calcitonin gene-related-peptide-immunoreactive innervation of the rat head with emphasis on specialized sensory structures. J Comp Neurol 280: 303–330

    PubMed  Google Scholar 

  54. Suzuki N, Hardebo JE, Owman C (1988) Origins and pathways of cerebrovascular vasoactive intestinal polypeptide-positive nerve in rat. J Cereb Blood Flow Metab 8: 697–712

    PubMed  Google Scholar 

  55. Suzuki N, Hardebo JE, Owman C (1989) Origins and pathways of cerebrovascular nerves storing substance P and calcitonin gene related peptide in rat. Neuroscience 31: 427–438

    PubMed  Google Scholar 

  56. Suzuki N, Hardebo JE, Kahrstrom J, Owman C (1990) Effect on cortical blood flow of electrical stimulation of trigeminal cerebrovascular nerve fibers in the rat. Acta Physiol Scand 138: 307–315

    PubMed  Google Scholar 

  57. Svendgaard NA, Brismar J, Delgado TJ, Rosengren EA (1985) Subarachnoid hemorrhage in the rat: effect on the development of vasospasm of selective lesions of the catecholamine systems in the lower brain stem. Stroke 16: 602–608

    PubMed  Google Scholar 

  58. Uddman R, Edvinsson L (1989) Neuropeptides in the cerebral circulation. Cerebrovasc Brain Metab Rev 1: 230–252

    PubMed  Google Scholar 

  59. Uddman R, Edvinsson L, Ekblad E, Hakanson R, Sundler F (1986) Calcitonin gene-related peptide (CGRP): perivascular distribution and vasodilatory effects. Regul Pept 15: 1–23

    PubMed  Google Scholar 

  60. Uddman R, Edvinsson L, Edman R,et al (1985) Innervation of the feline cerebrovasculature by nerve fibers containing calcitonin gene related peptides: trigeminal origin and co-existence with substance P. Neurosci Lett 62: 131–136

    PubMed  Google Scholar 

  61. Uddman R, Hara H, Edvinsson L (1989) Neuronal pathways to the rat middle meningeal artery revealed by retrograde tracing and immunocytochemistry. J Auton Nerv Syst 26: 69–75

    PubMed  Google Scholar 

  62. Uemura Y, Sugimoto T, Okamoto S,et al (1987) Changes of neuropeptide immunoreactivity in cerebrovascular nerve fibers after experimentally produced SAH. Immunohistochemical study in the dog. J Neurosurg 66: 741–747

    PubMed  Google Scholar 

  63. During MV, Bauersachs M, Bohmer B,et al (1990) Neuropeptide Y- and substance P-like immunoreactive nerve fibers in the rat dura mater encephali. Anat Embryol (Berl) 182: 363–373

    Google Scholar 

  64. Wanaka A, Matsuyama T, Yoneda S,et al (1986) Origins and distribution of calcitonin gene-related peptide-containing nerves in the wall of the cerebral arteries of the guinea pig with special reference to the coexistence with substance P. Brain Res 369: 185–192

    PubMed  Google Scholar 

  65. Wilkins RH (1975) Hypothalamic dysfunction and intracranial arterial spasm. Surg Neurol 4: 472–480

    PubMed  Google Scholar 

  66. Wilkins RH, Odom GL (1970) Intracranial arterial spasm associated in the craniocerebral trauma. J Neurosurg 32: 626–633

    PubMed  Google Scholar 

  67. Wilson JL, Feico JR (1974) The production of intracranial vascular spasm by hypothalamic extract. J Neurosurg 40: 473–479

    PubMed  Google Scholar 

  68. Zagami AS, Goadsby PH, Edvinsson L (1990) Stimulation of the superior sagittal sinus in the cat causes release of vasoactive peptides. Neuropeptides 16: 69–75

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

This work was supported in part by grants from NIH NS 22969 (JTK) and the Elizabeth Gamble Deaconess Home Association (JTK).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Arand, A.G., Zuccarello, M., Skidmore, B.A. et al. Effect of subarachnoid haemorrhage on trigeminovascular calcitonin-gene-related peptide and substance P of the rat dura mater versus cerebral vasculature. Acta neurochir 127, 103–111 (1994). https://doi.org/10.1007/BF01808556

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01808556

Keywords

Navigation