Skip to main content
Log in

Intravascular real-time, two-dimensional echocardiography

  • Published:
The International Journal of Cardiac Imaging Aims and scope Submit manuscript

Conclusion

Intravascular, real-time, high resolution echography is an exciting new development. It produces circumferential images of the artery of interest and allows measurement of lumen dimensions, wall thickness and extent of atherosclerotic disease. This unique diagnostic potential can be used to characterise and quantify the degree of atherosclerotic disease, to grade the effect of pharmacologic intervention and to guide angioplasty procedures and evaluate their effects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Blankenhorn DH, Chin HP, Conover DJ et al. Ultrasound observation on pulsation in human carotid artery lesions. Ultrasound in Med & Biol 1988; 14, 7: 583–7.

    Google Scholar 

  2. Pignoli P, Tremoli HE, Poli A et al. Intimal plus medial thickness of the arterial wall: A direct measurement with ultrasound imaging. Circulation 1986; 74: 1399–406.

    Google Scholar 

  3. Taams MA, Gussenhoven EJ, Cornel JH et al. Detection of left coronary artery stenosis by transoesophageal echocardiography. Eur Heart J 1988; 9: 1162–6.

    Google Scholar 

  4. Taams MA, Gussenhoven EJ, Schippers LA et al. The value of transesophageal echocardiography for diagnosis of thoracic aorta pathology. Eur Heart J 1988; 9: 1308–16.

    Google Scholar 

  5. McPherson DD, Hiratzka LF, Lamberth WC et al. Delineation of the extent of coronary atherosclerosis by high-frequency epicardial. N Engl J Med 1987; 316: 304–9.

    Google Scholar 

  6. Forrester JS, Litvack F, Grundvest W et al. Cardiac angioscopy in acute ischemic syndromes. Am J Card Imaging 1988; 2: 178–84.

    Google Scholar 

  7. Wild JJ, Reid JM. Progress in techniques of soft tissue examination by 15 MC pulsed ultrasound. In: Kelly E, ed. Ultrasound in medicine and biology. Washington, American Institute of Biological Sciences, 1950, p. 30.

    Google Scholar 

  8. Carleton RA, Clark JG. Measurement of left ventricular diameter in the dog by cardiac catheterization. Validation and physiologic meaningfulness of an ultrasonic technique. Circ Res 1968; 22: 545–8.

    Google Scholar 

  9. Eggleton RC, Townsend C, Herrick J et al. Ultrasonic visualization of left ventricular dynamics. Ultrasonics 1970; 8: 143–53.

    Google Scholar 

  10. Bom N, Lancee CT, Van Egmond FC. An ultrasonic intracardiac scanner. Ultrasonics 1972; 10: 72–6.

    Google Scholar 

  11. Martin RW, Watkins DW. An ultrasonic catheter for intravascular measurement of blood flow: technical details. IEEE Trans Sonics and Ultrasound 1980; SU-27: 277–86.

    Google Scholar 

  12. Hartley CJ, Sartorie MP, Henry PD. Intravascular imaging with ultrasound. In: Microsensors and catheter-based imaging technology, Alan I West, ed. Proc SPIE 1988; 904: 103–6.

  13. Sacharoff AC, Caro RG, Muller DF, Boleza EJ. Demonstration of intraluminal ultrasound imaging. In: West AI, ed. Microsensors and catheter-based imaging technology, Proc SPIE 1988; 904: 118–20.

  14. Ellis RA, Crowley RJ, Eyllon MM: Ultrasonic imaging catheter. In: West AI, ed. Microsensors and catheter-based imaging technology. Proc SPIE 1988; 904: 127–30.

  15. Yock PG, Linker DT, Thapliyal HV et al. Real-time, two-dimensional catheter ultrasound: a new technique for high-resolution intravascular imaging (abstr). JACC 1988;11:130A.

    Google Scholar 

  16. Bom N, Lancee CT, Slager CJ, De Jong N. Ein Weg zur intraluminaren Echoarteriographie. Ultraschall 1987; 8: 233–6.

    Google Scholar 

  17. Martinelli MA, Aretz TH, Butterly J. Ultrasonic imaging of coronary arterial thickness and ultrasonic signature typing of internal abnormalities. In: West AI, ed. Microsensors and catheter-based imaging technology. Proc SPIE 1988; 904: 110–5.

  18. Pandian NG, Kreis A, Brockway B et al. Ultrasound angioscopy: real-time, two-dimensional, intraluminal ultrasound imaging of blood vessels. Am J Cardiol 1988; 62: 493–4.

    Google Scholar 

  19. Mallery JA, Griffith J, Gessert J et al. Intravascular ultrasound imaging catheter assessment of normal and atherosclerotic arterial wall thickness (abstr). JACC 1988; 2: 22A.

    Google Scholar 

  20. Yock PG, Johnson EL, Linker DT. Intravascular ultrasound: development and clinical potential. Am J Card Imaging 1988; 2: 185–93.

    Google Scholar 

  21. Roelandt JR, Bom N, Serruys PW, Gussenhoven EJ et al. Intravascular high-resolution real-time cross-sectional echocardiography. Echocardiography 1989; 6: 1–8.

    Google Scholar 

  22. Bom N, Slager CJ, Van Egmond FC et al. Intra-arterial ultrasonic imaging for recanalization by spark erosion. Ultrasound Med Biol 1988; 14: 257–61.

    Google Scholar 

  23. Gussenhoven WJ, Essed CE, Lancee CT et al. Arterial wall characteristics determined by intravascular ultrasound imaging: an in vitro study. JACC (in press).

  24. Fisher LD, Judkins MP, Lesperance J et al. Reproducibility of coronary arteriographic reading in the coronary artery surgery study (CASS). Cathet Cardiovasc Diagn 1982; 8: 565–75.

    Google Scholar 

  25. Linker DT, Yock PG, Thapliyal HV et al. In vitro analysis of back scattered amplitude from normal and diseased arteries using a new intraluminal ultrasonic catheter (abstr). JACC 1988; 11: 4A.

    Google Scholar 

  26. Marcus M, Wright C, Doty D et al. Measurements of coronary velocity and reactive hyperemia in the coronary circulation of humans. Circ Res 1981; 49: 877–91.

    Google Scholar 

  27. Harrison DG, White CW, Hiratzka LF et al. Can the significance of coronary stenosis be predicted by quantitative coronary angiography? (abstr). Circulation 1981; 64: 160.

    Google Scholar 

  28. White CW, Wright CW, Doty DB et al. Does visual interpretation of the coronary arteriogram predict the physiologic importance of a coronary stenosis? N Engl J Med 1984; 310: 819–24.

    Google Scholar 

  29. Cole JS, Hartley CJ. The pulsed Doppler coronary artery catheter: preliminary report of a new technique for measuring rapid changes in coronary artery flow velocity in man. Circulation 1977; 56: 18–25.

    Google Scholar 

  30. Serruys PW, Zijlstra F, Reiber HHC et al. Assessment of coronary flow reserve during angioplasty using a Doppler tip balloon catheter. Comparison with digital substraction cineangiography. JL Interven Cardiol 1988; 1:19–33.

    Google Scholar 

  31. Serruys PW, Julliere Y, Zijlstra F et al. Coronary blood flow velocity during percutaneous transluminal coronary angioplasty as a guide for assessment of the functional result. Am J Cardiol 1988; 61: 253–59.

    Google Scholar 

  32. Glagov S, Weisenberg E, Zarins CK et al. Compensatory enlargement of human atherosclerotic arteries. N Engl J Med 1987; 316: 1371–5.

    Google Scholar 

  33. Armstrong ML, Heistad DD, Marcus ML et al. Structural and hemodynamic responses of peripheral arteries of macaque monkeys to atherogenic diet. Atherosclerosis 1985; 5: 336–46.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Supported in part by a grant from the Interuniversity Cardiology Institute of the Netherlands and the STW (Foundation for Technical Science).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Roelandt, J.R.T.C., Serruys, P.W., Bom, N. et al. Intravascular real-time, two-dimensional echocardiography. Int J Cardiac Imag 4, 63–67 (1989). https://doi.org/10.1007/BF01795127

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01795127

Keywords

Navigation